As a novel economic form,the digital economy is reshaping the financial regulatory landscape and significantly impacting regulatory costs.This paper incorporates the digital economy and financial regulatory costs into...As a novel economic form,the digital economy is reshaping the financial regulatory landscape and significantly impacting regulatory costs.This paper incorporates the digital economy and financial regulatory costs into the classic Solow growth model,uncovering an inverted U-shaped relationship between them.A subsequent mechanism analysis explains the rationale behind this relationship.To empirically examine this relationship in China,the paper utilizes inter-provincial panel data from 2013 to 2021 and employs methodologies such as the two-way fixed effects and moderating effects models.These analyses have important implications for the sound and sustainable development of China’s financial industry.The findings indicate:(a)As China’s digital economy develops,its impact on financial regulatory costs follows an inverted U-shaped pattern,initially increasing and then declining.This conclusion remains valid after robustness tests.(b)The influence of the digital economy on regulatory costs depends on favorable external conditions.Specifically,the impact is more pronounced in regions and periods with better digital infrastructure and more abundant human capital.(c)Additionally,redundant resources moderate this impact,which can weaken the inverted U-shaped relationship.Our findings not only provide a theoretical foundation for understanding the impact of the digital economy on financial regulatory costs but also offer valuable policy insights for optimizing financial regulation in China.展开更多
Banking is an essential sector of Palestine’s economy.More credits provided by banks are considered to have a positive impact on economic growth so that the overall objective of this study is to examine the impact of...Banking is an essential sector of Palestine’s economy.More credits provided by banks are considered to have a positive impact on economic growth so that the overall objective of this study is to examine the impact of bank lending on economic growth in Palestine.The study employs the Augmented Dickey-Fuller to test for stationarity in the time series,The Johansen co-integration,Vector Autoregressive Model and Vector Error Correction Model are employed to identify the long-run and short-run dynamics among the variables,and Granger causality test in order to determine the direction of causality.The study finds that a long run relationship exists among the variables and insignificant short run relationship.Also,the study findings show that there is unidirectional causality and runs from GDP to bank lending.The insignificant contribution of bank lending to GDP is attributed to the fact that banks are not highly interested in lending to the production sector of the economy due to the high level of risk.However,the primary empirical evidence reveals that bank lending doesn’t cause economic growth,but economic growth causes bank lending.展开更多
The aim of this study was to develop an adequate mathematical model for long-term forecasting of technological progress and economic growth in the digital age (2020-2050). In addition, the task was to develop a model ...The aim of this study was to develop an adequate mathematical model for long-term forecasting of technological progress and economic growth in the digital age (2020-2050). In addition, the task was to develop a model for forecast calculations of labor productivity in the symbiosis of “man + intelligent machine”, where an intelligent machine (IM) is understood as a computer or robot equipped with elements of artificial intelligence (AI), as well as in the digital economy as a whole. In the course of the study, it was shown that in order to implement its goals the Schumpeter-Kondratiev innovation and cycle theory on forming long waves (LW) of economic development influenced by a powerful cluster of economic technologies engendered by industrial revolutions is most appropriate for a long-term forecasting of technological progress and economic growth. The Solow neoclassical model of economic growth, synchronized with LW, gives the opportunity to forecast economic dynamics of technologically advanced countries with a greater precision up to 30 years, the time which correlates with the continuation of LW. In the information and digital age, the key role among the main factors of growth (capital, labour and technological progress) is played by the latter. The authors have developed an information model which allows for forecasting technological progress basing on growth rates of endogenous technological information in economics. The main regimes of producing technological information, corresponding to the eras of information and digital economies, are given in the article, as well as the Lagrangians that engender them. The model is verified on the example of the 5<sup>th</sup> information LW for the US economy (1982-2018) and it has had highly accurate approximation for both technological progress and economic growth. A number of new results were obtained using the developed information models for forecasting technological progress. The forecasting trajectory of economic growth of developed countries (on the example of the USA) on the upward stage of the 6<sup>th</sup> LW (2018-2042), engendered by the digital technologies of the 4<sup>th</sup> Industrial Revolution is given. It is also demonstrated that the symbiosis of human and intelligent machine (IM) is the driving force in the digital economy, where man plays the leading role organizing effective and efficient mutual work. Authors suggest a mathematical model for calculating labour productivity in the digital economy, where the symbiosis of “human + IM” is widely used. The calculations carried out with the help of the model show: 1) the symbiosis of “human + IM” from the very beginning lets to realize the possibilities of increasing work performance in the economy with the help of digital technologies;2) the largest labour productivity is achieved in the symbiosis of “human + IM”, where man labour prevails, and the lowest labour productivity is seen where the largest part of the work is performed by IM;3) developed countries may achieve labour productivity of 3% per year by the mid-2020s, which has all the chances to stay up to the 2040s.展开更多
In this paper,the endogenous demographic transition function is integrated into the classical Solow model. It is proven that the differential equation which describes the model at least has a nonzero equilibrium. The ...In this paper,the endogenous demographic transition function is integrated into the classical Solow model. It is proven that the differential equation which describes the model at least has a nonzero equilibrium. The differential equation has several equilibria when the technological level or the saving rate is not high enough and undergoes bifurcation at some specified parame-ter values. Therefore,the economy described by the model pre-sents multiple growth paths and "Malthusian Poverty Trap" when the technological level or the saving rate is low.展开更多
基金This study is funded by National Social Science Fund Major Project:“Research on Stimulating Innovation Vitality of Scientific and Technological Talent in the Context of Building a Talent Powerhouse”(21ZDA014)Research Start-Up Fund for Talent Recruitment of Sichuan Academy of Social Sciences:“Research on the Deep Integration of Sichuan’s Digital Economy and Real Economy to Support the Construction of a Modern Industrial System”(23RYJ03).
