Unique rapid solidified structure and nanocrystallization mechanism enable the Fe-based nanocrystalline alloys with high Cu content excellent soft magnetic properties and good manufacturability,and also results in unu...Unique rapid solidified structure and nanocrystallization mechanism enable the Fe-based nanocrystalline alloys with high Cu content excellent soft magnetic properties and good manufacturability,and also results in unusual phenomena in terms of alloying effects.In the present work,we systematically studied the influence rules of early transition elements on the rapid solidified structure and nanocrystallization behaviors of Fe-Si-B-Cu soft magnetic alloys with high Cu content and explored the related mechanisms.In terms of rapid solidified structure,the additions of early transition elements always inhibit the for-mation of pre-existingα-Fe crystals even eliminate them,and the additions that could produce larger atomic mismatch parameter(δ)and negative mixing enthalpy(△H_(mix))show stronger effects.In terms of nanocrystallization behaviors,the increases inδand negative△H_(mix) weaken the competitive growth between the pre-existing nanocrystals during annealing and then coarsen the nanostructure of the an-nealed alloys and deteriorate their magnetic softness,while the excessive increases inδand negativeHmix could significantly suppress the growth ofα-Fe crystals by diffusion inhibition during annealing and thus remarkable refine the nanostructure of the annealed alloys and improve their magnetic softness.展开更多
High pressure die casting(HPDC)AlSi10Mn Mg alloy castings are widely used in the automobile industry.Mg can optimize the mechanical properties of castings through heat treatment,while the release of thermal stress aro...High pressure die casting(HPDC)AlSi10Mn Mg alloy castings are widely used in the automobile industry.Mg can optimize the mechanical properties of castings through heat treatment,while the release of thermal stress arouses the deformation of large integrated die-castings.Herein,the development of non-heat treatment Al alloys is becoming the hot topic.In addition,HPDC contains externally solidified crystals(ESCs),which are detrimental to the mechanical properties of castings.To achieve high strength and toughness of non-heat treatment die-casting Al-Si alloy,we used AlSi9Mn alloy as matrix with the introduction of Zr,Ti,Nb,and Ce.Their influences on ESCs and mechanical properties were systematically investigated through three-dimensional reconstruction and thermodynamic simulation.Our results reveal that the addition of Ti increased ESCs'size and porosity,while the introduction of Nb refined ESCs and decreased porosity.Meanwhile,large-sized Al_3(Zr,Ti)phases formed and degraded the mechanical properties.Subsequent introduction of Ce resulted in the poisoning effect and reduced mechanical properties.展开更多
Currently,the Al_(2)O_(3)content in the high-alumina slag systems within blast furnaces is generally limited to 16wt%–18.5wt%,making it challenging to overcome this limitation.Unlike most studies that concentrated on...Currently,the Al_(2)O_(3)content in the high-alumina slag systems within blast furnaces is generally limited to 16wt%–18.5wt%,making it challenging to overcome this limitation.Unlike most studies that concentrated on managing the MgO/Al_(2)O_(3)ratio or basicity,this paper explored the effect of equimolar substitution of MgO for CaO on the viscosity and structure of a high-alumina CaO-MgO-Al_(2)O_(3)-SiO_(2)slag system,providing theoretical guidance and data to facilitate the application of high-alumina ores.The results revealed that the viscosity first decreased and then increased with higher MgO substitution,reaching a minimum at 15mol%MgO concentration.Fourier transform infrared spectroscopy(FTIR)results found that the depths of the troughs representing[SiO_(4)]tetrahedra,[AlO_(4)]tetrahedra,and Si-O-Al bending became progressively deeper with increased MgO substitution.Deconvolution of the Raman spectra showed that the average number of bridging oxygens per Si atom and the X_(Q^(3))/X_(Q^(2))(X_(Q^(i))is the molar fraction of Q^(i) unit,and i is the number of bridging oxygens in a[SiO_(4)]tetrahedral unit)ratio increased from 2.30 and 1.02 to 2.52 and 2.14,respectively,indicating a progressive polymerization of the silicate structure.X-ray photoelectron spectroscopy(XPS)results highlighted that non-bridging oxygen content decreased from 77.97mol% to 63.41mol% with increasing MgO concentration,whereas bridging oxygen and free oxygen contents increased.Structural analysis demonstrated a gradual increase in the polymerization degree of the tetrahedral structure with the increase in MgO substitution.However,bond strength is another important factor affecting the slag viscosity.The occurrence of a viscosity minimum can be attributed to the complex evolution of bond strengths of non-bridging oxygens generated during depolymerization of the[SiO_(4)]and[AlO_(4)]tetrahedral structures by CaO and MgO.展开更多
Research efforts on electromagnetic interference(EMI)shielding materials have begun to converge on green and sustainable biomass materials.These materials offer numerous advantages such as being lightweight,porous,and...Research efforts on electromagnetic interference(EMI)shielding materials have begun to converge on green and sustainable biomass materials.These materials offer numerous advantages such as being lightweight,porous,and hierarchical.Due to their porous nature,interfacial compatibility,and electrical conductivity,biomass materials hold significant potential as EMI shielding materials.Despite concerted efforts on the EMI shielding of biomass materials have been reported,this research area is still relatively new compared to traditional EMI shielding materials.In particular,a more comprehensive study and summary of the factors influencing biomass EMI shielding materials including the pore structure adjustment,preparation process,and micro-control would be valuable.The preparation methods and characteristics of wood,bamboo,cellulose and lignin in EMI shielding field are critically discussed in this paper,and similar biomass EMI materials are summarized and analyzed.The composite methods and fillers of various biomass materials were reviewed.this paper also highlights the mechanism of EMI shielding as well as existing prospects and challenges for development trends in this field.展开更多
Layer-structured Ruddlesden–Popper(RP)perovskites(RPPs)with decent stability have captured the imagination of the photovoltaic research community and bring hope for boosting the development of perovskite solar cell(P...Layer-structured Ruddlesden–Popper(RP)perovskites(RPPs)with decent stability have captured the imagination of the photovoltaic research community and bring hope for boosting the development of perovskite solar cell(PSC)technology.However,two-dimensional(2D)or quasi-2D RP PSCs are encountered with some challenges of the large exciton binding energy,blocked charge transport and poor film quality,which restrict their photovoltaic performance.Fortunately,these issues can be readily resolved by rationally designing spacer cations of RPPs.This review mainly focuses on how to design the molecular structures of organic spacers and aims to endow RPPs with outstanding photovoltaic applications.We firstly elucidated the important roles of organic spacers in impacting crystallization kinetics,charge transporting ability and stability of RPPs.Then we brought three aspects to attention for designing organic spacers.Finally,we presented the specific molecular structure design strategies for organic spacers of RPPs aiming to improve photovoltaic performance of RP PSCs.These proposed strategies in this review will provide new avenues to develop novel organic spacers for RPPs and advance the development of RPP photovoltaic technology for future applications.展开更多
