Solution-phase hydrogen reduction(Sp HR)was introduced into V_(2)O_(3)preparation to overcome disadvantages of traditional reduction roasting,which include a long process,high energy consumption,and generation of poll...Solution-phase hydrogen reduction(Sp HR)was introduced into V_(2)O_(3)preparation to overcome disadvantages of traditional reduction roasting,which include a long process,high energy consumption,and generation of pollution.The research mainly focuses onφ-pH diagrams and kinetics of SpHR.Thermodynamic analysis ofφ-pH diagrams for the V-H_(2)O system demonstrates that V_(2)O_(3)preparation via Sp HR requires a high temperature,a high vanadium concentration,and sufficient hydrogen in acidic solution.Kinetic analyses show that the activation energy of V_(2)O_(3)preparation via SpHR is 38.0679 k J/mol,indicating that the reduction is controlled by a combination of interfacial chemical reaction and internal diffusion.Effects of H;partial pressure(slope K=0.05246)on the reaction rate is not as significant as the vanadium concentration(K=1.58872).V_(2)O_(3)crystals with a purity of 99.59%and a vanadium precipitation rate of 99.83%were obtained under the following conditions:pH=5-6,c(V_(2)O_(3))=0.5 mol/L,p(H;)=4 MPa,m(PdCl;)=10 mg,T=250℃,and t=2.5 h.展开更多
In the carbonate industry,deep decarbonization strategies are necessary to effectively remediate CO_(2).These strategies mainly include both sustainable energy supplies and the conversion of CO_(2)in downstream proces...In the carbonate industry,deep decarbonization strategies are necessary to effectively remediate CO_(2).These strategies mainly include both sustainable energy supplies and the conversion of CO_(2)in downstream processes.This study developed a coupled process of biomass chemical looping H2 production and reductive calcination of CaCO_(3).Firstly,a mass and energy balance of the coupled process was established in Aspen Plus.Following this,process optimization and energy integration were implemented to provide optimized operation conditions.Lastly,a life cycle assessment was carried out to assess the carbon footprint of the coupled process.Results reveal that the decomposition temperature of CaCO_(3)in an H_(2)atmosphere can be reduced to 780℃(generally around 900℃),and the conversion of CO_(2)from CaCO_(3)decomposition reached 81.33%with an H2:CO ratio of 2.49 in gaseous products.By optimizing systemic energy through heat integration,an energy efficiency of 86.30%was achieved.Additionally,the carbon footprint analysis revealed that the process with energy integration had a low global warming potential(GWP)of-2.624 kg·kg^(-1)(CO_(2)/CaO).Conclusively,this work performed a systematic analysis of introducing biomass-derived H_(2)into CaCO_(3)calcination and demonstrated the positive role of reductive calcination using green H_(2)in mitigating CO_(2)emissions within the carbonate industry.展开更多
This paper is aimed to present a clean,inexpensive and sustainable method to synthesize high purity lithium sulfide(Li_(2)S)powder through hydrogen reduction of lithium sulfate(Li_(2)SO_(4)).A three-step reduction pro...This paper is aimed to present a clean,inexpensive and sustainable method to synthesize high purity lithium sulfide(Li_(2)S)powder through hydrogen reduction of lithium sulfate(Li_(2)SO_(4)).A three-step reduction process has been successfully developed to synthesize well-crystallized and single-phase Li_(2)S powder by investigating the melting,sintering and reduction behavior of the mixtures of Li_(2)SO_(4)-Li_(2)S.High purity alumina was found to be the most suitable crucible material for producing high purity Li_(2)S,because it was not attacked by the Li_(2)SO_(4)-Li_(2)S melt during heating,as compared with other materials,such as carbon,mullite,quartz,boron nitride and stainless steel.The use of synthesized LizS resulted in higher purity and substantially higher room temperature ionic conductivity(2.77 mS·cm^(-1))for the argyrodite sulfide electrolyte Li_(6)PS_(5)Cl than commercial Li_(2)S(1.12 mS·cm^(-1)).This novel method offers a great opportunity to produce battery grade Li_(2)S for sulfide solid electrolyte applications.展开更多
This study aims to provide the basic knowledge for furnace refractory design by investigating refractory property changes occurred in a hydrogen atmosphere.Since refractory bricks are thermodynamically stable in a hyd...This study aims to provide the basic knowledge for furnace refractory design by investigating refractory property changes occurred in a hydrogen atmosphere.Since refractory bricks are thermodynamically stable in a hydrogen atmosphere at 1100°C,we tried to find out the minute changes.In this experiment,a refractory brick was prepared by andalusite,mullite chamotte,and clay as raw materials and heated to 1100°C in a 100%hydrogen atmosphere for 72 h.It was found that the strength of the brick was decreased and the color was changed to black by the reduction of impurities.And in addition,this study covered research on the slaking risk of MgO raw materials because the minimum temperature is expected to 400°C in fluidized reduction furnaces unlike shaft furnaces.展开更多
Electrocatalytic nitrate reduction reaction has attracted increasing attention due to its goal of low carbon emission and environmental protection.Here,we report an efficient NitRR catalyst composed of single Mn sites...Electrocatalytic nitrate reduction reaction has attracted increasing attention due to its goal of low carbon emission and environmental protection.Here,we report an efficient NitRR catalyst composed of single Mn sites with atomically dispersed oxygen(O)coordination on bacterial cellulose-converted graphitic carbon(Mn-O-C).Evidence of the atomically dispersed Mn-(O-C_(2))_(4)moieties embedding in the exposed basal plane of carbon surface is confirmed by X-ray absorption spectroscopy.As a result,the as-synthesized Mn-O-C catalyst exhibits superior NitRR activity with an NH_(3)yield rate(RNH_(3))of 1476.9±62.6μg h^(−1)cm^(−2)at−0.7 V(vs.reversible hydrogen electrode,RHE)and a faradaic efficiency(FE)of 89.0±3.8%at−0.5 V(vs.RHE)under ambient conditions.Further,when evaluated with a practical flow cell,Mn-O-C shows a high RNH_(3)of 3706.7±552.0μg h^(−1)cm^(−2)at a current density of 100 mA cm−2,2.5 times of that in the H cell.The in situ FT-IR and Raman spectroscopic studies combined with theoretical calculations indicate that the Mn-(O-C_(2))_(4)sites not only effectively inhibit the competitive hydrogen evolution reaction,but also greatly promote the adsorption and activation of nitrate(NO_(3)^(−)),thus boosting both the FE and selectivity of NH_(3)over Mn-(O-C_(2))_(4)sites.展开更多
