Micro/nanostructured crystals with controlled architectures are desirable for many applications in optics, electronics, biology, medicine, and energy conversions. Low-temperature, aqueous chemical routes have been wid...Micro/nanostructured crystals with controlled architectures are desirable for many applications in optics, electronics, biology, medicine, and energy conversions. Low-temperature, aqueous chemical routes have been widely investigated for the synthesis of particles, and arrays of oriented nanorods and nanotubes. In this paper, based on the ideal crystal shapes predicted by the chemical bonding theory, we have developed some potential chemical strategies to tune the microstructure of functional materials, ZnS and Nb205 nanotube arrays, MgO wiskers and nestlike spheres, and cubic phase Cu2O microcrystals were synthesized here to elucidate these strategies. We describe their controlled crystallization processes and illustrate the detailed key factors controlling their growth by examining various reaction parameters. Current results demonstrate that our designed chemical strategies for tuning microstructure of functional materials are applicable to several technologically important materials, and therefore may be used as a versatile and effective route to the controllable synthesis of other inorganic functional materials.展开更多
For development and application of proton exchange membrane fuel cell(PEMFC) energy transformation technology, the cost performance must be elevated for the catalyst. At present, compared with noble metal-based cataly...For development and application of proton exchange membrane fuel cell(PEMFC) energy transformation technology, the cost performance must be elevated for the catalyst. At present, compared with noble metal-based catalysts, such as Pt-based catalysts, atomically dispersed metal–nitrogen–carbon(M–N–C) catalysts are popularity and show great potential in maximizing active site density, high atom utilization and high activity,making them the first choice to replace Pt-based catalysts. In the preparation of atomically dispersed metal–nitrogen–carbon catalyst, it is difficult to ensure that all active sites are uniformly dispersed, and the structure system of the active sites is not optimal. Based on this, we focus on various approaches for preparing M–N–C catalysts that are conducive to atomic dispersion, and the influence of the chemical environmental regulation of atoms on the catalytic sites in different catalysts. Therefore, we discuss the chemical environmental regulation of the catalytic sites by bimetals, atom clusters, and heteroatoms(B, S, and P). The active sites of M–N–C catalysts are explored in depth from the synthesis and characterization, reaction mechanisms, and density functional theory(DFT)calculations. Finally, the existing problems and development prospects of the current atomic dispersion M–N–C catalyst are proposed in detail.展开更多
Prospects of Global Financial Crisis and Economic Crisis The widely spreading global financial crisis has halted the fast growth of world economy in five consecutive years,and heavily stricken the financial and econom...Prospects of Global Financial Crisis and Economic Crisis The widely spreading global financial crisis has halted the fast growth of world economy in five consecutive years,and heavily stricken the financial and economic sectors worldwide.It’s second only to the "Great Depression" in the 1930’s.Governments展开更多
After setting the ground of the quantum innovation potential of biosourced entities and outlining the inventive spectrum of adjacent technologies that can derive from those, the current review highlights, with the sup...After setting the ground of the quantum innovation potential of biosourced entities and outlining the inventive spectrum of adjacent technologies that can derive from those, the current review highlights, with the support of Bigger Data approaches, and a fairly large number of articles, more than 250 and 10,000 patents, the following. It covers an overview of biosourced chemicals and materials, mainly biomonomers, biooligomers and biopolymers;these are produced today in a way that allows reducing the fossil resources depletion and dependency, and obtaining environmentally-friendlier goods in a leaner energy consuming society. A process with a realistic productivity is underlined thanks to the implementation of recent and specifically effective processes where engineered microorganisms are capable to convert natural non-fossil goods, at industrial scale, into fuels and useful high-value chemicals in good yield. Those processes, further detailed, integrate: metabolic engineering involving 1) system biology, 2) synthetic biology and 3) evolutionary engineering. They enable acceptable production yield and productivity, meet the targeted chemical profiles, minimize the consumption of inputs, reduce the production of by-products and further diminish the overall operation costs. As generally admitted the properties of most natural occurring biopolymers (e.g., starch, poly (lactic acid), PHAs.) are often inferior to those of the polymers derived from petroleum;blends and composites, exhibiting improved properties, are now successfully produced. Specific attention is paid to these aspects. Then further evidence is provided to support the important potential and role of products deriving from the biomass in general. The need to enter into the era of Bigger Data, to grow and increase the awareness and multidimensional role and opportunity of biosourcing serves as a conclusion and future prospects. Although providing a large reference database, this review is largely initiatory, therefore not mimicking previous classic reviews but putting them in a multiplying synergistic prospective.展开更多