Hydrogel scaffolds have numerous potential applications in the tissue engineering field.However,tough hydrogel scaffolds implanted in vivo are seldom reported because it is difficult to balance biocompatibility and hi...Hydrogel scaffolds have numerous potential applications in the tissue engineering field.However,tough hydrogel scaffolds implanted in vivo are seldom reported because it is difficult to balance biocompatibility and high mechanical properties.Inspired by Chinese ramen,we propose a universal fabricating method(printing-P,training-T,cross-linking-C,PTC&PCT)for tough hydrogel scaffolds to fill this gap.First,3D printing fabricates a hydrogel scaffold with desired structures(P).Then,the scaffold could have extraordinarily high mechanical properties and functional surface structure by cycle mechanical training with salting-out assistance(T).Finally,the training results are fixed by photo-cross-linking processing(C).The tough gelatin hydrogel scaffolds exhibit excellent tensile strength of 6.66 MPa(622-fold untreated)and have excellent biocompatibility.Furthermore,this scaffold possesses functional surface structures from nanometer to micron to millimeter,which can efficiently induce directional cell growth.Interestingly,this strategy can produce bionic human tissue with mechanical properties of 10 kPa-10 MPa by changing the type of salt,and many hydrogels,such as gelatin and silk,could be improved with PTC or PCT strategies.Animal experiments show that this scaffold can effectively promote the new generation of muscle fibers,blood vessels,and nerves within 4 weeks,prompting the rapid regeneration of large-volume muscle loss injuries.展开更多
With vigorous developments in nanotechnology,the elaborate regulation of microstructure shows attractive potential in the design of electromagnetic wave absorbers.Herein,a hierarchical porous structure and composite h...With vigorous developments in nanotechnology,the elaborate regulation of microstructure shows attractive potential in the design of electromagnetic wave absorbers.Herein,a hierarchical porous structure and composite heterogeneous interface are constructed successfully to optimize the electromagnetic loss capacity.The macro–micro-synergistic graphene aerogel formed by the ice template‑assisted 3D printing strategy is cut by silicon carbide nanowires(SiC_(nws))grown in situ,while boron nitride(BN)interfacial structure is introduced on graphene nanoplates.The unique composite structure forces multiple scattering of incident EMWs,ensuring the combined effects of interfacial polarization,conduction networks,and magnetic-dielectric synergy.Therefore,the as-prepared composites present a minimum reflection loss value of−37.8 dB and a wide effective absorption bandwidth(EAB)of 9.2 GHz(from 8.8 to 18.0 GHz)at 2.5 mm.Besides,relying on the intrinsic high-temperature resistance of SiC_(nws) and BN,the EAB also remains above 5.0 GHz after annealing in air environment at 600℃ for 10 h.展开更多
The effect of the gradient content of Co element on the solidification process of Cu-based alloy under deep under cooling conditions was explored.The non-equilibrium solidification structure of the under cooled alloy ...The effect of the gradient content of Co element on the solidification process of Cu-based alloy under deep under cooling conditions was explored.The non-equilibrium solidification structure of the under cooled alloy samples were analyzed.It is found that the rapidly solidified alloy has undergone twice grain refinement during the undercooling process.Characterization and significance of the maximum undercooling refinement structure of Cu60Ni35Co5 at T=253 K were analyzed.High-density defects were observed,such as dislocations,stacking faults networks,and twinning structures.The standard FCC diffraction pattern represents that it is still a single-phase structure.Based on the metallographic diagram,EBSD and TEM data analysis,it is illustrated that the occurrence of grain refinement under high undercooling is due to stress induced recrystallization.In addition,the laser cladding technology is used to coat Co-based alloy(Stellite12) coating on 304 stainless steel substrate;the microstructure of the coating cross-section was analyzed.It was found that the microstructure of the cross-section is presented as columnar crystals,planar crystals,and disordered growth direction,so that the coating has better hardness and wear resistance.By electrochemical corrosion of the substrate and coating,it can be seen that the Co and Cr elements present in the coating are more likely to form a dense passivation film,which improved the corrosion resistance of the coating.展开更多
γ-Secretase,called“the proteasome of the membrane,”is a membrane-embedded protease complex that cleaves 150+peptide substrates with central roles in biology and medicine,including amyloid precursor protein and the ...γ-Secretase,called“the proteasome of the membrane,”is a membrane-embedded protease complex that cleaves 150+peptide substrates with central roles in biology and medicine,including amyloid precursor protein and the Notch family of cell-surface receptors.Mutations inγ-secretase and amyloid precursor protein lead to early-onset familial Alzheimer’s disease.γ-Secretase has thus served as a critical drug target for treating familial Alzheimer’s disease and the more common late-onset Alzheimer’s disease as well.However,critical gaps remain in understanding the mechanisms of processive proteolysis of substrates,the effects of familial Alzheimer’s disease mutations,and allosteric modulation of substrate cleavage byγ-secretase.In this review,we focus on recent studies of structural dynamic mechanisms ofγ-secretase.Different mechanisms,including the“Fit-Stay-Trim,”“Sliding-Unwinding,”and“Tilting-Unwinding,”have been proposed for substrate proteolysis of amyloid precursor protein byγ-secretase based on all-atom molecular dynamics simulations.While an incorrect registry of the Notch1 substrate was identified in the cryo-electron microscopy structure of Notch1-boundγ-secretase,molecular dynamics simulations on a resolved model of Notch1-boundγ-secretase that was reconstructed using the amyloid precursor protein-boundγ-secretase as a template successfully capturedγ-secretase activation for proper cleavages of both wildtype and mutant Notch,being consistent with biochemical experimental findings.The approach could be potentially applied to decipher the processing mechanisms of various substrates byγ-secretase.In addition,controversy over the effects of familial Alzheimer’s disease mutations,particularly the issue of whether they stabilize or destabilizeγ-secretase-substrate complexes,is discussed.Finally,an outlook is provided for future studies ofγ-secretase,including pathways of substrate binding and product release,effects of modulators on familial Alzheimer’s disease mutations of theγ-secretase-substrate complexes.Comprehensive understanding of the functional mechanisms ofγ-secretase will greatly facilitate the rational design of effective drug molecules for treating familial Alzheimer’s disease and perhaps Alzheimer’s disease in general.展开更多