Constructing highly-efficient electrocatalysts toward hydrogen evolution reaction(HER)/oxygen evolution reaction(OER)/oxygen reduction reaction(ORR)with excellent stability is quite important for the development of re...Constructing highly-efficient electrocatalysts toward hydrogen evolution reaction(HER)/oxygen evolution reaction(OER)/oxygen reduction reaction(ORR)with excellent stability is quite important for the development of renewable energy-related applications.Herein,Co-Ru based compounds supported on nitrogen doped two-dimensional(2D)carbon nanosheets(NCN)are developed via one step pyrolysis procedure(Co-Ru/NCN)for HER/ORR and following low-temperature oxidation process(Co-Ru@RuO_(x)/NCN)for OER.The specific 2D morphology guarantees abundant active sites exposure.Furthermore,the synergistic effects arising from the interaction between Co and Ru are crucial in enhancing the catalytic performance.Thus,the resulting Co-Ru/NCN shows remarkable electrocatalytic performance for HER(70 mV at 10 mA cm^(-2))in 1 M KOH and ORR(half-wave potential E_(1/2)=0.81 V)in 0.1 M KOH.Especially,the Co-Ru@RuO_(x)/NCN obtained by oxidation exhibits splendid OER performance in both acid(230 mV at 10 mA cm^(-2))and alkaline media(270 mV at 10 mA cm^(-2))coupled with excellent stability.Consequently,the fabricated two-electrode water-splitting device exhibits excellent performance in both acidic and alkaline environments.This research provides a promising avenue for the advancement of multifunctional nanomaterials.展开更多
It is of great interest to develop the novel transition metal-based electrocatalysts with high selectivity and activity for two electron oxygen reduction reaction(2e^(-) ORR).Herein,the nickel ditelluride(NiTe_(2)) wi...It is of great interest to develop the novel transition metal-based electrocatalysts with high selectivity and activity for two electron oxygen reduction reaction(2e^(-) ORR).Herein,the nickel ditelluride(NiTe_(2)) with layered structure was explored as the 2e^(-) ORR electrocatalyst,which not only showed the highest 2e^(-) selectivity more than 97%,but also delivered a slight activity decay after 5000 cycles in alkaline media.Moreover,when NiTe_(2) was assembled as the electrocatalyst in H-type electrolyzer,the on-site yield of H_(2)O_(2) could reach up to 672 mmol h^(-1)g^(-1) under 0.45 V vs.RHE.Further in situ Raman spectra,theoretical calculation and post microstructural analysis synergistically unveiled that such a good 2e^(-) ORR performance could be credited to the intrinsic layered crystal structure,the high compositional stability,as well as the electron modulation on the active site Ni atoms by neighboring Te atoms,leading to the exposure of active sites as well as the optimized adsorption free energy of Ni to –OOH.More inspiringly,such telluride electrocatalyst has also been demonstrated to exhibit high activity and selectivity towards 2e^(-) ORR in neutral media.展开更多
Electrocatalytic oxygen reduction via a two-electron pathway(2e^(-)-ORR)is a promising and eco-friendly route for producing hydrogen peroxide(H_(2)O_(2)).Single-atom catalysts(SACs)typically show excellent selectivity...Electrocatalytic oxygen reduction via a two-electron pathway(2e^(-)-ORR)is a promising and eco-friendly route for producing hydrogen peroxide(H_(2)O_(2)).Single-atom catalysts(SACs)typically show excellent selectivity towards 2e^(-)-ORR due to their unique electronic structures and geometrical configurations.The very low density of single-atom active centers,however,often leads to unsatisfactory H_(2)O_(2)yield rate,significantly inhibiting their practical feasibility.Addressing this,we herein introduce fluorine as a secondary doping element into conventional SACs,which does not directly coordinate with the singleatom metal centers but synergize with them in a remote manner.This strategy effectively activates the surrounding carbon atoms and converts them into highly active sites for 2e^(-)-ORR.Consequently,a record-high H_(2)O_(2)yield rate up to 27 mol g^(-1)h^(-1)has been achieved on the Mo–F–C catalyst,with high Faradaic efficiency of 90%.Density functional theory calculations further confirm the very kinetically facile 2e^(-)-ORR over these additional active sites and the superiority of Mo as the single-atom center to others.This strategy thus not only provides a high-performance electrocatalyst for 2e^(-)-ORR but also should shed light on new strategies to significantly increase the active centers number of SACs.展开更多
Oxygen reduction reaction(ORR)has been disclosed in recent studies as a significant secondary cathodic process during magnesium corrosion.This work elaborates on the contribution of ORR to the total corrosion process ...Oxygen reduction reaction(ORR)has been disclosed in recent studies as a significant secondary cathodic process during magnesium corrosion.This work elaborates on the contribution of ORR to the total corrosion process of pure Mg at different impurity levels in NaCl electrolyte with the assistance of local techniques.A finite element based numerical model taking into account the contribution of ORR during the corrosion of the Mg test materials has been designed in this study considering the local oxygen concentration.Respective computational simulations were calibrated based on the experimental data and evaluated accordingly.Finally,the simultaneous monitoring of local concentration of H_(2) and O_(2),and the combined modeling study reveal the relation between ORR and hydrogen evolution reaction.展开更多
The reduction of ilmenite concentrate by hydrogen gas was investigated in the temperature range of 500 to 1200℃. The microstructure and phase transition of the reduction products were studied by X-ray diffraction (...The reduction of ilmenite concentrate by hydrogen gas was investigated in the temperature range of 500 to 1200℃. The microstructure and phase transition of the reduction products were studied by X-ray diffraction (XRD), scanning electron microscopy (SEM), and optical microscopy (OM). It was found that the weight loss and iron metallization rate increased with the increase of reduction temperature and reaction time. The iron metallization rate could reach 87.5% when the sample was reduced at 1150℃ for 80 min. The final phase constituents mainly consist of Fe, M305 solid solution phase (M=Mg, Ti, and Fe), and few titanium oxide. Microstructure analysis shows that the surfaces of the reduction products have many holes and cracks and the reactions take place from the exterior of the grain to its interior. The kinetics of reduction indicates that the rate-controlling step is diffusion process control with the activation energy of 89 kJ.mo1-1.展开更多
Kinetics parameters of iron oxide reduction by hydrogen were evaluated by the isothermal method in a differential micro-packed bed. Influence of external diffusion, internal diffusion and heat transfer on the intrinsi...Kinetics parameters of iron oxide reduction by hydrogen were evaluated by the isothermal method in a differential micro-packed bed. Influence of external diffusion, internal diffusion and heat transfer on the intrinsic reaction rate was investigated and the conditions free of internal and external diffusion resistance have been determined. In the experiments, in order to correctly evaluate the intrinsic kinetics parameters for reducing Fe203 to Fe3O4, the reaction temperatures were set between 440 ℃ and 490 ℃. However, in order to distinguish the reduction of Fe304 to FeO from that of FeO to Fe, the reaction temperature in the experiment was set to be greater than 570 ℃. Intrinsic kinetics of iron oxide reduction by hydrogen was established and the newly established kinetic models were validated by the experimental data.展开更多
