期刊文献+
共找到354篇文章
< 1 2 18 >
每页显示 20 50 100
Application Fourier transform near infrared spectrometer in rapid estimation of soluble solids content of intact citrus fruits 被引量:5
1
作者 LU Hui-shan XU Hui-rong YING Yi-bin FU Xia-ping YU Hai-yan TIAN Hai-qing 《Journal of Zhejiang University-Science B(Biomedicine & Biotechnology)》 SCIE CAS CSCD 2006年第10期794-799,共6页
Nondestructive method of measuring soluble solids content (SSC) of citrus fruits was developed using Fourier transform near infrared reflectance (FT-NIR) measurements collected through optics fiber. The models describ... Nondestructive method of measuring soluble solids content (SSC) of citrus fruits was developed using Fourier transform near infrared reflectance (FT-NIR) measurements collected through optics fiber. The models describing the relationship between SSC and the NIR spectra of citrus fruits were developed and evaluated. Different spectra correction algorithms (standard normal variate (SNV), multiplicative signal correction (MSC)) were used in this study. The relationship between laboratory SSC and FT-NIR spectra of citrus fruits was analyzed via principle component regression (PCR) and partial least squares (PLS) re- gression method. Models based on the different spectral ranges were compared in this research. The first derivative and second derivative were applied to all spectra to reduce the effects of sample size, light scattering, instrument noise, etc. Different baseline correction methods were applied to improve the spectral data quality. Among them the second derivative method after baseline correction produced best noise removing capability and yielded optimal calibration models. A total of 170 NIR spectra were acquired; 135 NIR spectra were used to develop the calibration model; the remaining spectra were used to validate the model. The developed PLS model describing the relationship between SSC and NIR reflectance spectra could predict SSC of 35 samples with correlation coefficient of 0.995 and RMSEP of 0.79 °Brix. 展开更多
关键词 FT-NIR spectroscopy soluble solids content Intact citrus Partial least squares analysis Reflectance mode
下载PDF
Measurement of soluble solids content in watermelon by Vis/NIR diffuse transmittance technique 被引量:4
2
作者 TIAN Hai-qing YING Yi-bin LU Hui-shan FU Xia-ping YU Hai-yan 《Journal of Zhejiang University-Science B(Biomedicine & Biotechnology)》 SCIE CAS CSCD 2007年第2期105-110,共6页