Atomic-scale doping strategies and structure design play pivotal roles in tailoring the electronic structure and physicochemical property of electromagnetic wave absorption(EMWA)materials.However,the relationship betw...Atomic-scale doping strategies and structure design play pivotal roles in tailoring the electronic structure and physicochemical property of electromagnetic wave absorption(EMWA)materials.However,the relationship between configuration and electromagnetic(EM)loss mechanism has remained elusive.Herein,drawing inspiration from the DNA transcription process,we report the successful synthesis of novel in situ Mn/N co-doped helical carbon nanotubes with ultrabroad EMWA capability.Theoretical calculation and EM simulation confirm that the orbital coupling and spin polarization of the Mn–N4–C configuration,along with cross polarization generated by the helical structure,endow the helical converters with enhanced EM loss.As a result,HMC-8 demonstrates outstanding EMWA performance,achieving a minimum reflection loss of−63.13 dB at an ultralow thickness of 1.29 mm.Through precise tuning of the graphite domain size,HMC-7 achieves an effective absorption bandwidth(EAB)of 6.08 GHz at 2.02 mm thickness.Furthermore,constructing macroscale gradient metamaterials enables an ultrabroadband EAB of 12.16 GHz at a thickness of only 5.00 mm,with the maximum radar cross section reduction value reaching 36.4 dB m2.This innovative approach not only advances the understanding of metal–nonmetal co-doping but also realizes broadband EMWA,thus contributing to the development of EMWA mechanisms and applications.展开更多
The solidified structure of the thin-walled and complicated Ti-6AI-4V castings produced by the vertical centrifugal casting process was studied in the present work. The results show that the wall thickness of the sect...The solidified structure of the thin-walled and complicated Ti-6AI-4V castings produced by the vertical centrifugal casting process was studied in the present work. The results show that the wall thickness of the section is featured with homogeneously distributed fine equiaxial grains, compared with the microstructure of the thick-walled section. The grain size of the castings has a tendency to decrease gradually with the increasing of the centrifugal radius. The inter-lamellar space in thick-walled casting parts is bigger than that of the thin-walled parts, and the profile of inter-lamellar space is not susceptible to the centrifugal radius.展开更多
Al2O3/A356-La alloy composites were fabricated by squeeze casting, and the effects of La on the solidified structure and the solute segregation during alloy solidification were studied. The results indicate that the s...Al2O3/A356-La alloy composites were fabricated by squeeze casting, and the effects of La on the solidified structure and the solute segregation during alloy solidification were studied. The results indicate that the structure of the matrix alloy becomes fine and small by the addition of La. La has been richened at the interface to help improve the wettability between the fiber and Al alloy, but there are no intermetallic compounds richening La found at the interface yet. There is no special influence of La on the Mg segregation in the matrix alloy. The distribution of Mg and La in the composites has been at the same position--near the interface.展开更多
The structure and properties of Cu-Cr-Zr alloy were studied after rapidly solidified aging and solid solution aging.At the early stage of aging (500℃ for 15 rain), the hardness and the conductivity of the alloy rap...The structure and properties of Cu-Cr-Zr alloy were studied after rapidly solidified aging and solid solution aging.At the early stage of aging (500℃ for 15 rain), the hardness and the conductivity of the alloy rapidly solidified are 143 HV and 72% IACS, respectively. Under the same aging condition, the hardness and electrical conductivity of the alloy solid solution treated can reach 86 HV and 47% IACS, respectively. The microstructure was analyzed, and the grain size after rapid solidification is much smaller than that after solid solution treatment. By rapidly solidified aging the fine precipitates distribute inside the grains and along the grain boundary, while by solid solution aging there are large Cr particles along the grain boundary.展开更多
A rapidly solidified Al-2.5Ti-2.5Fe-2.5Cr (mass fraction in percent) alloywas prepared by melt spinning. As-quenched and as-annealed microstructures were studied by X-raydiffractometry (XRD), transmission electron mic...A rapidly solidified Al-2.5Ti-2.5Fe-2.5Cr (mass fraction in percent) alloywas prepared by melt spinning. As-quenched and as-annealed microstructures were studied by X-raydiffractometry (XRD), transmission electron microscopy (TEM), high-resolution transmission electronmicroscopy (HREM) and energy dispersive spectrum (EDS) analysis. The microhardness of the alloy atdifferent annealing temperatures was measured. The results obtained indicate that the microhardnessof the rapidly solidified Al-2.5Ti-2.5Fe-2.5Cr alloy does not vary with different annealingtemperatures. The as-quenched microstructure of the alloy includes two kinds of dispersed primaryphases: Al_3Ti and Al_(13)(Cr, Fe)_2. After annealing at 400 deg C for 10 h, the stable phaseAl_(13)Fe_4 appears in the microstructure.展开更多
The effects of a pulsed magnetic field on the solidified microstructure of an AZ31 magnesium alloy were investigated.The experimental results show that the remarkable microstructural refinement is achieved when the pu...The effects of a pulsed magnetic field on the solidified microstructure of an AZ31 magnesium alloy were investigated.The experimental results show that the remarkable microstructural refinement is achieved when the pulsed magnetic field is applied to the solidification of the AZ31 alloy.The average grain size of the as-cast microstructure of the AZ31 alloy is refined to 107 μm.By quenching the AZ31 alloy, the different primary α-Mg microstructures are preserved during the course of solidification.The microstructure evolution reveals that the primary α-Mg generates and grows in globular shape with pulsed magnetic field, contrast with the dendritic shape without pulsed magnetic field.The pulsed magnetic field causes melt convection during solidification, which makes the temperature of the whole melt homogenized, and produces an undercooling zone in front of the liquid/solid interface, which makes the nucleation rate increased and big dendrites prohibited.In addition, the Joule heat effect induced in the melt also strengthens the grain refinement effect and spheroidization of dendrite arms.展开更多
