In this paper,we develop the deep learning-based Fourier neural operator(FNO)approach to find parametric mappings,which are used to approximately display abundant wave structures in the nonlinear Schr?dinger(NLS)equat...In this paper,we develop the deep learning-based Fourier neural operator(FNO)approach to find parametric mappings,which are used to approximately display abundant wave structures in the nonlinear Schr?dinger(NLS)equation,Hirota equation,and NLS equation with the generalized PT-symmetric Scarf-II potentials.Specifically,we analyze the state transitions of different types of solitons(e.g.bright solitons,breathers,peakons,rogons,and periodic waves)appearing in these complex nonlinear wave equations.By checking the absolute errors between the predicted solutions and exact solutions,we can find that the FNO with the Ge Lu activation function can perform well in all cases even though these solution parameters have strong influences on the wave structures.Moreover,we find that the approximation errors via the physics-informed neural networks(PINNs)are similar in magnitude to those of the FNO.However,the FNO can learn the entire family of solutions under a given distribution every time,while the PINNs can only learn some specific solution each time.The results obtained in this paper will be useful for exploring physical mechanisms of soliton excitations in nonlinear wave equations and applying the FNO in other nonlinear wave equations.展开更多
基金the NSFC under Grant Nos.11925108 and 11731014the NSFC under Grant No.11975306
文摘In this paper,we develop the deep learning-based Fourier neural operator(FNO)approach to find parametric mappings,which are used to approximately display abundant wave structures in the nonlinear Schr?dinger(NLS)equation,Hirota equation,and NLS equation with the generalized PT-symmetric Scarf-II potentials.Specifically,we analyze the state transitions of different types of solitons(e.g.bright solitons,breathers,peakons,rogons,and periodic waves)appearing in these complex nonlinear wave equations.By checking the absolute errors between the predicted solutions and exact solutions,we can find that the FNO with the Ge Lu activation function can perform well in all cases even though these solution parameters have strong influences on the wave structures.Moreover,we find that the approximation errors via the physics-informed neural networks(PINNs)are similar in magnitude to those of the FNO.However,the FNO can learn the entire family of solutions under a given distribution every time,while the PINNs can only learn some specific solution each time.The results obtained in this paper will be useful for exploring physical mechanisms of soliton excitations in nonlinear wave equations and applying the FNO in other nonlinear wave equations.