Watermelon is a popular fruit in the world with soluble solids content (SSC) being one of the major characteristics used for assessing its quality. This study was aimed at obtaining a method for nondestructive SSC d... Watermelon is a popular fruit in the world with soluble solids content (SSC) being one of the major characteristics used for assessing its quality. This study was aimed at obtaining a method for nondestructive SSC detection of watermelons by means of visible/near infrared (Vis/NIR) diffuse transmittance technique. Vis/NIR transmittance spectra of intact watermelons were acquired using a low-cost commercially available spectrometer operating over the range 350-1000 nm. Spectra data were analyzed by two multivariate calibration techniques: partial least squares (PLS) and principal component regression (PCR) methods. Two experiments were designed for two varieties of watermelons [Qilin (QL), Zaochunhongyu (ZC)], which have different skin thickness range and shape dimensions. The influences of different data preprocessing and spectra treatments were also investigated. Performance of different models was assessed in terms of root mean square errors of calibration (RMSEC), root mean square errors of prediction (RMSEP) and correlation coefficient (r) between the predicted and measured parameter values. Results showed that spectra data preprocessing influenced the performance of the calibration models. The first derivative spectra showed the best results with high correlation coefficient of determination [r=0.918 (QL); r=0.954 (ZC)], low RMSEP [0.65 °Brix (QL); 0.58 °Brix (ZC)], low RMSEC [0.48 °Brix (QL); 0.34°Brix (ZC)] and small difference between the'RMSEP and the RMSEC by PLS method. The nondestructive Vis/NIR measurements provided good estimates of SSC index of watermelon, and the predicted values were highly correlated with destructively measured values for SSC. The models based on smoothing spectra (Savitzky-Golay filter smoothing method) did not enhance the performance of calibration models obviously. The results indicated the feasibility of Vis/NIR diffuse transmittance spectral analysis for predicting watermelon SSC in a nondestructive way. 展开更多
关键词 Diffuse transmittance Visible/near infrared Nondestructive detection soluble solids content WATERMELON
下载PDF
Online quantitative analysis of soluble solids content in navel oranges using visible-nearinfrared spectroscopy and variable selection methods
3
作者 Yande Liu Yanrui Zhou Yuanyuan Pan 《Journal of Innovative Optical Health Sciences》 SCIE EI CAS 2014年第6期1-8,共8页