Rapidly solidified Al-Ti base alloys were prepared by melt spinning at the cooling rate about 107 K/s. The melt-spun ribbons were used to observe the dricrostructures after heat treatment.In the supersaturated Al-Tl-S...Rapidly solidified Al-Ti base alloys were prepared by melt spinning at the cooling rate about 107 K/s. The melt-spun ribbons were used to observe the dricrostructures after heat treatment.In the supersaturated Al-Tl-Si alloy, age hardening occurred after 1 h anneal in the temperature range of 4000~500℃, which seems to be attributed to the precipitation of metastable Ll2- (Al,Si)3Ti phase. However. the microhardness was relatively low because of the low v/o and the insufflcient stability of precipitates. Thus. Cr was added to Al-Ti-Si alloys in order to stabilize the microstructures and to increase the v/o of precipitate5. As a result. the alIoys containing Cr were evaluated to possess the improved properties at the service temperature.展开更多
To obtain advanced quality pure copper, the microstructure of solidified copper was optimized by imposing electric pulse on liquid copper in this study. Experiments were performed to determine the effect of electric p...To obtain advanced quality pure copper, the microstructure of solidified copper was optimized by imposing electric pulse on liquid copper in this study. Experiments were performed to determine the effect of electric pulse voltage, arrangement mode of electrodes, and energy input on the microstructure of solidified copper. The results show that, when the energy input of electric pulse is bigger than 28.95 kJ per ton copper, the percent of fine grains increases noticeably with the increase of energy input; but when the energy input of electric pulse is smaller than 28.95 kJ per ton copper, the percent of fine grains decreases with the increase of energy input. The influence order of above factors on grain refinement is electric pulse voltage 〉 arrangement mode of electrodes 〉 energy input. According to the above experimental results, the optimum process conditions are chosen as the voltage being 400 V and the energy input greater than 28.95 kJ per ton copper. Meanwhile, the best arrangement mode of electrodes should be that, one electrode is immerged in the middle of liquid copper in the crystallizer, and the other is connected to the inner wall of the crystallizer, which is divided into two electrode poles for the symmetrical electric field distribution.展开更多
During the cold-chamber high pressure die casting(HPDC) process, samples were produced to investigate the microstructure characteristics of AM60B magnesium alloy. Special attention was paid to the effects of process p...During the cold-chamber high pressure die casting(HPDC) process, samples were produced to investigate the microstructure characteristics of AM60B magnesium alloy. Special attention was paid to the effects of process parameters on the morphology and distribution of externally solidified crystals(ESCs) in the microstructure of magnesium alloy die castings, such as slow shot phase plunger velocity, delay time of pouring and fast shot phase plunger velocity. On the basis of metallographic observation and quantitative statistics, it is concluded that a lower slow shot phase plunger velocity and a longer delay time of pouring both lead to an increment of the size and percentage of the ESCs, due to the fact that a longer holding time of the melt in the shot sleeve will cause a more severe loss of the superheat. The impingement of the melt flow on the ESCs is more intensive with a higher fast shot phase plunger velocity, in such case the ESCs reveal a more granular and roundish morphology and are dispersed throughout the cross section of the castings. Based on analysis of the filling and solidification processes of the melt during the HPDC process, reasonable explanations were proposed in terms of the nucleation, growth, remelting and fragmentation of the ESCs to interpret the effects of process parameters on the morphology and distribution of the ESCs in the microstructure of magnesium alloy die castings.展开更多
The effects of pulsed magnetic field on the solidified microstructure of an AZ91D magnesium alloy were investigated. The experimental results show that the remarkable microstructural refinement is achieved when the pu...The effects of pulsed magnetic field on the solidified microstructure of an AZ91D magnesium alloy were investigated. The experimental results show that the remarkable microstructural refinement is achieved when the pulsed magnetic field is applied in the solidification of AZ91D alloy. The average grain size of the as-cast microstructure of AZ91D alloy is refined to 104 μm. Besides the grain refinement, the morphology of the primary α-Mg is changed from dendritic to rosette, then to globular shape with changing the parameters of the pulsed magnetic field. The pulsed magnetic field causes melt convection during solidification, which makes the temperature of the whole melt homogenized, and produces an undercooling zone in front of the liquid/solid interface by the magnetic pressure, which makes the nucleation rate increased and big dendrites prohibited. In addition, primary α-Mg dendrites break into fine crystals, resulting in a refined solidification structure of the AZ91D alloy. The Joule heat effect induced in the melt also strengthens the grain refinement effect and spheroidization of dendrite arms.展开更多
Directionally solidified porous copper is considered as a potential candidate in the field of microchannel heat sinks.By the Bridgman-type directional solidification method,a porous copper ingot was fabricated.Evoluti...Directionally solidified porous copper is considered as a potential candidate in the field of microchannel heat sinks.By the Bridgman-type directional solidification method,a porous copper ingot was fabricated.Evolution of the porosity,pore number density,average pore diameter and average interpore spacing at different ingot heights was investigated.The results show that with the increase of ingot height,the porosity firstly increases and then basically remains unchanged from the ignot height of 65 mm;the pore number density rapidly decreases at first,and the decreasing speed becomes slower when the ignot height higher than 85 mm;the average pore diameter increases and then remains unchanged from the ingot height of 85 mm;the average interpore spacing increases,and the increasing speed of average interpore spacing becomes slower with the increase of height to higher than 85 mm.In order to study the evolution of diameter and spatial distribution of pores,the distribution ranges of pore diameter,nearest-neighbor distance and radial cumulative pore number were analyzed.As the ingot height increases,the distribution ranges of pore diameter and nearest-neighbor distance firstly increase and then tend to be stable.There are no pore clusters and for long distance,the spatial distribution of pores is uniform at different ingot heights.Pore structure and 3D pore morphology of porous copper were observed with the help of light illumination and X-ray tomography.Pore nucleation,pore interruption,pore coalescence,diameter change of pores and lateral displacement of pores were found to exist in the pore structure.展开更多
基金supported by the National Key R&D Program of China(No.2021YFB3803004)the National Natural Science Foundation of China(Nos.52101239 and 52171153)+4 种基金Ningbo Natural Science Foundation(No.2021J222)the“Pioneer”R&D Program of Zhejiang Province(No.2023C01075)Youth Innovation Promotion Association CAS(No.2021294)Zhejiang Provincial Key Research and Development Projects(No.2021C01033)CITIC Group Major Science and Technology Innovation Project(HT-FZB-2022190).