Coal is fossil fuel abundant and widespread all over the world. It is a vital resource for energy security in our country, because the supply is stable. In this paper, the important role of coal played in the total pr...Coal is fossil fuel abundant and widespread all over the world. It is a vital resource for energy security in our country, because the supply is stable. In this paper, the important role of coal played in the total primary energy supply was described, and the status of modern coal chemical industry and clean coal technologies was analyzed. Based on the scientific research experiences of author, strategy and suggestion for Chinese development were proposed according to the regulation of scientific panning. In China, there are more social benefits and strategic meaning for developing the coal high-efficiency utilization technology. Considering of the general situation of our countries, these technologies with the features of can be industrialized, advanced, applicative, mature and feasible should be developed preferentially. The high-expend, low economic effectiveness and behindhand technologies should be abandoned. So, the development of coal clean technology in China should meet the natural resources, restrictive condition and elements of our countries industry situations. Based on these analysis, the most important technologies and fundamental researches should be prior developed in China.展开更多
Zeolite-confined Fe-site catalysts(ZFCs)have emerged as superior materials for sustainably producing high-value chemicals through CO_(2) hydrogenation,owing to their adaptable framework,customizable composition,and th...Zeolite-confined Fe-site catalysts(ZFCs)have emerged as superior materials for sustainably producing high-value chemicals through CO_(2) hydrogenation,owing to their adaptable framework,customizable composition,and thermal robustness.They excel in activating,adsorbing,and converting CO_(2) with remarkable efficiency and consistency in performance.This has sparked a surge in research interest in recent years.The review delves into the latest advancements in CO_(2) catalytic hydrogenation to olefins,alcohols,aromatics,and other liquid hydrocarbons,examining the synthesis,modification tactics,and the correlation between structure and performance across various ZFCs.Additionally,it underscores the pivotal factors affecting performance and sheds light on the mechanisms behind selectivity control in the CO_(2) hydrogenation process facilitated by ZFCs.To conclude,it presents pressing challenges and strategic recommendations to inspire the development of high-performance,durable ZFCs for CO_(2) hydrogenation applications.展开更多
基金the financial support of the program for the New Century Excellent Talents in University(Grant No.NCET-05-0278)the National Natural Science Foundation of China(Grant No.20471012)+1 种基金the Foundation for the Author of National Excellent Doctoral Dissertation of China(Grant No.200322)the Research Fund for the Doctoral Program of Higher Education(Grant No.20040141004).
文摘Micro/nanostructured crystals with controlled architectures are desirable for many applications in optics, electronics, biology, medicine, and energy conversions. Low-temperature, aqueous chemical routes have been widely investigated for the synthesis of particles, and arrays of oriented nanorods and nanotubes. In this paper, based on the ideal crystal shapes predicted by the chemical bonding theory, we have developed some potential chemical strategies to tune the microstructure of functional materials, ZnS and Nb205 nanotube arrays, MgO wiskers and nestlike spheres, and cubic phase Cu2O microcrystals were synthesized here to elucidate these strategies. We describe their controlled crystallization processes and illustrate the detailed key factors controlling their growth by examining various reaction parameters. Current results demonstrate that our designed chemical strategies for tuning microstructure of functional materials are applicable to several technologically important materials, and therefore may be used as a versatile and effective route to the controllable synthesis of other inorganic functional materials.
基金financial support from the National Natural Science Foundation of China (Nos. 21875221, 21571157, U1604123, and 21773016)the Youth Talent Support Program of HighLevel Talents Special Support Plan in Henan Province (ZYQR201810148)+1 种基金Creative talents in the Education Department of Henan Province (19HASTIT039)the project supported by State Key Laboratory of Advanced Technology for Materials Synthesis and Processing (Wuhan University of Technology) (2019-KF-13)
文摘For development and application of proton exchange membrane fuel cell(PEMFC) energy transformation technology, the cost performance must be elevated for the catalyst. At present, compared with noble metal-based catalysts, such as Pt-based catalysts, atomically dispersed metal–nitrogen–carbon(M–N–C) catalysts are popularity and show great potential in maximizing active site density, high atom utilization and high activity,making them the first choice to replace Pt-based catalysts. In the preparation of atomically dispersed metal–nitrogen–carbon catalyst, it is difficult to ensure that all active sites are uniformly dispersed, and the structure system of the active sites is not optimal. Based on this, we focus on various approaches for preparing M–N–C catalysts that are conducive to atomic dispersion, and the influence of the chemical environmental regulation of atoms on the catalytic sites in different catalysts. Therefore, we discuss the chemical environmental regulation of the catalytic sites by bimetals, atom clusters, and heteroatoms(B, S, and P). The active sites of M–N–C catalysts are explored in depth from the synthesis and characterization, reaction mechanisms, and density functional theory(DFT)calculations. Finally, the existing problems and development prospects of the current atomic dispersion M–N–C catalyst are proposed in detail.
