[Objective] This study was conducted to investigate the effects of light quality on growth and quality of Chinese kale(Brassica alboglabra Bailey). [Method]Chinese kale was grown in hydroponic under three different Li...[Objective] This study was conducted to investigate the effects of light quality on growth and quality of Chinese kale(Brassica alboglabra Bailey). [Method]Chinese kale was grown in hydroponic under three different Light Emitting Diode(LEDs) conditions [red∶blue=8∶1(8R1B), red∶blue=6∶3(6R3B) and red∶green∶blue=6∶2∶1(6R2G1B), 12 h light, 50 μmol/(m2·s)]. Then its growth and quality indices including root and shoot fresh weight and dry weight, concentrations of soluble protein, vitamin C, nitrate, soluble phenols, flavonoids, soluble sugar, free amino acids, and activity of nitrate reductase were measured. [Result] There was no significant difference in plant height, diameter of flower stalk and leaf number among three LED treatments. The fresh weight of shoot, root and plant in 8R1 B and 6R2G1 B was significantly higher than in 6R3 B. The dry weight of shoot and plant in 8R1 B was significantly higher than in 6R3 B. The concentrations of vitamin C, soluble protein and soluble sugar in flower stalk of 6R3 B treatment were significantly higher than those in 8R1 B and 6R2G1 B, while there was no remarkable difference in concentrations of reducing sugar, soluble phenol, flavonoids and free amino acid among the three treatments. The nitrate concentration in flower stalk of 6R3 B was significantly lower than in the other two treatments, and the activity of nitrate reductase in6R3 B was significantly higher than in the other two treatments. [Conclusion] The LED treatment of red:blue=6:3 was more suitable for the growth of Chinese kale.展开更多
Acid rain(AR),which occurs frequently in southern China,negatively affects the growth of subtropical tree species.Arbuscular mycorrhizal fungi(AMF)mitigate the detrimental effects induced by AR.However,the mechanisms ...Acid rain(AR),which occurs frequently in southern China,negatively affects the growth of subtropical tree species.Arbuscular mycorrhizal fungi(AMF)mitigate the detrimental effects induced by AR.However,the mechanisms by which AMF protect Zelkova serrata,an economically important tree species in southern China,from AR stress remain unclear.We conducted a greenhouse experiment in which Z.serrata plants were inoculated with AMF species Rhizophagus intraradices and Diversispora versiformis,either alone or as a mixed culture,or with a sterilized inoculum(negative control).The plants were subjected to three levels of simulated sulfuric AR and nitric AR(pH 2.5,4.0 and 5.6)to examine any interactive effects on growth,photosynthetic capabilities,antioxidant enzymes,osmotic adjustment and soil enzymes.AR significantly decreased dry weight,chlorophyll content,net photosynthetic rate and soluble protein(SP)of non-mycorrhizal plants.Mycorrhizal inoculation,especially a combination of R.intraradices and D.versiformis,notably improved dry weight,photosynthetic capabilities,catalase,peroxidase,superoxide dismutase,SP and root acid phosphatase activity of Z.serrata under harsh AR stress.Moreover,the benefits from AMF symbionts depended on the identity of AM fungal species and the gradient of AR stress.Our results indicate that AM fungi protect z.serrata against AR stress by synchronously activating photosynthetic ability,antioxidant enzymes and osmolyte accumulation.These findings suggest that a combination of R.intraradices and D.versiformis may be a preferable choice for culturing Z.serratain southern China.展开更多
基金Supported by Fund of Education Department of Guangdong Province(cgzhzd0809)Teamwork Projects Funded by Guangdong Natural Science Foundation(S2013030012842)
文摘[Objective] This study was conducted to investigate the effects of light quality on growth and quality of Chinese kale(Brassica alboglabra Bailey). [Method]Chinese kale was grown in hydroponic under three different Light Emitting Diode(LEDs) conditions [red∶blue=8∶1(8R1B), red∶blue=6∶3(6R3B) and red∶green∶blue=6∶2∶1(6R2G1B), 12 h light, 50 μmol/(m2·s)]. Then its growth and quality indices including root and shoot fresh weight and dry weight, concentrations of soluble protein, vitamin C, nitrate, soluble phenols, flavonoids, soluble sugar, free amino acids, and activity of nitrate reductase were measured. [Result] There was no significant difference in plant height, diameter of flower stalk and leaf number among three LED treatments. The fresh weight of shoot, root and plant in 8R1 B and 6R2G1 B was significantly higher than in 6R3 B. The dry weight of shoot and plant in 8R1 B was significantly higher than in 6R3 B. The concentrations of vitamin C, soluble protein and soluble sugar in flower stalk of 6R3 B treatment were significantly higher than those in 8R1 B and 6R2G1 B, while there was no remarkable difference in concentrations of reducing sugar, soluble phenol, flavonoids and free amino acid among the three treatments. The nitrate concentration in flower stalk of 6R3 B was significantly lower than in the other two treatments, and the activity of nitrate reductase in6R3 B was significantly higher than in the other two treatments. [Conclusion] The LED treatment of red:blue=6:3 was more suitable for the growth of Chinese kale.
基金the National Natural ScienceFoundationofChina(32071644and 31400366)the Joint Funds of the Zhejiang Provincial Natural Science Foundation of China(LTY22C030003)+2 种基金the Strategic Priority Research Program of Chinese Academy of Sciences(XDB 31030000)the Special Foundation for National Science and Technology Basic Research Program of China(2019FY102000)the Key Research and Development Plan of Zhejiang Province(2017C02028).
文摘Acid rain(AR),which occurs frequently in southern China,negatively affects the growth of subtropical tree species.Arbuscular mycorrhizal fungi(AMF)mitigate the detrimental effects induced by AR.However,the mechanisms by which AMF protect Zelkova serrata,an economically important tree species in southern China,from AR stress remain unclear.We conducted a greenhouse experiment in which Z.serrata plants were inoculated with AMF species Rhizophagus intraradices and Diversispora versiformis,either alone or as a mixed culture,or with a sterilized inoculum(negative control).The plants were subjected to three levels of simulated sulfuric AR and nitric AR(pH 2.5,4.0 and 5.6)to examine any interactive effects on growth,photosynthetic capabilities,antioxidant enzymes,osmotic adjustment and soil enzymes.AR significantly decreased dry weight,chlorophyll content,net photosynthetic rate and soluble protein(SP)of non-mycorrhizal plants.Mycorrhizal inoculation,especially a combination of R.intraradices and D.versiformis,notably improved dry weight,photosynthetic capabilities,catalase,peroxidase,superoxide dismutase,SP and root acid phosphatase activity of Z.serrata under harsh AR stress.Moreover,the benefits from AMF symbionts depended on the identity of AM fungal species and the gradient of AR stress.Our results indicate that AM fungi protect z.serrata against AR stress by synchronously activating photosynthetic ability,antioxidant enzymes and osmolyte accumulation.These findings suggest that a combination of R.intraradices and D.versiformis may be a preferable choice for culturing Z.serratain southern China.