文摘Unique rapid solidified structure and nanocrystallization mechanism enable the Fe-based nanocrystalline alloys with high Cu content excellent soft magnetic properties and good manufacturability,and also results in unusual phenomena in terms of alloying effects.In the present work,we systematically studied the influence rules of early transition elements on the rapid solidified structure and nanocrystallization behaviors of Fe-Si-B-Cu soft magnetic alloys with high Cu content and explored the related mechanisms.In terms of rapid solidified structure,the additions of early transition elements always inhibit the for-mation of pre-existingα-Fe crystals even eliminate them,and the additions that could produce larger atomic mismatch parameter(δ)and negative mixing enthalpy(△H_(mix))show stronger effects.In terms of nanocrystallization behaviors,the increases inδand negative△H_(mix) weaken the competitive growth between the pre-existing nanocrystals during annealing and then coarsen the nanostructure of the an-nealed alloys and deteriorate their magnetic softness,while the excessive increases inδand negativeHmix could significantly suppress the growth ofα-Fe crystals by diffusion inhibition during annealing and thus remarkable refine the nanostructure of the annealed alloys and improve their magnetic softness.
基金financially supported by the National Natural Science Foundation of China(Nos.52175284 and 52474396)the National Key Research and Development Program of China(No.2022YFB3404201)。
文摘High pressure die casting(HPDC)AlSi10Mn Mg alloy castings are widely used in the automobile industry.Mg can optimize the mechanical properties of castings through heat treatment,while the release of thermal stress arouses the deformation of large integrated die-castings.Herein,the development of non-heat treatment Al alloys is becoming the hot topic.In addition,HPDC contains externally solidified crystals(ESCs),which are detrimental to the mechanical properties of castings.To achieve high strength and toughness of non-heat treatment die-casting Al-Si alloy,we used AlSi9Mn alloy as matrix with the introduction of Zr,Ti,Nb,and Ce.Their influences on ESCs and mechanical properties were systematically investigated through three-dimensional reconstruction and thermodynamic simulation.Our results reveal that the addition of Ti increased ESCs'size and porosity,while the introduction of Nb refined ESCs and decreased porosity.Meanwhile,large-sized Al_3(Zr,Ti)phases formed and degraded the mechanical properties.Subsequent introduction of Ce resulted in the poisoning effect and reduced mechanical properties.
基金financially supported by the National Natural Science Foundation of China(Nos.52425408 and 52304345)the Fundamental Research Funds for the Central Universities,China(No.2023CDJXY-016)the Postdoctoral Science Foundation of Chongqing(No.CSTB2023NSCQ-BHX0174)。
文摘Currently,the Al_(2)O_(3)content in the high-alumina slag systems within blast furnaces is generally limited to 16wt%–18.5wt%,making it challenging to overcome this limitation.Unlike most studies that concentrated on managing the MgO/Al_(2)O_(3)ratio or basicity,this paper explored the effect of equimolar substitution of MgO for CaO on the viscosity and structure of a high-alumina CaO-MgO-Al_(2)O_(3)-SiO_(2)slag system,providing theoretical guidance and data to facilitate the application of high-alumina ores.The results revealed that the viscosity first decreased and then increased with higher MgO substitution,reaching a minimum at 15mol%MgO concentration.Fourier transform infrared spectroscopy(FTIR)results found that the depths of the troughs representing[SiO_(4)]tetrahedra,[AlO_(4)]tetrahedra,and Si-O-Al bending became progressively deeper with increased MgO substitution.Deconvolution of the Raman spectra showed that the average number of bridging oxygens per Si atom and the X_(Q^(3))/X_(Q^(2))(X_(Q^(i))is the molar fraction of Q^(i) unit,and i is the number of bridging oxygens in a[SiO_(4)]tetrahedral unit)ratio increased from 2.30 and 1.02 to 2.52 and 2.14,respectively,indicating a progressive polymerization of the silicate structure.X-ray photoelectron spectroscopy(XPS)results highlighted that non-bridging oxygen content decreased from 77.97mol% to 63.41mol% with increasing MgO concentration,whereas bridging oxygen and free oxygen contents increased.Structural analysis demonstrated a gradual increase in the polymerization degree of the tetrahedral structure with the increase in MgO substitution.However,bond strength is another important factor affecting the slag viscosity.The occurrence of a viscosity minimum can be attributed to the complex evolution of bond strengths of non-bridging oxygens generated during depolymerization of the[SiO_(4)]and[AlO_(4)]tetrahedral structures by CaO and MgO.
基金National Natural Science Foundation of China(32201491)Young Elite Scientists Sponsorship Program by CAST(2023QNRC001)The authors extend their appreciation to the Deanship of Scientific Research at Northern Border University,Arar,KSA for funding this research work through the project number“NBU-FPEJ-2024-1101-02”.
文摘Research efforts on electromagnetic interference(EMI)shielding materials have begun to converge on green and sustainable biomass materials.These materials offer numerous advantages such as being lightweight,porous,and hierarchical.Due to their porous nature,interfacial compatibility,and electrical conductivity,biomass materials hold significant potential as EMI shielding materials.Despite concerted efforts on the EMI shielding of biomass materials have been reported,this research area is still relatively new compared to traditional EMI shielding materials.In particular,a more comprehensive study and summary of the factors influencing biomass EMI shielding materials including the pore structure adjustment,preparation process,and micro-control would be valuable.The preparation methods and characteristics of wood,bamboo,cellulose and lignin in EMI shielding field are critically discussed in this paper,and similar biomass EMI materials are summarized and analyzed.The composite methods and fillers of various biomass materials were reviewed.this paper also highlights the mechanism of EMI shielding as well as existing prospects and challenges for development trends in this field.