Variable selection is applied widely for visible-near infrared(Vis-NIR)spectroscopy analysis of internal quality in fruits.Different spectral variable selection methods were compared for online quantitative analysis o... Variable selection is applied widely for visible-near infrared(Vis-NIR)spectroscopy analysis of internal quality in fruits.Different spectral variable selection methods were compared for online quantitative analysis of soluble solids content(SSC)in navel oranges.Moving window partial least squares(MW-PLS),Monte Carlo uninformative variables elimination(MC-UVE)and wavelet transform(WT)combined with the MC-UVE method were used to select the spectral variables and develop the calibration models of online analysis of SSC in navel oranges.The performances of these methods were compared for modeling the Vis NIR data sets of navel orange samples.Results show that the WT-MC-UVE methods gave better calibration models with the higher correlation cofficient(r)of 0.89 and lower root mean square error of prediction(RMSEP)of 0.54 at 5 fruits per second.It concluded that Vis NIR spectroscopy coupled with WT-MC-UVE may be a fast and efective tool for online quantitative analysis of SSC in navel oranges. 展开更多
关键词 Vis NIR spectroscopy variables selection soluble solids content wavelet transform moving window paurtial least squares Monte Carlo uninformative variables elimination
下载PDF
Nondestructive determination of soluble solids and firmness in mix-cultivar melon using near-infrared CCD spectroscopy
4
作者 Jie Lu Shuye Qi +4 位作者 Ran Liu Enyang Zhou Wu Li Shuhui Song Donghai Han 《Journal of Innovative Optical Health Sciences》 SCIE EI CAS 2015年第6期17-24,共8页
Nondestructive evaluation of melon quality is in great need of comprehensive study.Soluble solids content(SSC)and firmness are the two indicators of melon internal quality that mostly a®ect consumer acceptance.To... Nondestructive evaluation of melon quality is in great need of comprehensive study.Soluble solids content(SSC)and firmness are the two indicators of melon internal quality that mostly a®ect consumer acceptance.To provide guidance for fruit classification,internal quality standards was preliminarily established through sensory test,as:Melon with SSC over 12Brix,firmness 4–5.5 kgf·cm^(-2)2 were considered as satisfactory class sample;and SSC over 10Brix,¯rmness 3.5–6.5 kgf·cm^(-2) as average class sample.The near infrared(NIR)nondestructive detection program was set as spectra collected from the stylar-end,Brix expressed by the average SSC of inner and outer mesocarp,each cultivar of melon was detected with its own optimum integration time,and the second derivative algorithm was used to equalize them.Using wavelength selected by genetic algorithms(GA),a robust SSC model of mix-cultivar melon was established,the root mean standard error of cross-validation(RMSECV)was 0.99 and the ratio performance deviation(RPD)nearly reached 3.0,which almost could meet the accuracy requirement of 1.5Brix.Firmness model of mix-cultivar melon was acceptable but inferior. 展开更多
