Monitoring taste-inducing ions and molecules continuously in liquids or solutions is of great considerable matter for the realization of the electronic tongue(E-tongue).Particularly from the five major tastes,the high...Monitoring taste-inducing ions and molecules continuously in liquids or solutions is of great considerable matter for the realization of the electronic tongue(E-tongue).Particularly from the five major tastes,the highly selective,sensitive detection of Na^(+)in real-time is prioritized.Prioritization is due to the saltiness of food is the key ingredient in most meals.Nevertheless,existing Na^(+)detecting devices have relatively low performances of selectivity,sensitivity,and lack of on–off functions.Additionally,conventional devices significantly deteriorate in capac-ity due to repetitive usage or lifetime shortage by degradation of the sensing mate-rial.Herein,a graphene-based channel was rationally designed by the facile decoration of Calix[4]arene and Nafion to address this issue.They act as a receptor and a molecular sieve,respectively,to enhance selectivity and sensitivity and elon-gate the life expectancy of the device.This device was merged with a microfluidic channel to control the injection and withdrawal of solutions to fulfill dynamic on–off functions.The fabricated device has highly selective,sensitive Na^(+)detection properties compared to other 10 molecule/ionic species.Dynamic on–off functions of the device were available,also possesses a long lifespan of at least 220 days.Additionally,it can precisely discriminate real beverages containing Na^(+),which can be observed by principal component analysis plot.These features offer the possibility of ascending to a platform for E-tongues in near future.展开更多
基金National R&D Program,Grant/Award Number:2021M3H4A3A02086430Nano Material Technology Development Program,Grant/Award Number:2022M3H4A1A01011993+3 种基金Ministry of Science and ICT,South KoreaResearch Institute of Advanced Materials(RIAM)Inter University Semiconductor Research Center(ISRC)National Instrumentation Center for Environmental Management(NICEM)。
文摘Monitoring taste-inducing ions and molecules continuously in liquids or solutions is of great considerable matter for the realization of the electronic tongue(E-tongue).Particularly from the five major tastes,the highly selective,sensitive detection of Na^(+)in real-time is prioritized.Prioritization is due to the saltiness of food is the key ingredient in most meals.Nevertheless,existing Na^(+)detecting devices have relatively low performances of selectivity,sensitivity,and lack of on–off functions.Additionally,conventional devices significantly deteriorate in capac-ity due to repetitive usage or lifetime shortage by degradation of the sensing mate-rial.Herein,a graphene-based channel was rationally designed by the facile decoration of Calix[4]arene and Nafion to address this issue.They act as a receptor and a molecular sieve,respectively,to enhance selectivity and sensitivity and elon-gate the life expectancy of the device.This device was merged with a microfluidic channel to control the injection and withdrawal of solutions to fulfill dynamic on–off functions.The fabricated device has highly selective,sensitive Na^(+)detection properties compared to other 10 molecule/ionic species.Dynamic on–off functions of the device were available,also possesses a long lifespan of at least 220 days.Additionally,it can precisely discriminate real beverages containing Na^(+),which can be observed by principal component analysis plot.These features offer the possibility of ascending to a platform for E-tongues in near future.