基金funding from National Science Foundation of China(52202337 and 22178015)the Young Taishan Scholars Program of Shandong Province(tsqn202211082)+1 种基金Natural Science Foundation of Shandong Province(ZR2023MB051)Independent Innovation Research Project of China University of Petroleum(East China)(22CX06023A).
文摘Layer-structured Ruddlesden–Popper(RP)perovskites(RPPs)with decent stability have captured the imagination of the photovoltaic research community and bring hope for boosting the development of perovskite solar cell(PSC)technology.However,two-dimensional(2D)or quasi-2D RP PSCs are encountered with some challenges of the large exciton binding energy,blocked charge transport and poor film quality,which restrict their photovoltaic performance.Fortunately,these issues can be readily resolved by rationally designing spacer cations of RPPs.This review mainly focuses on how to design the molecular structures of organic spacers and aims to endow RPPs with outstanding photovoltaic applications.We firstly elucidated the important roles of organic spacers in impacting crystallization kinetics,charge transporting ability and stability of RPPs.Then we brought three aspects to attention for designing organic spacers.Finally,we presented the specific molecular structure design strategies for organic spacers of RPPs aiming to improve photovoltaic performance of RP PSCs.These proposed strategies in this review will provide new avenues to develop novel organic spacers for RPPs and advance the development of RPP photovoltaic technology for future applications.
基金supported by the Innovative Research Group Project of the National Natural Science Foundation of China(T2121004)Key Programme(52235007)National Outstanding Youth Foundation of China(52325504).
文摘Hydrogel scaffolds have numerous potential applications in the tissue engineering field.However,tough hydrogel scaffolds implanted in vivo are seldom reported because it is difficult to balance biocompatibility and high mechanical properties.Inspired by Chinese ramen,we propose a universal fabricating method(printing-P,training-T,cross-linking-C,PTC&PCT)for tough hydrogel scaffolds to fill this gap.First,3D printing fabricates a hydrogel scaffold with desired structures(P).Then,the scaffold could have extraordinarily high mechanical properties and functional surface structure by cycle mechanical training with salting-out assistance(T).Finally,the training results are fixed by photo-cross-linking processing(C).The tough gelatin hydrogel scaffolds exhibit excellent tensile strength of 6.66 MPa(622-fold untreated)and have excellent biocompatibility.Furthermore,this scaffold possesses functional surface structures from nanometer to micron to millimeter,which can efficiently induce directional cell growth.Interestingly,this strategy can produce bionic human tissue with mechanical properties of 10 kPa-10 MPa by changing the type of salt,and many hydrogels,such as gelatin and silk,could be improved with PTC or PCT strategies.Animal experiments show that this scaffold can effectively promote the new generation of muscle fibers,blood vessels,and nerves within 4 weeks,prompting the rapid regeneration of large-volume muscle loss injuries.
基金sponsored by National Natural Science Foundation of China(No.52302121,No.52203386)Shanghai Sailing Program(No.23YF1454700)+1 种基金Shanghai Natural Science Foundation(No.23ZR1472700)Shanghai Post-doctoral Excellent Program(No.2022664).
文摘With vigorous developments in nanotechnology,the elaborate regulation of microstructure shows attractive potential in the design of electromagnetic wave absorbers.Herein,a hierarchical porous structure and composite heterogeneous interface are constructed successfully to optimize the electromagnetic loss capacity.The macro–micro-synergistic graphene aerogel formed by the ice template‑assisted 3D printing strategy is cut by silicon carbide nanowires(SiC_(nws))grown in situ,while boron nitride(BN)interfacial structure is introduced on graphene nanoplates.The unique composite structure forces multiple scattering of incident EMWs,ensuring the combined effects of interfacial polarization,conduction networks,and magnetic-dielectric synergy.Therefore,the as-prepared composites present a minimum reflection loss value of−37.8 dB and a wide effective absorption bandwidth(EAB)of 9.2 GHz(from 8.8 to 18.0 GHz)at 2.5 mm.Besides,relying on the intrinsic high-temperature resistance of SiC_(nws) and BN,the EAB also remains above 5.0 GHz after annealing in air environment at 600℃ for 10 h.
基金Funded by the Basic Research Projects in Shanxi Province(No.202103021224183)。
文摘The effect of the gradient content of Co element on the solidification process of Cu-based alloy under deep under cooling conditions was explored.The non-equilibrium solidification structure of the under cooled alloy samples were analyzed.It is found that the rapidly solidified alloy has undergone twice grain refinement during the undercooling process.Characterization and significance of the maximum undercooling refinement structure of Cu60Ni35Co5 at T=253 K were analyzed.High-density defects were observed,such as dislocations,stacking faults networks,and twinning structures.The standard FCC diffraction pattern represents that it is still a single-phase structure.Based on the metallographic diagram,EBSD and TEM data analysis,it is illustrated that the occurrence of grain refinement under high undercooling is due to stress induced recrystallization.In addition,the laser cladding technology is used to coat Co-based alloy(Stellite12) coating on 304 stainless steel substrate;the microstructure of the coating cross-section was analyzed.It was found that the microstructure of the cross-section is presented as columnar crystals,planar crystals,and disordered growth direction,so that the coating has better hardness and wear resistance.By electrochemical corrosion of the substrate and coating,it can be seen that the Co and Cr elements present in the coating are more likely to form a dense passivation film,which improved the corrosion resistance of the coating.
基金supported in part by Award 2121063 from National Science Foundation(to YM)AG66986 from the National Institutes of Health(to MSW).