Crystal growth of tungsten during hydrogen reduction of tungsten oxide (WO3) to prepare coarse grain tungsten powder at high temperature (950 ℃) was studied. The phase composition and morphologies of products were in...Crystal growth of tungsten during hydrogen reduction of tungsten oxide (WO3) to prepare coarse grain tungsten powder at high temperature (950 ℃) was studied. The phase composition and morphologies of products were investigated by means of XRD and SEM. The results show that the reduction sequence of hydrogen reduction of WO3 is WO3→WO2.9→W18O49→WO2→W. The step of WO2→W is the critical step which determines the grain size of tungsten powder. The partial pressure (pH2O/pH2) of H2O within powder layer shows strong effect on the nucleation and grain growth of tungsten. By increasing the pH2O/pH2 within powder layer, well-developed coarse grain tungsten powder with particle size above 15 μm is obtained. After carburizing, the powder can be used to produce ultra-coarse grain cemented carbide with grain size above 5 μm.展开更多
Developing low-cost and highly-efficient electrocatalysts for renewable energy conversion technologies has attracted even-increasing attention. Molybdenum carbide materials have recently emerged as a type of promising...Developing low-cost and highly-efficient electrocatalysts for renewable energy conversion technologies has attracted even-increasing attention. Molybdenum carbide materials have recently emerged as a type of promising catalysts for electrocatalytic reactions due to the earth-abundance and Pt-resembled electrical properties. In this work, taking the advantage of the interaction between the basic groups of the Mo(VI)-melamine polymer and the acidic groups on the surface of the oxidized carbon nanotubes(CNTs), N-doped CNTs supported Mo2C nanoparticles(Mo2C/NCNT) are prepared, which exhibit outstanding electrocatalytic activity and durability for both the hydrogen evolution and oxygen reduction reactions. The impressive performance of Mo2C/NCNT can be attributed to the small size of Mo2C particles, the large exposure ratio of surface sites and the presence of N-doped CNTs. This work enlarges the multi-field applications of molybdenum carbide-base materials as promising non-precious metal electrocatalysts, which is of great significance for sustainable energy-related technologies.展开更多
Isothermal thermogravimetric analysis was used to study the reduction process of solid/liquid wustite by hydrogen.Results show that wustite in both states can be reduced entirely at all temperatures.The thermal and ki...Isothermal thermogravimetric analysis was used to study the reduction process of solid/liquid wustite by hydrogen.Results show that wustite in both states can be reduced entirely at all temperatures.The thermal and kinetic conditions for the hydrogen reduction of molten phases are better than those when the reactants and products are in the solid state,with a higher reaction rate.The hydrogen reduction of different wustite phases fits the Mampel Power model(power exponent n=1/2)well,and this model is independent of the phase state.The average apparent activation energies of the reduction process calculated by the iso-conversional method are 5.85 kJ·mol^(−1) and 104.74 kJ·mol^(−1),when both reactants and products are in the solid state and the molten state,respectively.These values generally agree with those calculated by the model fitting method.展开更多
Based on molecular dynamics simulation results, a lauryl methacrylate polymer with drag reduction and shear resistance properties was designed, and synthesized by emulsion polymerization using 2-vinyl pyridine and met...Based on molecular dynamics simulation results, a lauryl methacrylate polymer with drag reduction and shear resistance properties was designed, and synthesized by emulsion polymerization using 2-vinyl pyridine and methyl methacrylate as the polar polymerization monomer. After ionization of lauryl methacrylate polymer, an ion-dipole interaction based drag reduction agent (DRA) was obtained. The existence of ion-dipole interaction was proven through characterization of the drag-reducing agent from its infrared (IR) spectrum. The pilot-scale reaction yield of the DRA under optimum conditions was investigated, and the drag reduction and shear resistance properties were measured. The results show that: l) The ion-dipole or hydrogen bonding interaction can form ladder-shaped chains, therefore the synthesized DRA has shear resistance properties; 2) The larger the molecular weight (MW) and more concentrated the distribution of MW, the better the drag reduction efficiency and the performance of the ionomer system was superior to that of the hydrogen bonding system; 3) With increasing shear frequency, the drag-reduction rates of both the DRAs decreased, and the drag reduction rate of the ionomer system decreased more slowly than of the corresponding hydrogen bonding system. From the point of view of drag reduction rate and shear resistance property, the ionomer system is more promising than the hydrogen bonding system展开更多
Reduction of titanomagnetite (TTM) powders by H2-Ar gas mixtures was investigated under a non-isothermal condition by using a thermogravimetric analysis system. It was found that non-isothermal reduction of TTM proc...Reduction of titanomagnetite (TTM) powders by H2-Ar gas mixtures was investigated under a non-isothermal condition by using a thermogravimetric analysis system. It was found that non-isothermal reduction of TTM proceeded via a dual-reaction mechanism. The first reaction was reduction of TTM to wustite and ilmenite, whereas the second one was reduction of wiistite and ilmenite to iron and titanium dioxide. By using a new model for the dual reactions, which was in an analytical form and incorporated different variables, such as time, temperature, particle size, and hydrogen partial pressure, rate-controlling steps for the dual reactions were obtained with the apparent activation energies calculated to be 90-98 and 115-132 kJ/mol for the first and second reactions, respectively.展开更多