文摘As a novel economic form,the digital economy is reshaping the financial regulatory landscape and significantly impacting regulatory costs.This paper incorporates the digital economy and financial regulatory costs into the classic Solow growth model,uncovering an inverted U-shaped relationship between them.A subsequent mechanism analysis explains the rationale behind this relationship.To empirically examine this relationship in China,the paper utilizes inter-provincial panel data from 2013 to 2021 and employs methodologies such as the two-way fixed effects and moderating effects models.These analyses have important implications for the sound and sustainable development of China’s financial industry.The findings indicate:(a)As China’s digital economy develops,its impact on financial regulatory costs follows an inverted U-shaped pattern,initially increasing and then declining.This conclusion remains valid after robustness tests.(b)The influence of the digital economy on regulatory costs depends on favorable external conditions.Specifically,the impact is more pronounced in regions and periods with better digital infrastructure and more abundant human capital.(c)Additionally,redundant resources moderate this impact,which can weaken the inverted U-shaped relationship.Our findings not only provide a theoretical foundation for understanding the impact of the digital economy on financial regulatory costs but also offer valuable policy insights for optimizing financial regulation in China.
文摘Banking is an essential sector of Palestine’s economy.More credits provided by banks are considered to have a positive impact on economic growth so that the overall objective of this study is to examine the impact of bank lending on economic growth in Palestine.The study employs the Augmented Dickey-Fuller to test for stationarity in the time series,The Johansen co-integration,Vector Autoregressive Model and Vector Error Correction Model are employed to identify the long-run and short-run dynamics among the variables,and Granger causality test in order to determine the direction of causality.The study finds that a long run relationship exists among the variables and insignificant short run relationship.Also,the study findings show that there is unidirectional causality and runs from GDP to bank lending.The insignificant contribution of bank lending to GDP is attributed to the fact that banks are not highly interested in lending to the production sector of the economy due to the high level of risk.However,the primary empirical evidence reveals that bank lending doesn’t cause economic growth,but economic growth causes bank lending.
文摘The aim of this study was to develop an adequate mathematical model for long-term forecasting of technological progress and economic growth in the digital age (2020-2050). In addition, the task was to develop a model for forecast calculations of labor productivity in the symbiosis of “man + intelligent machine”, where an intelligent machine (IM) is understood as a computer or robot equipped with elements of artificial intelligence (AI), as well as in the digital economy as a whole. In the course of the study, it was shown that in order to implement its goals the Schumpeter-Kondratiev innovation and cycle theory on forming long waves (LW) of economic development influenced by a powerful cluster of economic technologies engendered by industrial revolutions is most appropriate for a long-term forecasting of technological progress and economic growth. The Solow neoclassical model of economic growth, synchronized with LW, gives the opportunity to forecast economic dynamics of technologically advanced countries with a greater precision up to 30 years, the time which correlates with the continuation of LW. In the information and digital age, the key role among the main factors of growth (capital, labour and technological progress) is played by the latter. The authors have developed an information model which allows for forecasting technological progress basing on growth rates of endogenous technological information in economics. The main regimes of producing technological information, corresponding to the eras of information and digital economies, are given in the article, as well as the Lagrangians that engender them. The model is verified on the example of the 5<sup>th</sup> information LW for the US economy (1982-2018) and it has had highly accurate approximation for both technological progress and economic growth. A number of new results were obtained using the developed information models for forecasting technological progress. The forecasting trajectory of economic growth of developed countries (on the example of the USA) on the upward stage of the 6<sup>th</sup> LW (2018-2042), engendered by the digital technologies of the 4<sup>th</sup> Industrial Revolution is given. It is also demonstrated that the symbiosis of human and intelligent machine (IM) is the driving force in the digital economy, where man plays the leading role organizing effective and efficient mutual work. Authors suggest a mathematical model for calculating labour productivity in the digital economy, where the symbiosis of “human + IM” is widely used. The calculations carried out with the help of the model show: 1) the symbiosis of “human + IM” from the very beginning lets to realize the possibilities of increasing work performance in the economy with the help of digital technologies;2) the largest labour productivity is achieved in the symbiosis of “human + IM”, where man labour prevails, and the lowest labour productivity is seen where the largest part of the work is performed by IM;3) developed countries may achieve labour productivity of 3% per year by the mid-2020s, which has all the chances to stay up to the 2040s.
基金Supported by the National Natural Science Foundation of China (70871094)the Humanities and Social Sciences Research Item of Ministry of Education of China (09YJA790155)
文摘In this paper,the endogenous demographic transition function is integrated into the classical Solow model. It is proven that the differential equation which describes the model at least has a nonzero equilibrium. The differential equation has several equilibria when the technological level or the saving rate is not high enough and undergoes bifurcation at some specified parame-ter values. Therefore,the economy described by the model pre-sents multiple growth paths and "Malthusian Poverty Trap" when the technological level or the saving rate is low.