文摘γ-Secretase,called“the proteasome of the membrane,”is a membrane-embedded protease complex that cleaves 150+peptide substrates with central roles in biology and medicine,including amyloid precursor protein and the Notch family of cell-surface receptors.Mutations inγ-secretase and amyloid precursor protein lead to early-onset familial Alzheimer’s disease.γ-Secretase has thus served as a critical drug target for treating familial Alzheimer’s disease and the more common late-onset Alzheimer’s disease as well.However,critical gaps remain in understanding the mechanisms of processive proteolysis of substrates,the effects of familial Alzheimer’s disease mutations,and allosteric modulation of substrate cleavage byγ-secretase.In this review,we focus on recent studies of structural dynamic mechanisms ofγ-secretase.Different mechanisms,including the“Fit-Stay-Trim,”“Sliding-Unwinding,”and“Tilting-Unwinding,”have been proposed for substrate proteolysis of amyloid precursor protein byγ-secretase based on all-atom molecular dynamics simulations.While an incorrect registry of the Notch1 substrate was identified in the cryo-electron microscopy structure of Notch1-boundγ-secretase,molecular dynamics simulations on a resolved model of Notch1-boundγ-secretase that was reconstructed using the amyloid precursor protein-boundγ-secretase as a template successfully capturedγ-secretase activation for proper cleavages of both wildtype and mutant Notch,being consistent with biochemical experimental findings.The approach could be potentially applied to decipher the processing mechanisms of various substrates byγ-secretase.In addition,controversy over the effects of familial Alzheimer’s disease mutations,particularly the issue of whether they stabilize or destabilizeγ-secretase-substrate complexes,is discussed.Finally,an outlook is provided for future studies ofγ-secretase,including pathways of substrate binding and product release,effects of modulators on familial Alzheimer’s disease mutations of theγ-secretase-substrate complexes.Comprehensive understanding of the functional mechanisms ofγ-secretase will greatly facilitate the rational design of effective drug molecules for treating familial Alzheimer’s disease and perhaps Alzheimer’s disease in general.
基金supported by the National Natural Science Foundation of China(22265021)the Aeronautical Science Foundation of China(2020Z056056003)Jiangxi Provincial Natural Science Foundation(20232BAB212004).
文摘Atomic-scale doping strategies and structure design play pivotal roles in tailoring the electronic structure and physicochemical property of electromagnetic wave absorption(EMWA)materials.However,the relationship between configuration and electromagnetic(EM)loss mechanism has remained elusive.Herein,drawing inspiration from the DNA transcription process,we report the successful synthesis of novel in situ Mn/N co-doped helical carbon nanotubes with ultrabroad EMWA capability.Theoretical calculation and EM simulation confirm that the orbital coupling and spin polarization of the Mn–N4–C configuration,along with cross polarization generated by the helical structure,endow the helical converters with enhanced EM loss.As a result,HMC-8 demonstrates outstanding EMWA performance,achieving a minimum reflection loss of−63.13 dB at an ultralow thickness of 1.29 mm.Through precise tuning of the graphite domain size,HMC-7 achieves an effective absorption bandwidth(EAB)of 6.08 GHz at 2.02 mm thickness.Furthermore,constructing macroscale gradient metamaterials enables an ultrabroadband EAB of 12.16 GHz at a thickness of only 5.00 mm,with the maximum radar cross section reduction value reaching 36.4 dB m2.This innovative approach not only advances the understanding of metal–nonmetal co-doping but also realizes broadband EMWA,thus contributing to the development of EMWA mechanisms and applications.
基金by the National Natural Science Foundation of China under grant No. 50775050the State Key Laboratory of Solidif ication Processing in NWPU (200702)
文摘The solidified structure of the thin-walled and complicated Ti-6AI-4V castings produced by the vertical centrifugal casting process was studied in the present work. The results show that the wall thickness of the section is featured with homogeneously distributed fine equiaxial grains, compared with the microstructure of the thick-walled section. The grain size of the castings has a tendency to decrease gradually with the increasing of the centrifugal radius. The inter-lamellar space in thick-walled casting parts is bigger than that of the thin-walled parts, and the profile of inter-lamellar space is not susceptible to the centrifugal radius.
基金This work was financially supported by the Chinese Ministry of Education (No. 00191) and the Natural Science Founda-tion of Jiangxi Province, China (No. 0150032)
文摘Al2O3/A356-La alloy composites were fabricated by squeeze casting, and the effects of La on the solidified structure and the solute segregation during alloy solidification were studied. The results indicate that the structure of the matrix alloy becomes fine and small by the addition of La. La has been richened at the interface to help improve the wettability between the fiber and Al alloy, but there are no intermetallic compounds richening La found at the interface yet. There is no special influence of La on the Mg segregation in the matrix alloy. The distribution of Mg and La in the composites has been at the same position--near the interface.
基金This work was supported by the National“863”High Pro-gram of China(No.2002AA331112)the Doctorate Foun-dation of Northwestern Polytechnical University(CX200409)the Science Research Foundation of Henan University of Science and Technology(No.2004ZY039).
文摘The structure and properties of Cu-Cr-Zr alloy were studied after rapidly solidified aging and solid solution aging.At the early stage of aging (500℃ for 15 rain), the hardness and the conductivity of the alloy rapidly solidified are 143 HV and 72% IACS, respectively. Under the same aging condition, the hardness and electrical conductivity of the alloy solid solution treated can reach 86 HV and 47% IACS, respectively. The microstructure was analyzed, and the grain size after rapid solidification is much smaller than that after solid solution treatment. By rapidly solidified aging the fine precipitates distribute inside the grains and along the grain boundary, while by solid solution aging there are large Cr particles along the grain boundary.
文摘A rapidly solidified Al-2.5Ti-2.5Fe-2.5Cr (mass fraction in percent) alloywas prepared by melt spinning. As-quenched and as-annealed microstructures were studied by X-raydiffractometry (XRD), transmission electron microscopy (TEM), high-resolution transmission electronmicroscopy (HREM) and energy dispersive spectrum (EDS) analysis. The microhardness of the alloy atdifferent annealing temperatures was measured. The results obtained indicate that the microhardnessof the rapidly solidified Al-2.5Ti-2.5Fe-2.5Cr alloy does not vary with different annealingtemperatures. The as-quenched microstructure of the alloy includes two kinds of dispersed primaryphases: Al_3Ti and Al_(13)(Cr, Fe)_2. After annealing at 400 deg C for 10 h, the stable phaseAl_(13)Fe_4 appears in the microstructure.