文摘Prospects of Global Financial Crisis and Economic Crisis The widely spreading global financial crisis has halted the fast growth of world economy in five consecutive years,and heavily stricken the financial and economic sectors worldwide.It’s second only to the "Great Depression" in the 1930’s.Governments
文摘After setting the ground of the quantum innovation potential of biosourced entities and outlining the inventive spectrum of adjacent technologies that can derive from those, the current review highlights, with the support of Bigger Data approaches, and a fairly large number of articles, more than 250 and 10,000 patents, the following. It covers an overview of biosourced chemicals and materials, mainly biomonomers, biooligomers and biopolymers;these are produced today in a way that allows reducing the fossil resources depletion and dependency, and obtaining environmentally-friendlier goods in a leaner energy consuming society. A process with a realistic productivity is underlined thanks to the implementation of recent and specifically effective processes where engineered microorganisms are capable to convert natural non-fossil goods, at industrial scale, into fuels and useful high-value chemicals in good yield. Those processes, further detailed, integrate: metabolic engineering involving 1) system biology, 2) synthetic biology and 3) evolutionary engineering. They enable acceptable production yield and productivity, meet the targeted chemical profiles, minimize the consumption of inputs, reduce the production of by-products and further diminish the overall operation costs. As generally admitted the properties of most natural occurring biopolymers (e.g., starch, poly (lactic acid), PHAs.) are often inferior to those of the polymers derived from petroleum;blends and composites, exhibiting improved properties, are now successfully produced. Specific attention is paid to these aspects. Then further evidence is provided to support the important potential and role of products deriving from the biomass in general. The need to enter into the era of Bigger Data, to grow and increase the awareness and multidimensional role and opportunity of biosourcing serves as a conclusion and future prospects. Although providing a large reference database, this review is largely initiatory, therefore not mimicking previous classic reviews but putting them in a multiplying synergistic prospective.
文摘Coal is fossil fuel abundant and widespread all over the world. It is a vital resource for energy security in our country, because the supply is stable. In this paper, the important role of coal played in the total primary energy supply was described, and the status of modern coal chemical industry and clean coal technologies was analyzed. Based on the scientific research experiences of author, strategy and suggestion for Chinese development were proposed according to the regulation of scientific panning. In China, there are more social benefits and strategic meaning for developing the coal high-efficiency utilization technology. Considering of the general situation of our countries, these technologies with the features of can be industrialized, advanced, applicative, mature and feasible should be developed preferentially. The high-expend, low economic effectiveness and behindhand technologies should be abandoned. So, the development of coal clean technology in China should meet the natural resources, restrictive condition and elements of our countries industry situations. Based on these analysis, the most important technologies and fundamental researches should be prior developed in China.
基金the National Natural Science Foundation of China(Nos.U22A20107,U1967215,22078307,22208314,22278379,22238003,and 22002008)the Science and Technology R&D Program Joint Fund Project of Henan Provincial,China(No.222301420001)+3 种基金the Distinguished Young Scholars Innovation Team of Zhengzhou University,China(No.32320275)the Postgraduate Education Reform Project of Henan Province,China(No.2021SJGLX093Y)the National Funded Postdoctoral Researcher Program,China(No.GZC20232382)the Key Research Projects of University in Henan Province,China(No.24A150041).
文摘Zeolite-confined Fe-site catalysts(ZFCs)have emerged as superior materials for sustainably producing high-value chemicals through CO_(2) hydrogenation,owing to their adaptable framework,customizable composition,and thermal robustness.They excel in activating,adsorbing,and converting CO_(2) with remarkable efficiency and consistency in performance.This has sparked a surge in research interest in recent years.The review delves into the latest advancements in CO_(2) catalytic hydrogenation to olefins,alcohols,aromatics,and other liquid hydrocarbons,examining the synthesis,modification tactics,and the correlation between structure and performance across various ZFCs.Additionally,it underscores the pivotal factors affecting performance and sheds light on the mechanisms behind selectivity control in the CO_(2) hydrogenation process facilitated by ZFCs.To conclude,it presents pressing challenges and strategic recommendations to inspire the development of high-performance,durable ZFCs for CO_(2) hydrogenation applications.