关键词 MELON nondestructive detection NEAR-INFRARED fruit quality soluble solids content FIRMNESS
下载PDF
光纤光谱技术结合SNV-CARS-GWO-SVR模型的樱桃番茄SSC无损检测
5
作者 高升 徐建华 +1 位作者 王伟 解万翠 《现代食品科技》 CAS 北大核心 2024年第8期320-326,共7页
樱桃番茄的可溶性固体含量(Soluble Solids Content,SSC)是评价其品质和成熟状态的关键参数。该文搭建了光纤光谱透射检测系统采集了不同成熟度樱桃番茄样本的原始光谱信息后,通过理化实验测定样本的SSC指标经SPXY算法对样本进行划分;... 樱桃番茄的可溶性固体含量(Soluble Solids Content,SSC)是评价其品质和成熟状态的关键参数。该文搭建了光纤光谱透射检测系统采集了不同成熟度樱桃番茄样本的原始光谱信息后,通过理化实验测定样本的SSC指标经SPXY算法对样本进行划分;然后用标准正态变量变换等算法(Standard Normal Variable transformation,SNV)对采集到的原始光谱进行预处理;采用连续投影算法(Successive Projection Algorithm,SPA)和竞争性自适应加权算法(Competitive Adaptive Reweighted Sampling,CARS)进行特征波长提取;最后利用灰狼优化算法(Grey Wolf Optimization,GWO)优化支持向量回归模型(Support Vector Regression,SVR)建立了樱桃番茄SSC的最优预测模型。结果表明,使用SNV算法预处理后的光谱建立的预测模型的校正集和预测集的相关系数得到了明显改善。SNV-CARS-GWO-SVR模型是樱桃番茄的最佳预测模型,预测集均方根误差(Root Mean Square Error of Prediction set,RMSEP)为0.28,残差预测偏差(Residual Predictive Deviation,RPD)为2.75。利用自行搭建的搭建了光纤光谱透射检测系统完全可以实现樱桃番茄SSC的检测,为不同成熟度番茄的SSC在线快速、无损检测提供了一种新的方法。 展开更多
关键词 樱桃番茄 可溶性固体含量 光纤光谱技术 灰狼算法 无损检测
下载PDF
应用CARS和SPA算法对草莓SSC含量NIR光谱预测模型中变量及样本筛选 被引量:46
6
作者 李江波 郭志明 +2 位作者 黄文倩 张保华 赵春江 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2015年第2期372-378,共7页
采用光谱技术对水果进行定量或定性分析,如何获得一个简单、有效的校正模型对后续模型的应用和维护都非常关键。以草莓内部品质近红外光谱预测为例,从关键变量和特征样本优选两方面进行研究。采用竞争性自适应重加权CARS算法对光谱变量... 采用光谱技术对水果进行定量或定性分析,如何获得一个简单、有效的校正模型对后续模型的应用和维护都非常关键。以草莓内部品质近红外光谱预测为例,从关键变量和特征样本优选两方面进行研究。采用竞争性自适应重加权CARS算法对光谱变量进行初次选择,随后采用连续投影算法SPA对校正集样本进行优选,获得98个特征样本,针对优选后的变量/样本子集利用SPA算法作二次关键变量提取,获得25个关键变量。为了验证CARS算法的性能,蒙特卡罗无信息变量消除MC-UVE和连续投影算法SPA用于比较研究。CARS算法在消除无信息变量的同时可以对共线性信息进行去除。同样,为了评估SPA算法在特征样本选择中的性能,经典的Kennard-Stone算法也用于比较分析。SPA算法能够用于校正集特征样本的优选。针对最终优选后的变量/样本(25/98)子集建立PLS和MLR模型对草莓内部可溶性固形物含量SSC含量进行定量预测。结果表明,两个模型利用原始变量/样本的0.59%/65.33%的信息均能够获得比基于原始变量/样本所建模型更好的性能,且MLR模型比PLS模型性能略优,r2pre,RMSEP和RPD分别为0.909 7,0.348 4和3.327 8。 展开更多
关键词 变量筛选 样本筛选 近红外光谱 草莓 可溶性固形物
下载PDF
基于近红外光谱结合波长优选检测单颗葡萄的SSC含量 被引量:10
7
作者 郭成 马月 +1 位作者 梁梦醒 颜辉 《食品与机械》 CSCD 北大核心 2016年第9期39-43,共5页
采用无损检测测定单颗葡萄中可溶性固形物(SSC)含量,获得个体和群体信息,以期指导田间管理、葡萄储存条件设置及满足消费者对葡萄口味的不同需求。采用手持式NIR光谱仪在950~1 650nm波长范围采集葡萄的近红外光谱,采用偏最小二乘(PLS)... 采用无损检测测定单颗葡萄中可溶性固形物(SSC)含量,获得个体和群体信息,以期指导田间管理、葡萄储存条件设置及满足消费者对葡萄口味的不同需求。采用手持式NIR光谱仪在950~1 650nm波长范围采集葡萄的近红外光谱,采用偏最小二乘(PLS)回归建立葡萄SSC预测模型。为了减少冗余无信息变量,增加模型的预测精度和稳定性,采用无信息变量消除法(UVE)、随机蛙算法(RF)筛选出与葡萄SSC含量相关的重要波长变量。结果表明:RF筛选建立的SSC预测模型优于全光谱PLS和UVE筛选建立的模型。RF-PLS模型的校正集、交叉验证及预测集的R2c、R2cv和R^2p分别为0.960 5,0.933 4,0.930 4,校正均方根误差(RMSEC),交叉验证均方根误差(RMSECV)和预测均方根误差(RMSEP)分别为0.638 2,0.829 9,0.868 8。表明通过波长优选后的,基于便携式近红外光谱在预测单颗葡萄SSC含量的应用上完全可行,有较高的预测精度。 展开更多