Electrocatalytic oxygen reduction reaction (ORR) via two-electron pathway is a promising approach to decentralized and on-site hydrogen peroxide (H_(2)O_(2)) production beyond the traditional anthraquinone process.In ...Electrocatalytic oxygen reduction reaction (ORR) via two-electron pathway is a promising approach to decentralized and on-site hydrogen peroxide (H_(2)O_(2)) production beyond the traditional anthraquinone process.In recent years,electrochemical H_(2)O_(2) production in acidic media has attracted increasing attention owing to its stronger oxidizing capacity,superior stability,and higher compatibility with various applications.Here,recent advances of H_(2)O_(2) electrosynthesis in acidic media are summarized.Specifically,fundamental aspects of two-electron ORR mechanism are firstly presented with an emphasis on the pH effect on catalytic performance.Major categories of promising electrocatalysts are then reviewed,including noble-metal-based materials,non-noble-metal single-atom catalysts,non-noblemetal compounds,and metal-free carbon-based materials.The innovative development of electrochemical devices and in situ/on-site application of electrogenerated H_(2)O_(2) are also highlighted to bridge the gap between laboratory-scale fundamental research and practically relevant H_(2)O_(2) electrosynthesis.Finally,critical perspectives on present challenges and promising opportunities for future research are provided.展开更多
The industrial application prospect and key issues in basic theory and application are discussed by the methods of theoretical analysis and calculation to promote the development of the pure-hydrogen reduction process...The industrial application prospect and key issues in basic theory and application are discussed by the methods of theoretical analysis and calculation to promote the development of the pure-hydrogen reduction process.According to the discussion of thermodynamics and kinetics of pure-hydrogen reduction reaction,the reduction reaction of iron oxide by pure hydrogen is an endothermic reaction,and the reaction rate of hydrogen reduction is significantly faster than that of carbon reduction.To explore the feasibility of the industrial applications of pure-hydrogen reduction,we design the hydrogen reduction reactor and process with reference to the industrialized hydrogen-rich reduction process and put forward the methods of appropriately increasing the reduction temperature,pressure,and temperature of iron ore into the furnace to accelerate the reaction rate and promote the reduction of iron oxide.The key technical parameters in engineering applications,such as hydrogen consumption,circulating gas volume,and heat balance,are discussed by theoretical calculations,and the optimized parameter values are proposed.The process parameters,cost,advantages,and disadvantages of various current hydrogen production methods are compared,and the results show that hydrogen production by natural gas reforming has a good development prospect.Through the discussion of the corrosion mechanism of high-temperature and high-pressure hydrogen on heat-resistant steel materials and the corrosion mechanism of H_2S in the hydrogen gas on steel,the technical ideas of developing new metal temperature-resistant materials,metal coating materials,and controlling gas composition are put forward to provide guidance for the selection of heater and reactor materials.Finally,the key factors affecting the smooth operation of the hydrogen reduction process in engineering applications are analyzed,offering a reference for the industrial application of the purehydrogen reduction process.展开更多
Cu/Zn/Al/Zr catalysts containing Cu in three valence states(Cu2+,Cu+and Cu0)were prepared usinga liquid reduction method and subsequently calcined at different temperatures.The effects of thecalcination temperature on...Cu/Zn/Al/Zr catalysts containing Cu in three valence states(Cu2+,Cu+and Cu0)were prepared usinga liquid reduction method and subsequently calcined at different temperatures.The effects of thecalcination temperature on the catalyst structure,interactions among components,reducibility anddispersion of Cu species,surface properties and exposed Cu surface area were systematically investigated.These materials were also applied to the synthesis of methanol via the hydrogenation ofCO2.The results show that a large exposed Cu surface area promotes catalytic CO2conversion andthat there is a close correlation between the Cu+/Cu0ratio and the selectivity for methanol.A calcinationtemperature of573K was found to produce a Cu/Zn/Al/Zr catalyst exhibiting the maximumactivity during the synthesis of methanol.展开更多
The influence of different pre-oxidation temperatures and pre-oxidation degrees on the reduction and fluidization behaviors of magnetite-based iron ore was investigated in a hydrogen-induced fluidized bed.The raw magn...The influence of different pre-oxidation temperatures and pre-oxidation degrees on the reduction and fluidization behaviors of magnetite-based iron ore was investigated in a hydrogen-induced fluidized bed.The raw magnetite-based iron ore was pre-oxidized at 800 and1000℃ for a certain time to reach a partly oxidation and deeply oxidation state.The structure and morphology of the reduced particles were analyzed via optical microscope and scanning electron microscopy(SEM).The reaction kinetic mechanism was determined based on the double-logarithm analysis.The results indicate that the materials with higher oxidation temperature and wider particle size range show better fluidization behaviors.The lower oxidation temperature is more beneficial for the reduction rate,especially in the later reduction stage.The pre-oxidation degree shows no obvious influence on the fluidization and reduction behaviors.Based on the kinetic analysis,the reduction progress can be divided into three stages.The reduction mechanism was discussed combing the surface morphology and phase structure.展开更多
基金financially supported by the National Key R&D Program of China(No.2020YFC1909700)Outstanding Young and Middle-aged Science and Technology Innovation Team Project of Hubei Province,China(No.T201802)the National Natural Science Foundation of China(No.52004187)。
文摘Solution-phase hydrogen reduction(Sp HR)was introduced into V_(2)O_(3)preparation to overcome disadvantages of traditional reduction roasting,which include a long process,high energy consumption,and generation of pollution.The research mainly focuses onφ-pH diagrams and kinetics of SpHR.Thermodynamic analysis ofφ-pH diagrams for the V-H_(2)O system demonstrates that V_(2)O_(3)preparation via Sp HR requires a high temperature,a high vanadium concentration,and sufficient hydrogen in acidic solution.Kinetic analyses show that the activation energy of V_(2)O_(3)preparation via SpHR is 38.0679 k J/mol,indicating that the reduction is controlled by a combination of interfacial chemical reaction and internal diffusion.Effects of H;partial pressure(slope K=0.05246)on the reaction rate is not as significant as the vanadium concentration(K=1.58872).V_(2)O_(3)crystals with a purity of 99.59%and a vanadium precipitation rate of 99.83%were obtained under the following conditions:pH=5-6,c(V_(2)O_(3))=0.5 mol/L,p(H;)=4 MPa,m(PdCl;)=10 mg,T=250℃,and t=2.5 h.