基金Project(ZC304009103) supported by the Doctoral Fund of Zhejiang Normal University,ChinaProject(KYJ06Y09157) supported by School-level Project of Zhejiang Normal University,China
文摘The effects of a pulsed magnetic field on the solidified microstructure of an AZ31 magnesium alloy were investigated.The experimental results show that the remarkable microstructural refinement is achieved when the pulsed magnetic field is applied to the solidification of the AZ31 alloy.The average grain size of the as-cast microstructure of the AZ31 alloy is refined to 107 μm.By quenching the AZ31 alloy, the different primary α-Mg microstructures are preserved during the course of solidification.The microstructure evolution reveals that the primary α-Mg generates and grows in globular shape with pulsed magnetic field, contrast with the dendritic shape without pulsed magnetic field.The pulsed magnetic field causes melt convection during solidification, which makes the temperature of the whole melt homogenized, and produces an undercooling zone in front of the liquid/solid interface, which makes the nucleation rate increased and big dendrites prohibited.In addition, the Joule heat effect induced in the melt also strengthens the grain refinement effect and spheroidization of dendrite arms.
文摘Rapidly solidified Al-Ti base alloys were prepared by melt spinning at the cooling rate about 107 K/s. The melt-spun ribbons were used to observe the dricrostructures after heat treatment.In the supersaturated Al-Tl-Si alloy, age hardening occurred after 1 h anneal in the temperature range of 4000~500℃, which seems to be attributed to the precipitation of metastable Ll2- (Al,Si)3Ti phase. However. the microhardness was relatively low because of the low v/o and the insufflcient stability of precipitates. Thus. Cr was added to Al-Ti-Si alloys in order to stabilize the microstructures and to increase the v/o of precipitate5. As a result. the alIoys containing Cr were evaluated to possess the improved properties at the service temperature.
文摘To obtain advanced quality pure copper, the microstructure of solidified copper was optimized by imposing electric pulse on liquid copper in this study. Experiments were performed to determine the effect of electric pulse voltage, arrangement mode of electrodes, and energy input on the microstructure of solidified copper. The results show that, when the energy input of electric pulse is bigger than 28.95 kJ per ton copper, the percent of fine grains increases noticeably with the increase of energy input; but when the energy input of electric pulse is smaller than 28.95 kJ per ton copper, the percent of fine grains decreases with the increase of energy input. The influence order of above factors on grain refinement is electric pulse voltage 〉 arrangement mode of electrodes 〉 energy input. According to the above experimental results, the optimum process conditions are chosen as the voltage being 400 V and the energy input greater than 28.95 kJ per ton copper. Meanwhile, the best arrangement mode of electrodes should be that, one electrode is immerged in the middle of liquid copper in the crystallizer, and the other is connected to the inner wall of the crystallizer, which is divided into two electrode poles for the symmetrical electric field distribution.
基金financially supported by the Fundamental Research Funds for the Central Universities(WUT:2017IVA036)111 Project(B17034)State Key Laboratory of Materials Processing and Die&Mould Technology,Huazhong University of Science and Technology(P2018-003)
文摘During the cold-chamber high pressure die casting(HPDC) process, samples were produced to investigate the microstructure characteristics of AM60B magnesium alloy. Special attention was paid to the effects of process parameters on the morphology and distribution of externally solidified crystals(ESCs) in the microstructure of magnesium alloy die castings, such as slow shot phase plunger velocity, delay time of pouring and fast shot phase plunger velocity. On the basis of metallographic observation and quantitative statistics, it is concluded that a lower slow shot phase plunger velocity and a longer delay time of pouring both lead to an increment of the size and percentage of the ESCs, due to the fact that a longer holding time of the melt in the shot sleeve will cause a more severe loss of the superheat. The impingement of the melt flow on the ESCs is more intensive with a higher fast shot phase plunger velocity, in such case the ESCs reveal a more granular and roundish morphology and are dispersed throughout the cross section of the castings. Based on analysis of the filling and solidification processes of the melt during the HPDC process, reasonable explanations were proposed in terms of the nucleation, growth, remelting and fragmentation of the ESCs to interpret the effects of process parameters on the morphology and distribution of the ESCs in the microstructure of magnesium alloy die castings.
基金Project(50774075) supported by the National Natural Science Foundation of ChinaProject(2006BAE04B01-4) supported by the Key Technologies R&D Program of Ministry of Science and Technology of China
文摘The effects of pulsed magnetic field on the solidified microstructure of an AZ91D magnesium alloy were investigated. The experimental results show that the remarkable microstructural refinement is achieved when the pulsed magnetic field is applied in the solidification of AZ91D alloy. The average grain size of the as-cast microstructure of AZ91D alloy is refined to 104 μm. Besides the grain refinement, the morphology of the primary α-Mg is changed from dendritic to rosette, then to globular shape with changing the parameters of the pulsed magnetic field. The pulsed magnetic field causes melt convection during solidification, which makes the temperature of the whole melt homogenized, and produces an undercooling zone in front of the liquid/solid interface by the magnetic pressure, which makes the nucleation rate increased and big dendrites prohibited. In addition, primary α-Mg dendrites break into fine crystals, resulting in a refined solidification structure of the AZ91D alloy. The Joule heat effect induced in the melt also strengthens the grain refinement effect and spheroidization of dendrite arms.
基金the financial support by the National Natural Science Foundation of China(Grant No.51371104).
文摘Directionally solidified porous copper is considered as a potential candidate in the field of microchannel heat sinks.By the Bridgman-type directional solidification method,a porous copper ingot was fabricated.Evolution of the porosity,pore number density,average pore diameter and average interpore spacing at different ingot heights was investigated.The results show that with the increase of ingot height,the porosity firstly increases and then basically remains unchanged from the ignot height of 65 mm;the pore number density rapidly decreases at first,and the decreasing speed becomes slower when the ignot height higher than 85 mm;the average pore diameter increases and then remains unchanged from the ingot height of 85 mm;the average interpore spacing increases,and the increasing speed of average interpore spacing becomes slower with the increase of height to higher than 85 mm.In order to study the evolution of diameter and spatial distribution of pores,the distribution ranges of pore diameter,nearest-neighbor distance and radial cumulative pore number were analyzed.As the ingot height increases,the distribution ranges of pore diameter and nearest-neighbor distance firstly increase and then tend to be stable.There are no pore clusters and for long distance,the spatial distribution of pores is uniform at different ingot heights.Pore structure and 3D pore morphology of porous copper were observed with the help of light illumination and X-ray tomography.Pore nucleation,pore interruption,pore coalescence,diameter change of pores and lateral displacement of pores were found to exist in the pore structure.