关键词 葡萄 可溶性固形物 近红外光谱 随机蛙算法 无信息变量消除法
下载PDF
可见/近红外半透射结合CARS方法在线检测脐橙SSC 被引量:4
8
作者 孙通 林金龙 +2 位作者 许文丽 饶洪辉 刘木华 《江苏大学学报(自然科学版)》 EI CAS CSCD 北大核心 2013年第6期663-668,共6页
为了实现赣南脐橙按内部品质分级,对赣南脐橙可溶性固形物(SSC)进行快速在线检测研究.利用USB4000微型光纤光谱仪在0.3m·s^-1的输送速度下在线采集赣南脐橙的半透射光谱(470~1 150 nm),并采用CARS变量选择方法对波长变量进行... 为了实现赣南脐橙按内部品质分级,对赣南脐橙可溶性固形物(SSC)进行快速在线检测研究.利用USB4000微型光纤光谱仪在0.3m·s^-1的输送速度下在线采集赣南脐橙的半透射光谱(470~1 150 nm),并采用CARS变量选择方法对波长变量进行优选,对优选的波长变量应用偏最小二乘(PLS)回归建立脐橙SSC在线预测模型,最后利用脐橙SSC在线预测模型对完全独立的预测集样本进行预测.研究结果表明:CARS能有效筛选有用的波长变量,提高预测模型的预测精度;与全光谱PLS模型相比,CARS-PLS模型的交互验证相关系数由0.871上升为0.934,交互验证均方根误差(RMSECV)由0.560%下降为0.412%;独立预测集样本SSC的预测均方根误差(RMSEP)为0.649%,SSC预测残差落在±1.0%界限以内的样本占总预测样本数的86.3%,基本可以满足脐橙SSC在线检测分级的需要. 展开更多
关键词 脐橙 可溶性固形物 可见 近红外半透射 变量选择 在线检测
下载PDF
基于Vis/NIR光谱技术的酿酒葡萄成熟期间SSC预测研究 被引量:6
9
作者 张旭 张天罡 +2 位作者 穆维松 傅泽田 张小栓 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2021年第1期229-235,共7页
酿酒葡萄成熟度是确定葡萄采收期的重要品质指标,针对酿酒葡萄大田中成熟度检测难度大的问题,利用可见/近红外(Vis/NIR)光谱技术和化学计量学,研究了酿酒葡萄可溶性固形物含量(SSC)与光谱数据之间的内在联系。采用USB2000+光谱仪获取5... 酿酒葡萄成熟度是确定葡萄采收期的重要品质指标,针对酿酒葡萄大田中成熟度检测难度大的问题,利用可见/近红外(Vis/NIR)光谱技术和化学计量学,研究了酿酒葡萄可溶性固形物含量(SSC)与光谱数据之间的内在联系。采用USB2000+光谱仪获取5种酿酒葡萄及其叶片在不同成熟时期的Vis/NIR光谱数据,通过OMNIC 8.0软件提取光谱数据,将化学值与光谱吸收率值通过TQ Analyst8.0软件建立模型。选取信噪比高的450~1000 nm波段,利用PCA剔除异常光谱数据,将一阶导数(FD)、Savitzky-Golay卷积平滑(S-G)、多元散射校正(MSC)、标准正态变换(SNV)分别组合共4种方法用于光谱数据预处理。利用偏最小二乘(PLS)法分别建立了5种葡萄基于酿酒葡萄光谱数据的SSC预测模型,建立了5种葡萄基于冠层叶片光谱数据的SSC预测模型,对比了不同方式预处理后的建模效果,并选择最优预处理方式建模。最后用外部样本分别验证了SSC预测模型。结果表明,采用S-G平滑+FD+MSC的预处理方法时大多数预测模型性能达到最好。5种葡萄浆果校正集和验证集的R分别达到0.93和0.86以上,最高均方根误差分别为0.30和0.48,5种葡萄冠层叶片校正集和验证集的R分别达到0.73和0.65以上,最大均方根误差分别为0.95和0.75。5种葡萄浆果外部试验样本预测值与真实值间的平均RE最高为0.43%。基于酿酒葡萄浆果光谱的SSC预测模型具备良好的预测能力,优于基于酿酒葡萄冠层叶片光谱的SSC预测模型,SSC预测模型能够为酿酒葡萄成熟度评价研究提供理论参考。Vis/NIR光谱技术适用于在酿酒葡萄大田中快速、无损检测SSC。 展开更多
关键词 可见/近红外光谱 酿酒葡萄成熟度 偏最小二乘法 可溶性固形物
下载PDF
基于高光谱成像的软枣猕猴桃SSC检测研究 被引量:5
10
作者 姜凤利 杨磊 +2 位作者 田有文 孙炳新 罗子旋 《沈阳农业大学学报》 CAS CSCD 北大核心 2023年第3期318-326,共9页
为探究软枣猕猴桃采后后熟过程中可溶性固形物含量(soluble solids content,SSC)变化和分布规律,利用高光谱成像结合化学计量学方法实现其SSC无损检测与可视化。首先,采集25℃下不同贮藏天数软枣猕猴桃的高光谱数据,并测定其SSC。其次,... 为探究软枣猕猴桃采后后熟过程中可溶性固形物含量(soluble solids content,SSC)变化和分布规律,利用高光谱成像结合化学计量学方法实现其SSC无损检测与可视化。首先,采集25℃下不同贮藏天数软枣猕猴桃的高光谱数据,并测定其SSC。其次,采用不同预处理方法对光谱数据进行处理,确定最佳预处理方法;然后,基于3种特征波段提取方法优选特征波段,构建偏最小二乘回归(partial least squares regression,PLSR)、极限学习机(extreme learning machine,ELM)和粒子群优化的极限学习机(parti⁃cle swarm optimization-extreme learning machine,PSO-ELM)可溶性固形物含量预测模型。结果表明:基于竞争性自适应重加权采样算法(competitive adaptive reweighted sampling,CARS)提取特征波长的PSO-ELM模型的预测效果最佳,测试集R_(p)^(2)为0.934,RMSEP为0.952,RPD为2.277。最后,基于CARS-PSO-ELM模型计算软枣猕猴桃每个像素点的SSC,生成可视化分布图,直观地呈现出不同贮藏天数软枣猕猴桃SSC变化的空间分布特征,为软枣猕猴桃的品质评价和贮运销售提供重要参考。 展开更多