基金support from the National Natural Science Foundation of China(21978128,91934302)partial support from the State Key Laboratory of Materials-oriented Chemical Engineering(ZK202006)also acknowledged.Additionallysupported by the“Cultivation Program for The Excellent Doctoral Dissertation of Nanjing Tech University(3800124701)”.
文摘In the carbonate industry,deep decarbonization strategies are necessary to effectively remediate CO_(2).These strategies mainly include both sustainable energy supplies and the conversion of CO_(2)in downstream processes.This study developed a coupled process of biomass chemical looping H2 production and reductive calcination of CaCO_(3).Firstly,a mass and energy balance of the coupled process was established in Aspen Plus.Following this,process optimization and energy integration were implemented to provide optimized operation conditions.Lastly,a life cycle assessment was carried out to assess the carbon footprint of the coupled process.Results reveal that the decomposition temperature of CaCO_(3)in an H_(2)atmosphere can be reduced to 780℃(generally around 900℃),and the conversion of CO_(2)from CaCO_(3)decomposition reached 81.33%with an H2:CO ratio of 2.49 in gaseous products.By optimizing systemic energy through heat integration,an energy efficiency of 86.30%was achieved.Additionally,the carbon footprint analysis revealed that the process with energy integration had a low global warming potential(GWP)of-2.624 kg·kg^(-1)(CO_(2)/CaO).Conclusively,this work performed a systematic analysis of introducing biomass-derived H_(2)into CaCO_(3)calcination and demonstrated the positive role of reductive calcination using green H_(2)in mitigating CO_(2)emissions within the carbonate industry.
基金Fiscal Year 2023-2024 High-Level and Growth Research and Development Subsidy for supporting the research and development activities for small and medium-size enterprise(SMEs),which is administered by Chiba Industry Advancement Center(Grant No.2066 and 2027)。
文摘This paper is aimed to present a clean,inexpensive and sustainable method to synthesize high purity lithium sulfide(Li_(2)S)powder through hydrogen reduction of lithium sulfate(Li_(2)SO_(4)).A three-step reduction process has been successfully developed to synthesize well-crystallized and single-phase Li_(2)S powder by investigating the melting,sintering and reduction behavior of the mixtures of Li_(2)SO_(4)-Li_(2)S.High purity alumina was found to be the most suitable crucible material for producing high purity Li_(2)S,because it was not attacked by the Li_(2)SO_(4)-Li_(2)S melt during heating,as compared with other materials,such as carbon,mullite,quartz,boron nitride and stainless steel.The use of synthesized LizS resulted in higher purity and substantially higher room temperature ionic conductivity(2.77 mS·cm^(-1))for the argyrodite sulfide electrolyte Li_(6)PS_(5)Cl than commercial Li_(2)S(1.12 mS·cm^(-1)).This novel method offers a great opportunity to produce battery grade Li_(2)S for sulfide solid electrolyte applications.
基金supported by the Korea Planning & Evaluation Institute of Industrial Technology (KEIT)the Ministry of Trade, Industry & Energy (MOTIE, Korea) of the Republic of Korea (No. RS2023-00262421)
文摘This study aims to provide the basic knowledge for furnace refractory design by investigating refractory property changes occurred in a hydrogen atmosphere.Since refractory bricks are thermodynamically stable in a hydrogen atmosphere at 1100°C,we tried to find out the minute changes.In this experiment,a refractory brick was prepared by andalusite,mullite chamotte,and clay as raw materials and heated to 1100°C in a 100%hydrogen atmosphere for 72 h.It was found that the strength of the brick was decreased and the color was changed to black by the reduction of impurities.And in addition,this study covered research on the slaking risk of MgO raw materials because the minimum temperature is expected to 400°C in fluidized reduction furnaces unlike shaft furnaces.
基金the financial support from the Natural Science Foundation of China(Grant No.52172106)Anhui Provincial Natural Science Foundation(Grant Nos.2108085QB60 and 2108085QB61)China Postdoctoral Science Foundation(Grant Nos.2020M682057 and 2023T160651).
文摘Electrocatalytic nitrate reduction reaction has attracted increasing attention due to its goal of low carbon emission and environmental protection.Here,we report an efficient NitRR catalyst composed of single Mn sites with atomically dispersed oxygen(O)coordination on bacterial cellulose-converted graphitic carbon(Mn-O-C).Evidence of the atomically dispersed Mn-(O-C_(2))_(4)moieties embedding in the exposed basal plane of carbon surface is confirmed by X-ray absorption spectroscopy.As a result,the as-synthesized Mn-O-C catalyst exhibits superior NitRR activity with an NH_(3)yield rate(RNH_(3))of 1476.9±62.6μg h^(−1)cm^(−2)at−0.7 V(vs.reversible hydrogen electrode,RHE)and a faradaic efficiency(FE)of 89.0±3.8%at−0.5 V(vs.RHE)under ambient conditions.Further,when evaluated with a practical flow cell,Mn-O-C shows a high RNH_(3)of 3706.7±552.0μg h^(−1)cm^(−2)at a current density of 100 mA cm−2,2.5 times of that in the H cell.The in situ FT-IR and Raman spectroscopic studies combined with theoretical calculations indicate that the Mn-(O-C_(2))_(4)sites not only effectively inhibit the competitive hydrogen evolution reaction,but also greatly promote the adsorption and activation of nitrate(NO_(3)^(−)),thus boosting both the FE and selectivity of NH_(3)over Mn-(O-C_(2))_(4)sites.
