In this paper, an attempt is made to study some interesting results of the coupled nonlinear equations in the atmosphere. By introducing a phase angle function ζ, it is shown that the atmospheric equations in the pre...In this paper, an attempt is made to study some interesting results of the coupled nonlinear equations in the atmosphere. By introducing a phase angle function ζ, it is shown that the atmospheric equations in the presence of specific forcing exhibit the exact and explicit solitary wave solutions under certain conditions.展开更多
The (G'/G, 1/G)-expansion method for finding exact travelling wave solutions of nonlinear evolution equations, which can be thought of as an extension of the (G'/G)-expansion method proposed recently, is present...The (G'/G, 1/G)-expansion method for finding exact travelling wave solutions of nonlinear evolution equations, which can be thought of as an extension of the (G'/G)-expansion method proposed recently, is presented. By using this method abundant travelling wave so- lutions with arbitrary parameters of the Zakharov equations are successfully obtained. When the parameters are replaced by special values, the well-known solitary wave solutions of the equations are rediscovered from the travelling waves.展开更多
The solitary waves of a viscous plasma confined in a cuboid under the three types of boundary condition are theoretically investigated in the present paper.By introducing a threedimensional rectangular geometry and em...The solitary waves of a viscous plasma confined in a cuboid under the three types of boundary condition are theoretically investigated in the present paper.By introducing a threedimensional rectangular geometry and employing the reductive perturbation theory,a quasi-Kd V equation is derived in the viscous plasma and a damping solitary wave is obtained.It is found that the damping rate increases as the viscosity coefficient increases,or increases as the length and width of the rectangle decrease,for all kinds of boundary condition.Nevertheless,the magnitude of the damping rate is dominated by the types of boundary condition.We thus observe the existence of a damping solitary wave from the fact that its amplitude disappears rapidly for a → 0and b → 0,or ν→ +∞.展开更多
The existence of local attractors in thin 2D domains far the weakly damped forced KdV equation, whose principal operator is a non-self adjoint and non-sectorial one is given.
Remotely operated vehicles(ROVs) are unique tools for underwater industrial exploration and scientific research of offshore areas and the deep ocean. With broadening application of ROVs, the study of factors that affe...Remotely operated vehicles(ROVs) are unique tools for underwater industrial exploration and scientific research of offshore areas and the deep ocean. With broadening application of ROVs, the study of factors that affect their safe operation is important. Besides the technical skills to control ROV movement, the dynamical ocean environment may also play a vital role in the safe operation of ROVs. In this paper, we investigate the influence of large-amplitude internal solitary waves(ISWs), focusing on the forces exerted on ROVs by ISWs. We present a methodology for modeling ISW-induced currents based on Kd V model and calculate the ISW forces using the Morrison equation. Our results show that an extremely considerable load is exerted by the ISW on the ROV, resulting in a strong disturbance of the vehicle's stability, affecting the ROV control. The numerical results of this work emphasize the importance of considering dynamical conditions when operating underwater vessels, such as ROV. Further laboratory and field investigation are suggested to gain more understanding of this subject.展开更多
By using the method of dynamical system, the exact travelling wave solutions of the coupled nonlinear Schrdinger-KdV equations are studied. Based on this method, all phase portraits of the system in the parametric spa...By using the method of dynamical system, the exact travelling wave solutions of the coupled nonlinear Schrdinger-KdV equations are studied. Based on this method, all phase portraits of the system in the parametric space are given. All possible bounded travelling wave solutions such as solitary wave solutions and periodic travelling wave solutions are obtained. With the aid of Maple software, the numerical simulations are conducted for solitary wave solutions and periodic travelling wave solutions to the coupled nonlinear Schrdinger-KdV equations. The results show that the presented findings improve the related previous conclusions.展开更多
In this paper, the higher order NLS equation with cubic-quintic nonlinear terms is studied, new abundant solitary solutions with traveling-wave envelope of this equation are obtained with the aid of a generalized auxi...In this paper, the higher order NLS equation with cubic-quintic nonlinear terms is studied, new abundant solitary solutions with traveling-wave envelope of this equation are obtained with the aid of a generalized auxiliary equation method and complex envelope non-traveling transform approach.展开更多
文摘In this paper, an attempt is made to study some interesting results of the coupled nonlinear equations in the atmosphere. By introducing a phase angle function ζ, it is shown that the atmospheric equations in the presence of specific forcing exhibit the exact and explicit solitary wave solutions under certain conditions.
基金Supported by the International Cooperation and Exchanges Foundation of Henan Province (084300510060)the Youth Science Foundation of Henan University of Science and Technology of China (2008QN026)
文摘The (G'/G, 1/G)-expansion method for finding exact travelling wave solutions of nonlinear evolution equations, which can be thought of as an extension of the (G'/G)-expansion method proposed recently, is presented. By using this method abundant travelling wave so- lutions with arbitrary parameters of the Zakharov equations are successfully obtained. When the parameters are replaced by special values, the well-known solitary wave solutions of the equations are rediscovered from the travelling waves.
基金supported by National Natural Science Foundation of China(Nos.91026005,11275156,11047010,61162017)
文摘The solitary waves of a viscous plasma confined in a cuboid under the three types of boundary condition are theoretically investigated in the present paper.By introducing a threedimensional rectangular geometry and employing the reductive perturbation theory,a quasi-Kd V equation is derived in the viscous plasma and a damping solitary wave is obtained.It is found that the damping rate increases as the viscosity coefficient increases,or increases as the length and width of the rectangle decrease,for all kinds of boundary condition.Nevertheless,the magnitude of the damping rate is dominated by the types of boundary condition.We thus observe the existence of a damping solitary wave from the fact that its amplitude disappears rapidly for a → 0and b → 0,or ν→ +∞.
文摘The existence of local attractors in thin 2D domains far the weakly damped forced KdV equation, whose principal operator is a non-self adjoint and non-sectorial one is given.
基金supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDA1103020403)the National Natural Science Foundation of China (Grant No. 41030855)
文摘Remotely operated vehicles(ROVs) are unique tools for underwater industrial exploration and scientific research of offshore areas and the deep ocean. With broadening application of ROVs, the study of factors that affect their safe operation is important. Besides the technical skills to control ROV movement, the dynamical ocean environment may also play a vital role in the safe operation of ROVs. In this paper, we investigate the influence of large-amplitude internal solitary waves(ISWs), focusing on the forces exerted on ROVs by ISWs. We present a methodology for modeling ISW-induced currents based on Kd V model and calculate the ISW forces using the Morrison equation. Our results show that an extremely considerable load is exerted by the ISW on the ROV, resulting in a strong disturbance of the vehicle's stability, affecting the ROV control. The numerical results of this work emphasize the importance of considering dynamical conditions when operating underwater vessels, such as ROV. Further laboratory and field investigation are suggested to gain more understanding of this subject.
文摘By using the method of dynamical system, the exact travelling wave solutions of the coupled nonlinear Schrdinger-KdV equations are studied. Based on this method, all phase portraits of the system in the parametric space are given. All possible bounded travelling wave solutions such as solitary wave solutions and periodic travelling wave solutions are obtained. With the aid of Maple software, the numerical simulations are conducted for solitary wave solutions and periodic travelling wave solutions to the coupled nonlinear Schrdinger-KdV equations. The results show that the presented findings improve the related previous conclusions.
基金Supported by the National Natural Science Foundation of China(No.11361048)
文摘In this paper, the higher order NLS equation with cubic-quintic nonlinear terms is studied, new abundant solitary solutions with traveling-wave envelope of this equation are obtained with the aid of a generalized auxiliary equation method and complex envelope non-traveling transform approach.