关键词 高光谱成像技术 软枣猕猴桃 可溶性固形物含量 极限学习机 粒子群优化算法 可视化
下载PDF
基于可见/近红外光谱对不同产地晋虞1号桃SSC含量的检测研究 被引量:4
11
作者 赵旭婷 张淑娟 +4 位作者 孙海霞 邢书海 李成吉 陈彩虹 高庭耀 《山西农业大学学报(自然科学版)》 CAS 北大核心 2019年第5期106-112,共7页
[目的]本文利用可见/近红外光谱定量检测山西省不同产区晋虞1号桃的可溶性固形物(Soluble solids content,SSC)含量,旨在建立一个简单有效、适应性能好的校正模型为后续在线检测设备的开发与利用提供模型参考。[方法]采集3个产区桃的可... [目的]本文利用可见/近红外光谱定量检测山西省不同产区晋虞1号桃的可溶性固形物(Soluble solids content,SSC)含量,旨在建立一个简单有效、适应性能好的校正模型为后续在线检测设备的开发与利用提供模型参考。[方法]采集3个产区桃的可见/近红外漫反射光谱,选择不同的预处理方法消除客观因素对原始光谱的影响,比较发现SG平滑+多元散射校正(multiplicative scatter correction,MSC)预处理方法建模结果最优。采用Kennard-Stone算法以3 ∶1比例划分样品集,其中校正集270个用于建立PLS模型,预测集90个用于评价模型性能。为了简化模型运算量、提高模型预测性能使用蒙特卡罗无信息变量消除(Monte Carlo uninformative variables elimination,MC-UVE)与连续投影算法(Successive projection algorithm,SPA)相结合筛选有效特征波长。最后,比较了偏最小二乘(Partial least squares,PLS)算法所建单一产地和混合产地下晋虞1号桃SSC含量可见/近红外光谱模型的预测能力。[结果]与单一产地和两两混合产地模型相比,混合3产地桃校正集样本建立的模型预测效果最好,预测的相关系数(Rp)和预测的均方根误差(RMSEP)分别为0.949和0.652 °Brix。[结论]利用多个产地的晋虞1号桃样本建立的混合模型具有较强的包容性,可提高对晋虞1号桃SSC含量的预测精度,减小产地差异对SSC含量可见/近红外光谱检测的影响。本文可为山西省内晋虞1号桃内部品质SSC含量的无损检测模型提供了理论基础。 展开更多
关键词 晋虞1号桃 可见/近红外光谱 产地 可溶性固形物
下载PDF
苹果和梨不同品种及品质特性对近红外反射光谱无损测定SSC的影响 被引量:2
12
作者 杜艳民 王文辉 +3 位作者 贾晓辉 王志华 佟伟 张志云 《保鲜与加工》 CAS 2014年第2期25-29,共5页
基于近红外光照射技术的无损检测方法是目前果实品质无损检测的主要手段之一。本试验采用有损与无损两种方法就苹果和梨不同品种及品质特性、采收期、套袋等因素对无损检测果实可溶性固形物含量(SSC)结果准确性的影响进行了研究。结果表... 基于近红外光照射技术的无损检测方法是目前果实品质无损检测的主要手段之一。本试验采用有损与无损两种方法就苹果和梨不同品种及品质特性、采收期、套袋等因素对无损检测果实可溶性固形物含量(SSC)结果准确性的影响进行了研究。结果表明,新红星、金冠苹果等果皮较厚的品种对无损检测结果的准确性影响较大,而寒富苹果及梨等果皮较薄的果品,无损检测结果较准确;同时,果个较小的果实无损检测结果准确性较差,而果实色泽、脱宿萼、公母梨、采收期等因素对无损检测结果无明显影响,套袋果实无损检测结果的准确性及重复性较好。 展开更多
关键词 品质特性 可溶性固形物含量 近红外光 无损检测 准确性
下载PDF
近红外漫反射检测梨可溶性固形物SSC和硬度的研究 被引量:7
13
作者 章海亮 孙旭东 《中国农机化》 北大核心 2011年第1期101-103,111,共4页
采用近红外漫反射光谱检测梨可溶性固形物(SSC)和硬度。采集梨的近红外漫反射光谱,光谱经梨的吸光度原始光谱、一阶微分和二阶微分预处理,分别采用多元线性回归、主成分回归和偏最小二乘法,建立了梨可溶性固形物(SSC)和硬度的定量预测... 采用近红外漫反射光谱检测梨可溶性固形物(SSC)和硬度。采集梨的近红外漫反射光谱,光谱经梨的吸光度原始光谱、一阶微分和二阶微分预处理,分别采用多元线性回归、主成分回归和偏最小二乘法,建立了梨可溶性固形物(SSC)和硬度的定量预测数学模型。结果表明采用一阶微分结合偏最小二乘法的预测效果最好,可溶性固形物(SSC)和硬度定量数学校正模型的相关系数分别为0.9285和0.8478,均方根误差分别为0.4364°Birx和1.227。近红外漫反射光谱作为一种无损的检测方法用于评价梨可溶性固形物(SSC)和硬度是可行的。 展开更多
关键词 近红外漫反射光谱 可溶性固形物ssc 硬度
下载PDF
八种柑橘类果实SSC分布特点 被引量:1
14
作者 张莉 戴鹏飞 +1 位作者 稽佳诚 王瑞庆 《上饶师范学院学报》 2019年第6期45-49,共5页
以8种柑橘类水果为材料,用数显式折光仪测定瓢瓣近梗端、远梗端、近轴端、近皮端、中部5个位置可溶性固形物含量(soluble solids content,SSC)并分析其分布规律。结果表明:除芦柑、砂糖桔外,其它6种果实不同位置间可溶性固形物含量均存... 以8种柑橘类水果为材料,用数显式折光仪测定瓢瓣近梗端、远梗端、近轴端、近皮端、中部5个位置可溶性固形物含量(soluble solids content,SSC)并分析其分布规律。结果表明:除芦柑、砂糖桔外,其它6种果实不同位置间可溶性固形物含量均存在显著差异(P<0.05)。SSC在瓢瓣内差异幅度由大到小分别为沃柑(26.20%)>脐橙(22.32%)>丑柑(22.10%)>柠檬桔(18.19%)>砂糖桔(7.60%)>甜柚(6.26%)>马家柚(5.54%)>芦柑(1.68%)。8种果实SSC在瓢瓣内分布趋势相似:横向上从外围向果心呈下降趋势,即近皮端>中部>近轴端;径向上远梗端大于近梗端。柑橘类果实SSC测定时,应考虑其在果肉中的分布不均一性,根据不同的目的和对精度的要求,采用科学取样方法。 展开更多
关键词 柑橘 可溶性固形物含量 分布