基金funding support from the National Natural Science Foundation of China(2200206852272222,and 52072197)+12 种基金the Taishan Scholar Young Talent Program(tsqn201909114)the Youth Innovation and Technology Foundation of Shandong Higher Education Institutions,China(2019KJC004)the Outstanding Youth Foundation of Shandong Province,China(ZR2019JQ14)the Major Basic Research Program of Natural Science Foundation of Shandong Province under Grant No.ZR2020ZD09Youth Innovation Team Development Program of Shandong Higher Education Institutions(2022KJ155)the Major Scientific and Technological Innovation Project(2019JZZY020405)the Shandong Province“Double-Hundred Talent Plan”(WST2020003)Project funded by the China Postdoctoral Science Foundation(2021M691700)the Natural Science Foundation of Shandong Province of China(ZR2019BB002ZR2018BB031)the Postdoctoral Innovation Project of Shandong Province(SDCXZG-202203021)the Scientific and Technological Innovation Promotion Project for Small-medium Enterprises of Shandong Province(2022TSGC1257)the Major Research Program of Jining City(2020ZDZP024)。
文摘Constructing highly-efficient electrocatalysts toward hydrogen evolution reaction(HER)/oxygen evolution reaction(OER)/oxygen reduction reaction(ORR)with excellent stability is quite important for the development of renewable energy-related applications.Herein,Co-Ru based compounds supported on nitrogen doped two-dimensional(2D)carbon nanosheets(NCN)are developed via one step pyrolysis procedure(Co-Ru/NCN)for HER/ORR and following low-temperature oxidation process(Co-Ru@RuO_(x)/NCN)for OER.The specific 2D morphology guarantees abundant active sites exposure.Furthermore,the synergistic effects arising from the interaction between Co and Ru are crucial in enhancing the catalytic performance.Thus,the resulting Co-Ru/NCN shows remarkable electrocatalytic performance for HER(70 mV at 10 mA cm^(-2))in 1 M KOH and ORR(half-wave potential E_(1/2)=0.81 V)in 0.1 M KOH.Especially,the Co-Ru@RuO_(x)/NCN obtained by oxidation exhibits splendid OER performance in both acid(230 mV at 10 mA cm^(-2))and alkaline media(270 mV at 10 mA cm^(-2))coupled with excellent stability.Consequently,the fabricated two-electrode water-splitting device exhibits excellent performance in both acidic and alkaline environments.This research provides a promising avenue for the advancement of multifunctional nanomaterials.
基金supported by the National MCF Energy R&D Program of China (2018YFE0306105)the National Key R&D Program of China (2020YFA0406104, 2020YFA0406101)+8 种基金the Innovative Research Group Project of the National Natural Science Foundation of China (51821002)the National Natural Science Foundation of China (52201269, 52302296, 51972216)the Natural Science Foundation of Jiangsu Province (BK20220028, BK20210735)the Natural Science Foundation of the Higher Education Institutions of Jiangsu Province (21KJB430043)the Collaborative Innovation Center of Suzhou Nano Science & Technology, the 111 Projectthe Suzhou Key Laboratory of Functional Nano & Soft Materials, the Jiangsu Key Laboratory for Advanced Negative Carbon Technologiesthe Science and Technology Development Fund, Macao SAR (0009/2022/ITP)the funding from Gusu leading talent plan for scientific and technological innovation and entrepreneurship (ZXL2022487)China Scholarship Council (CSC) for the Ph.D. fellowship。
文摘It is of great interest to develop the novel transition metal-based electrocatalysts with high selectivity and activity for two electron oxygen reduction reaction(2e^(-) ORR).Herein,the nickel ditelluride(NiTe_(2)) with layered structure was explored as the 2e^(-) ORR electrocatalyst,which not only showed the highest 2e^(-) selectivity more than 97%,but also delivered a slight activity decay after 5000 cycles in alkaline media.Moreover,when NiTe_(2) was assembled as the electrocatalyst in H-type electrolyzer,the on-site yield of H_(2)O_(2) could reach up to 672 mmol h^(-1)g^(-1) under 0.45 V vs.RHE.Further in situ Raman spectra,theoretical calculation and post microstructural analysis synergistically unveiled that such a good 2e^(-) ORR performance could be credited to the intrinsic layered crystal structure,the high compositional stability,as well as the electron modulation on the active site Ni atoms by neighboring Te atoms,leading to the exposure of active sites as well as the optimized adsorption free energy of Ni to –OOH.More inspiringly,such telluride electrocatalyst has also been demonstrated to exhibit high activity and selectivity towards 2e^(-) ORR in neutral media.
基金supported by the National Natural Science Foundation of China(Nos.22179093 and 21905202)。
文摘Electrocatalytic oxygen reduction via a two-electron pathway(2e^(-)-ORR)is a promising and eco-friendly route for producing hydrogen peroxide(H_(2)O_(2)).Single-atom catalysts(SACs)typically show excellent selectivity towards 2e^(-)-ORR due to their unique electronic structures and geometrical configurations.The very low density of single-atom active centers,however,often leads to unsatisfactory H_(2)O_(2)yield rate,significantly inhibiting their practical feasibility.Addressing this,we herein introduce fluorine as a secondary doping element into conventional SACs,which does not directly coordinate with the singleatom metal centers but synergize with them in a remote manner.This strategy effectively activates the surrounding carbon atoms and converts them into highly active sites for 2e^(-)-ORR.Consequently,a record-high H_(2)O_(2)yield rate up to 27 mol g^(-1)h^(-1)has been achieved on the Mo–F–C catalyst,with high Faradaic efficiency of 90%.Density functional theory calculations further confirm the very kinetically facile 2e^(-)-ORR over these additional active sites and the superiority of Mo as the single-atom center to others.This strategy thus not only provides a high-performance electrocatalyst for 2e^(-)-ORR but also should shed light on new strategies to significantly increase the active centers number of SACs.
基金the China Scholarship Council for the award of fellowship and funding(No.201806310128,201908510177)。
文摘Oxygen reduction reaction(ORR)has been disclosed in recent studies as a significant secondary cathodic process during magnesium corrosion.This work elaborates on the contribution of ORR to the total corrosion process of pure Mg at different impurity levels in NaCl electrolyte with the assistance of local techniques.A finite element based numerical model taking into account the contribution of ORR during the corrosion of the Mg test materials has been designed in this study considering the local oxygen concentration.Respective computational simulations were calibrated based on the experimental data and evaluated accordingly.Finally,the simultaneous monitoring of local concentration of H_(2) and O_(2),and the combined modeling study reveal the relation between ORR and hydrogen evolution reaction.
基金supported by the Postgraduate Innovative Foundation of Shanghai University (SHUCX091031)the National Natural Science Foundation of China (No.51074105)the National Basic Research Priorities Program of China (No.2007CB613606)
文摘The reduction of ilmenite concentrate by hydrogen gas was investigated in the temperature range of 500 to 1200℃. The microstructure and phase transition of the reduction products were studied by X-ray diffraction (XRD), scanning electron microscopy (SEM), and optical microscopy (OM). It was found that the weight loss and iron metallization rate increased with the increase of reduction temperature and reaction time. The iron metallization rate could reach 87.5% when the sample was reduced at 1150℃ for 80 min. The final phase constituents mainly consist of Fe, M305 solid solution phase (M=Mg, Ti, and Fe), and few titanium oxide. Microstructure analysis shows that the surfaces of the reduction products have many holes and cracks and the reactions take place from the exterior of the grain to its interior. The kinetics of reduction indicates that the rate-controlling step is diffusion process control with the activation energy of 89 kJ.mo1-1.
基金Supported by the National Natural Science Foundation of China (20736004)the State Key Development Program for Basic Research of China (2007CB613502)
文摘Kinetics parameters of iron oxide reduction by hydrogen were evaluated by the isothermal method in a differential micro-packed bed. Influence of external diffusion, internal diffusion and heat transfer on the intrinsic reaction rate was investigated and the conditions free of internal and external diffusion resistance have been determined. In the experiments, in order to correctly evaluate the intrinsic kinetics parameters for reducing Fe203 to Fe3O4, the reaction temperatures were set between 440 ℃ and 490 ℃. However, in order to distinguish the reduction of Fe304 to FeO from that of FeO to Fe, the reaction temperature in the experiment was set to be greater than 570 ℃. Intrinsic kinetics of iron oxide reduction by hydrogen was established and the newly established kinetic models were validated by the experimental data.
文摘Crystal growth of tungsten during hydrogen reduction of tungsten oxide (WO3) to prepare coarse grain tungsten powder at high temperature (950 ℃) was studied. The phase composition and morphologies of products were investigated by means of XRD and SEM. The results show that the reduction sequence of hydrogen reduction of WO3 is WO3→WO2.9→W18O49→WO2→W. The step of WO2→W is the critical step which determines the grain size of tungsten powder. The partial pressure (pH2O/pH2) of H2O within powder layer shows strong effect on the nucleation and grain growth of tungsten. By increasing the pH2O/pH2 within powder layer, well-developed coarse grain tungsten powder with particle size above 15 μm is obtained. After carburizing, the powder can be used to produce ultra-coarse grain cemented carbide with grain size above 5 μm.
基金supported by the National Natural Science Foundation of China(21421001 , 21573115)the 111 project (B12015)+1 种基金the Fundamental Research Funds for the Central Universities(63185015)the Foundation of State Key Laboratory of Highefficiency Utilization of Coal and Green Chemical Engineering (2017-K13)
文摘Developing low-cost and highly-efficient electrocatalysts for renewable energy conversion technologies has attracted even-increasing attention. Molybdenum carbide materials have recently emerged as a type of promising catalysts for electrocatalytic reactions due to the earth-abundance and Pt-resembled electrical properties. In this work, taking the advantage of the interaction between the basic groups of the Mo(VI)-melamine polymer and the acidic groups on the surface of the oxidized carbon nanotubes(CNTs), N-doped CNTs supported Mo2C nanoparticles(Mo2C/NCNT) are prepared, which exhibit outstanding electrocatalytic activity and durability for both the hydrogen evolution and oxygen reduction reactions. The impressive performance of Mo2C/NCNT can be attributed to the small size of Mo2C particles, the large exposure ratio of surface sites and the presence of N-doped CNTs. This work enlarges the multi-field applications of molybdenum carbide-base materials as promising non-precious metal electrocatalysts, which is of great significance for sustainable energy-related technologies.
基金financially supported by the National Natural Science Foundation of China(Nos.51874025 and 52174291)。
文摘Isothermal thermogravimetric analysis was used to study the reduction process of solid/liquid wustite by hydrogen.Results show that wustite in both states can be reduced entirely at all temperatures.The thermal and kinetic conditions for the hydrogen reduction of molten phases are better than those when the reactants and products are in the solid state,with a higher reaction rate.The hydrogen reduction of different wustite phases fits the Mampel Power model(power exponent n=1/2)well,and this model is independent of the phase state.The average apparent activation energies of the reduction process calculated by the iso-conversional method are 5.85 kJ·mol^(−1) and 104.74 kJ·mol^(−1),when both reactants and products are in the solid state and the molten state,respectively.These values generally agree with those calculated by the model fitting method.