下载PDF
低温贮藏下不同SSC阿克苏富士苹果制汁的适宜性
15
作者 袁超 李晓磊 +4 位作者 孟新涛 马燕 徐斌 张平 潘俨 《新疆农业科学》 CAS CSCD 北大核心 2021年第4期607-615,共9页
【目的】检测分析不同可溶性固形物含量(Soluble solid content,SSC)等级阿克苏富士苹果贮藏期内的鲜榨汁品质变化,研究适宜非浓缩还原苹果汁加工原料果实的品质等级、分级方法和贮藏时限,为生产上选择适宜的制汁原料果实提供参考。【... 【目的】检测分析不同可溶性固形物含量(Soluble solid content,SSC)等级阿克苏富士苹果贮藏期内的鲜榨汁品质变化,研究适宜非浓缩还原苹果汁加工原料果实的品质等级、分级方法和贮藏时限,为生产上选择适宜的制汁原料果实提供参考。【方法】采收3个成熟期的果实,以SSC作为果实采收品质的分级识别指标,使用近红外无损检测器测定样果并根据统计结果建立分级标准。果实分级包装后于(-1±1)℃环境下冷藏,比较不同SSC等级果实贮藏150 d内的鲜榨汁品质指标变化,分析适宜制汁果实的等级以及贮藏期限。【结果】低SSC(11.0%~12.9%)、中SSC(13.0%~14.9%)、高SSC(15.0%~16.9%)3个等级果实贮藏90 d后的鲜榨汁品质均发生明显劣变,风味和色度降低以及褐变度升高。低SSC(11.0%~12.9%)等级果实适宜贮藏期90 d内,鲜榨汁固酸比为37.04,酸甜风味突出;色泽值分别为49.20、30.65、85.74,呈亮黄色;总酚含量为169.25 mg GAE/L,悬浮稳定性为25.48%,褐变度为0.331,鲜榨汁较为稳定,于3个SSC等级果实的鲜榨汁中品质保持较为突出。【结论】SSC为11.0%~12.9%、(-1±1)℃条件下贮藏期小于90 d的阿克苏富士苹果,可作为其适宜制汁的原料,加工非浓缩还原苹果汁的品质相对较好。 展开更多
关键词 阿克苏富士苹果 可溶性固形物含量 贮藏 鲜榨汁
下载PDF
脱萼剂对“浙梨6号”果实品质与着果率的影响
16
作者 曾少敏 黄新忠 +3 位作者 陈小明 胡宁三 黄保平 姜翠翠 《中国南方果树》 北大核心 2024年第1期197-201,206,共6页
针对“浙梨6号”因部分萼片宿存或残存、果顶尖凸等而影响果实品相问题,选择PBO、氟硅唑、丙环唑3种脱萼剂,以清水为对照进行试验。结果表明:与对照相比,3种脱萼剂处理果实的脱萼率提高23.27~26.01百分点,果顶尖凸率降低24.55~26.44百分... 针对“浙梨6号”因部分萼片宿存或残存、果顶尖凸等而影响果实品相问题,选择PBO、氟硅唑、丙环唑3种脱萼剂,以清水为对照进行试验。结果表明:与对照相比,3种脱萼剂处理果实的脱萼率提高23.27~26.01百分点,果顶尖凸率降低24.55~26.44百分点,扁圆果占比、单果质量、可溶性固形物含量分别增加33.19~37.66百分点、37.9~57.1 g和0.68~0.94百分点,但果实偏斜度、全锈果率分别偏高0.54~0.74和18.36~19.23百分点,端正果率、着果率分别下降15.89~21.07和5.43~6.62百分点,差异达显著或极显著水平。上述3种脱萼剂分别选择4000、333.3、444.4 mg·L^(-1)和花序分离期进行喷施,在保证脱萼防凸效果的同时,可有效降低对着果率及果形端正度等的不利影响。 展开更多
关键词 脱萼剂 尖凸率 偏斜度 可溶性固形物 着果率
下载PDF
基于图像光谱超分辨率的苹果糖度检测
17
作者 翁士状 潘美静 +2 位作者 谭羽健 张巧巧 郑玲 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2024年第11期3095-3100,共6页
苹果风味独特,清脆可口,深受全世界消费者的广泛喜爱。糖度是衡量苹果品质的关键指标。高光谱成像(HSI)由于含有丰富的图谱信息在糖度无损检测中有着广泛的应用前景,然而仍面临仪器笨重昂贵、操作耗时等问题。光谱超分辨率(SSR)可通过... 苹果风味独特,清脆可口,深受全世界消费者的广泛喜爱。糖度是衡量苹果品质的关键指标。高光谱成像(HSI)由于含有丰富的图谱信息在糖度无损检测中有着广泛的应用前景,然而仍面临仪器笨重昂贵、操作耗时等问题。光谱超分辨率(SSR)可通过建立映射关系从低光谱维度RGB图像获得对应高光谱维度HSI图像,在HSI图像的高效获取上有着极大的优势。因而,将探索苹果RGB图像的SSR,并基于SSR数据进行糖度预测。首先,选取大小均匀的苹果作为研究对象,利用黑色哑光胶纸对感兴趣区域(ROI)进行标定。采集苹果RGB图像和HSI图像后,利用全局阈值法确定ROI并经过图像分割得到220个RGB-HSI图像对。然后,使用密集连接网络、多尺度层级回归网络和Transformer网络实现苹果RGB图像的SSR。最后,提取SSR后图像的反射率光谱,采用全光谱和竞争性自适应重加权选择后的有效波长光谱结合偏最小二乘回归(PLSR)、随机森林(RF)和极限学习机(ELM)构建糖度预测模型。结果表明,基于Transformer网络SSR结果最好。在SSR预测集中,平均相对绝对值(MRAESP)为0.1359,均方根误差(RMSESP)为0.0262;SSR后方法的反射率光谱与真实光谱一致性最好。在糖度预测的过程中,全光谱下ELM模型预测效果最好,预测集决定系数(RP2)和均方根误差(RMSEP)为0.9255和0.003,PLSR次之,RF最差。经过有效波长光谱提取后,预测结果有所提升,其中ELM模型预测结果最好,RP2为0.9609,RMSEP为0.0022,PLSR次之,RF最差。总之,基于Transformer图像SSR完成了苹果糖度的准确检测,提供了低成本高效率HSI图像的获取方式,实现了快速便捷的新型糖度检测,扩展了图像在水果品质分析中的应用场景,为促进智慧农业和食品领域的发展提供了理论依据。 展开更多
关键词 高光谱成像 苹果 图像处理 光谱超分 糖度预测
下载PDF
基于可见/近红外光谱和函数型线性回归模型的成熟期苹果可溶性固形物含量预测
18