基金supported by the Basic Research Program of China(973Program,Grant No.2008CB617508)
文摘Based on molecular dynamics simulation results, a lauryl methacrylate polymer with drag reduction and shear resistance properties was designed, and synthesized by emulsion polymerization using 2-vinyl pyridine and methyl methacrylate as the polar polymerization monomer. After ionization of lauryl methacrylate polymer, an ion-dipole interaction based drag reduction agent (DRA) was obtained. The existence of ion-dipole interaction was proven through characterization of the drag-reducing agent from its infrared (IR) spectrum. The pilot-scale reaction yield of the DRA under optimum conditions was investigated, and the drag reduction and shear resistance properties were measured. The results show that: l) The ion-dipole or hydrogen bonding interaction can form ladder-shaped chains, therefore the synthesized DRA has shear resistance properties; 2) The larger the molecular weight (MW) and more concentrated the distribution of MW, the better the drag reduction efficiency and the performance of the ionomer system was superior to that of the hydrogen bonding system; 3) With increasing shear frequency, the drag-reduction rates of both the DRAs decreased, and the drag reduction rate of the ionomer system decreased more slowly than of the corresponding hydrogen bonding system. From the point of view of drag reduction rate and shear resistance property, the ionomer system is more promising than the hydrogen bonding system
基金financial support from the National Natural Science Foundation of China (No.11220158)the Fundamental Research Funds for the Central Universities (FRF-TP-13-002A)
文摘Reduction of titanomagnetite (TTM) powders by H2-Ar gas mixtures was investigated under a non-isothermal condition by using a thermogravimetric analysis system. It was found that non-isothermal reduction of TTM proceeded via a dual-reaction mechanism. The first reaction was reduction of TTM to wustite and ilmenite, whereas the second one was reduction of wiistite and ilmenite to iron and titanium dioxide. By using a new model for the dual reactions, which was in an analytical form and incorporated different variables, such as time, temperature, particle size, and hydrogen partial pressure, rate-controlling steps for the dual reactions were obtained with the apparent activation energies calculated to be 90-98 and 115-132 kJ/mol for the first and second reactions, respectively.
基金The University of Adelaide for Early Career Researcher Seed Funding(15128587)the University of Electronic Science and Technology of China(UESTC)for Startup funding(A1098531023601264)the National Natural Science Foundation of China(NSFC 22102018 and 52171201)。
文摘Electrocatalytic oxygen reduction reaction (ORR) via two-electron pathway is a promising approach to decentralized and on-site hydrogen peroxide (H_(2)O_(2)) production beyond the traditional anthraquinone process.In recent years,electrochemical H_(2)O_(2) production in acidic media has attracted increasing attention owing to its stronger oxidizing capacity,superior stability,and higher compatibility with various applications.Here,recent advances of H_(2)O_(2) electrosynthesis in acidic media are summarized.Specifically,fundamental aspects of two-electron ORR mechanism are firstly presented with an emphasis on the pH effect on catalytic performance.Major categories of promising electrocatalysts are then reviewed,including noble-metal-based materials,non-noble-metal single-atom catalysts,non-noblemetal compounds,and metal-free carbon-based materials.The innovative development of electrochemical devices and in situ/on-site application of electrogenerated H_(2)O_(2) are also highlighted to bridge the gap between laboratory-scale fundamental research and practically relevant H_(2)O_(2) electrosynthesis.Finally,critical perspectives on present challenges and promising opportunities for future research are provided.
基金financially supported by the National Natural Science Foundation of China(No.52104297)the National Key R&D Plan(No.2019YFC1905202)。
文摘The industrial application prospect and key issues in basic theory and application are discussed by the methods of theoretical analysis and calculation to promote the development of the pure-hydrogen reduction process.According to the discussion of thermodynamics and kinetics of pure-hydrogen reduction reaction,the reduction reaction of iron oxide by pure hydrogen is an endothermic reaction,and the reaction rate of hydrogen reduction is significantly faster than that of carbon reduction.To explore the feasibility of the industrial applications of pure-hydrogen reduction,we design the hydrogen reduction reactor and process with reference to the industrialized hydrogen-rich reduction process and put forward the methods of appropriately increasing the reduction temperature,pressure,and temperature of iron ore into the furnace to accelerate the reaction rate and promote the reduction of iron oxide.The key technical parameters in engineering applications,such as hydrogen consumption,circulating gas volume,and heat balance,are discussed by theoretical calculations,and the optimized parameter values are proposed.The process parameters,cost,advantages,and disadvantages of various current hydrogen production methods are compared,and the results show that hydrogen production by natural gas reforming has a good development prospect.Through the discussion of the corrosion mechanism of high-temperature and high-pressure hydrogen on heat-resistant steel materials and the corrosion mechanism of H_2S in the hydrogen gas on steel,the technical ideas of developing new metal temperature-resistant materials,metal coating materials,and controlling gas composition are put forward to provide guidance for the selection of heater and reactor materials.Finally,the key factors affecting the smooth operation of the hydrogen reduction process in engineering applications are analyzed,offering a reference for the industrial application of the purehydrogen reduction process.
基金supported by the Key Science and Technology Program of Shanxi Province,China (MD2014-10)the National Key Technology Re-search and Development Program (2013BAC11B00)the National Natural Science Foundation of China (21343012)~~
文摘Cu/Zn/Al/Zr catalysts containing Cu in three valence states(Cu2+,Cu+and Cu0)were prepared usinga liquid reduction method and subsequently calcined at different temperatures.The effects of thecalcination temperature on the catalyst structure,interactions among components,reducibility anddispersion of Cu species,surface properties and exposed Cu surface area were systematically investigated.These materials were also applied to the synthesis of methanol via the hydrogenation ofCO2.The results show that a large exposed Cu surface area promotes catalytic CO2conversion andthat there is a close correlation between the Cu+/Cu0ratio and the selectivity for methanol.A calcinationtemperature of573K was found to produce a Cu/Zn/Al/Zr catalyst exhibiting the maximumactivity during the synthesis of methanol.
基金the funding support of K1-MET GmbH,metallurgical competence centerthe financial support from the program of China Scholarship Council(No.201908420284)。
文摘The influence of different pre-oxidation temperatures and pre-oxidation degrees on the reduction and fluidization behaviors of magnetite-based iron ore was investigated in a hydrogen-induced fluidized bed.The raw magnetite-based iron ore was pre-oxidized at 800 and1000℃ for a certain time to reach a partly oxidation and deeply oxidation state.The structure and morphology of the reduced particles were analyzed via optical microscope and scanning electron microscopy(SEM).The reaction kinetic mechanism was determined based on the double-logarithm analysis.The results indicate that the materials with higher oxidation temperature and wider particle size range show better fluidization behaviors.The lower oxidation temperature is more beneficial for the reduction rate,especially in the later reduction stage.The pre-oxidation degree shows no obvious influence on the fluidization and reduction behaviors.Based on the kinetic analysis,the reduction progress can be divided into three stages.The reduction mechanism was discussed combing the surface morphology and phase structure.