作者 黄华 刘亚 +4 位作者 马毅航 向思函 何佳宁 王诗婷 郭俊先 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2024年第7期1905-1912,共8页
可溶性固形物含量(SSC)是反映苹果品质和成熟度的重要指标,能够用于苹果品质分析和成熟度预测。以新疆阿克苏冰糖心红富士苹果为研究对象,从果实膨大定形期至完熟期,以3d等间隔周期采摘样本,采集其380~1110nm的可见/近红外光谱,测定其S... 可溶性固形物含量(SSC)是反映苹果品质和成熟度的重要指标,能够用于苹果品质分析和成熟度预测。以新疆阿克苏冰糖心红富士苹果为研究对象,从果实膨大定形期至完熟期,以3d等间隔周期采摘样本,采集其380~1110nm的可见/近红外光谱,测定其SSC,共552个样品。然后,利用基函数平滑方法将采集的可见/近红外光谱离散数据转化为光谱曲线,即函数型数据,并以可见/近红外光谱曲线、一阶导曲线、二阶导曲线为函数型解释变量,SSC为标量响应变量,分别建立函数型线性回归模型。为了验证和分析模型的性能,根据原始光谱离散数据,经过移动平滑、一阶导和二阶导预处理后,分别建立偏最小二乘回归(PLSR)、核支持向量机(KSVM)、随机森林(RF)、梯度提升树(GBM)和深度神经网络(DeepNN)。结果表明,在建立的18个模型中,针对训练集,PLSR-dNIR模型、KSVM-dNIR模型、RF-dNIR模型、GBM-dNIR模型和Deep NN-d2NIR模型都优于FunLR-NIR模型、FunLR-dNIR模型、FunLR-d2NIR模型,且Deep NN-dNIR模型最优(r_(c)=0.9996,R_(c)^(2)=0.9986,RMSEC=0.0740,RPDC=27.4366);针对测试集,FunLR-NIR模型、FunLR-dNIR模型、FunLR-d2NIR模型均优于其他所有模型,且FunLR-NIR模型最优(r_(v)=0.9534,R_(v)^(2)=0.9077,RMSEV=0.5856,RPDV=3.3017)。综合训练集和测试集的结果来看,核支持向量机模型、随机森林模型、梯度提升树模型和深度神经网络模型容易过拟合,而函数型线性回归模型具有更好的普适性。此外,从三个函数型线性回归模型(FunLR-NIR模型、FunLR-dNIR模型、FunLR-d2NIR模型)的预测效果看,模型均具有良好的鲁棒性和较高的预测精度。试验结果表明,结合可见/近红外光谱技术与函数型数据分析构建的函数型线性回归模型,可成功、有效地实现成熟期苹果的可溶性固形物含量预测。 展开更多
关键词 苹果 可溶性固形物含量 可见/近红外光谱 函数型数据分析 函数型线性回归模型
下载PDF
湖南怀化冰糖橙可溶性固形物气候品质等级评价
19
作者 易永 李民华 +2 位作者 吴重池 黄安凤 张伟 《中国南方果树》 北大核心 2024年第5期11-17,共7页
为客观定量评价天气条件对怀化冰糖橙可溶性固形物(SSC)的影响,应用怀化地区麻阳苗族自治县和洪江市2015—2022年连续8年冰糖橙SSC资料,采用逐步回归、多元线性回归、聚类分析等统计方法,构建冰糖橙SSC综合气候品质指数(I_(ocq))模型,... 为客观定量评价天气条件对怀化冰糖橙可溶性固形物(SSC)的影响,应用怀化地区麻阳苗族自治县和洪江市2015—2022年连续8年冰糖橙SSC资料,采用逐步回归、多元线性回归、聚类分析等统计方法,构建冰糖橙SSC综合气候品质指数(I_(ocq))模型,划分冰糖橙SSC的I_(ocq)等级。结果表明,7月中旬至9月中旬平均气温日较差、6月中旬至10月上旬降水量和8月中旬至9月中旬日照时数为影响怀化地区冰糖橙SSC含量的关键气象因子,各因子影响权重系数分别为0.46、0.34和0.20。参照湖南冰糖橙品质等级标准,得到I_(ocq)≥2.4为特优果,2.4>I_(ocq)≥1.6为优等果,1.6>I_(ocq)≥0.6为一等果,0.6>I_(ocq)为二等果。该SSC综合气候品质评价模型回代检验准确率为93.8%,实测检验2019—2021年中方县桐木镇冰糖橙SSC综合气候品质等级结果完全正确。该模型可应用于冰糖橙SSC品质评价实践。 展开更多
关键词 冰糖橙 可溶性固形物 气候品质 指数模型 等级划分 怀化
下载PDF
基于高光谱成像技术和机器学习的猕猴桃果实可溶性固形物含量预测
20
作者 刘子涵 李明 +4 位作者 赵峙尧 陈谦 李佳利 于家斌 钱建平 《果树学报》 CAS CSCD 北大核心 2024年第12期2606-2620,共15页
【目的】可溶性固形物含量(SSC)是评价猕猴桃果实品质的关键指标。旨在利用高光谱技术构建猕猴桃果实SSC预测方案,实现无损、准确评估果实内部品质。【方法】以米良一号猕猴桃果实为研究对象,对高光谱图像进行白板校正、感兴趣区域提取... 【目的】可溶性固形物含量(SSC)是评价猕猴桃果实品质的关键指标。旨在利用高光谱技术构建猕猴桃果实SSC预测方案,实现无损、准确评估果实内部品质。【方法】以米良一号猕猴桃果实为研究对象,对高光谱图像进行白板校正、感兴趣区域提取;采用MSC、SG平滑、SG-MSC和SG-SNV方法进行光谱数据预处理以消除噪声影响,并通过PLSR模型确定最优方法;结合CARS、SPA和RF算法分别提取与果实SSC相关的特征波段;建立PLSR、SVR、RFR、BPNN模型,比较特征波段与SSC实测值之间的耦合关系,选出最优模型,并利用PSO算法优化其预测精度,以实现果实内部品质的泛化预测。【结果】MSC方法在全波段回归中表现最佳;CARS算法有效简化模型并提取关键特征波段;22 SVR模型预测精度最高,经PSO优化后训练集和测试集决定系数分别为R c=0.949,R P=0.913;均方根误差分别为RMSEC=0.3412,RMSEP=0.3649。【结论】相比于单一环节的算法优化,MSC+CARS+PSO-SVR的组合模型在猕猴桃果实可溶性固形物含量预测方面表现更优,研究结果可为果品品质监测和分级分选提供技术支持。 展开更多
关键词 猕猴桃 高光谱成像技术 可溶性固形物含量 机器学习 品质预测
下载PDF
上一页 1 2 18 下一页 到第
使用帮助 返回顶部