The diffusion of nanoparticles immersed in semidilute polymer solutions is investigated by a hybrid mesoscopic multiparticle collision dynamics method. Effects of polymer concentration and hydrodynamic interactions am...The diffusion of nanoparticles immersed in semidilute polymer solutions is investigated by a hybrid mesoscopic multiparticle collision dynamics method. Effects of polymer concentration and hydrodynamic interactions among polymer monomers are focused. Extensive simulations show that the dependence of diffusion coefficient D on the polymer concentration c agrees with Phillies equation D-exp (-αc^δ) with a scaling exponent δ≈0.97 which coincides with the experimental one in literature. For increasing nanoparticle size, the scaling prefactor α increases monotonically while the scaling exponent always keeps fixed. Moreover, we also study the diffusion of nanoparticle without hydrodynamic interactions and find that mobility of the nanoparticle slows down, and the scaling exponent is obviously different from the one in experiments, implying that hydrodynamic interactions play a crucial role in the diffusion of a nanoparticle in semidilute polymer solutions.展开更多
When a film of soft matter solutions is being dried, a skin layer often forms at its surface, which is a gel-like elastic phase made of concentrated soft matter solutions. We study the dynamics of this process by usin...When a film of soft matter solutions is being dried, a skin layer often forms at its surface, which is a gel-like elastic phase made of concentrated soft matter solutions. We study the dynamics of this process by using the solute based Lagrangian scheme which was proposed by us recently. In this scheme, the process of the gelation(i.e., the change from sol to gel) can be naturally incorporated in the diffusion equation. Effects of the elasticity of the skin phase, the evaporation rate of the solvents, and the initial concentration of the solutions are discussed. Moreover, the condition for the skin formation is provided.展开更多
This paper deals with a case study of a context-sensitive solution of the Jamestown Corridor, located along James City County and the City of Williamsburg in Virginia. The corridor is an important passageway to many t...This paper deals with a case study of a context-sensitive solution of the Jamestown Corridor, located along James City County and the City of Williamsburg in Virginia. The corridor is an important passageway to many tourist attractions in the Historic Triangle of Hampton Roads. During the improvement process, the project should minimize the congestions impacts, maximize convenience, safety and reliability of the surrounding transportation systems, minimize social impact to the local community and address long-term capacity issues. Through the project, the agencies involved learned that projects near any of the historic resources must be context-sensitive and should include all stakeholders early and often to make sure that a comprehensive schedule was developed. They also learned that time should be considered for review and input from key regional stakeholders for a variety of issues.展开更多
This paper is concerned with the Navier-Stokes/Allen-Cahn system,which is used to model the dynamics of immiscible two-phase flows.We consider a 1D free boundary problem and assume that the viscosity coefficient depen...This paper is concerned with the Navier-Stokes/Allen-Cahn system,which is used to model the dynamics of immiscible two-phase flows.We consider a 1D free boundary problem and assume that the viscosity coefficient depends on the density in the form ofη(ρ)=ρ^(α).The existence of unique global H^(2m)-solutions(m∈N)to the free boundary problem is proven for when 0<α<1/4.Furthermore,we obtain the global C^(∞)-solutions if the initial data is smooth.展开更多
This paper studies the(2+1)-dimensional Hirota-Satsuma-Ito equation.Based on an associated Hirota bilinear form,lump-type solution,two types of interaction solutions,and breather wave solution of the(2+1)-dimensional ...This paper studies the(2+1)-dimensional Hirota-Satsuma-Ito equation.Based on an associated Hirota bilinear form,lump-type solution,two types of interaction solutions,and breather wave solution of the(2+1)-dimensional Hirota-Satsuma-Ito equation are obtained,which are all related to the seed solution of the equation.It is interesting that the rogue wave is aroused by the interaction between one-lump soliton and a pair of resonance stripe solitons,and the fusion and fission phenomena are also found in the interaction between lump solitons and one-stripe soliton.Furthermore,the breather wave solution is also obtained by reducing the two-soliton solutions.The trajectory and period of the one-order breather wave are analyzed.The corresponding dynamical characteristics are demonstrated by the graphs.展开更多
This paper is concerned with the following attraction-repulsion chemotaxis system with p-Laplacian diffusion and logistic source:■The system here is under a homogenous Neumann boundary condition in a bounded domainΩ...This paper is concerned with the following attraction-repulsion chemotaxis system with p-Laplacian diffusion and logistic source:■The system here is under a homogenous Neumann boundary condition in a bounded domainΩ ■ R^(n)(n≥2),with χ,ξ,α,β,γ,δ,k_(1),k_(2)> 0,p> 2.In addition,the function f is smooth and satisfies that f(s)≤κ-μs~l for all s≥0,with κ ∈ R,μ> 0,l> 1.It is shown that(ⅰ)if l> max{2k_(1),(2k_(1)n)/(2+n)+1/(p-1)},then system possesses a global bounded weak solution and(ⅱ)if k_(2)> max{2k_(1)-1,(2k_(1)n)/(2+n)+(2-p)/(p-1)} with l> 2,then system possesses a global bounded weak solution.展开更多
Studying the relationship between ionic interactions and salt solubility in seawater has implications for seawater desalination and mineral extraction.In this paper,a new method of expressing ion-to-ion interaction is...Studying the relationship between ionic interactions and salt solubility in seawater has implications for seawater desalination and mineral extraction.In this paper,a new method of expressing ion-to-ion interaction is proposed by using molecular dynamics simulation,and the relationship between ion-to-ion interaction and salt solubility in a simulated seawater water-salt system is investigated.By analyzing the variation of distance and contact time between ions in an electrolyte solution,from both spatial and temporal perspectives,new parameters were proposed to describe the interaction between ions:interaction distance(ID),and interaction time ratio(ITR).The best correlation between characteristic time ratio and solubility was found for a molar ratio of salt-to-water of 10:100 with a correlation coefficient of 0.96.For the same salt,a positive correlation was found between CTR and the molar ratio of salt and water.For type 1-1,type 2-1,type 1-2,and type 2-2 salts,the correlation coefficients between CTR and solubility were 0.93,0.96,0.92,and 0.98 for a salt-to-water molar ratio of 10:100,respectively.The solubility of multiple salts was predicted by simulations and compared with experimental values,yielding an average relative deviation of 12.4%.The new ion-interaction parameters offer significant advantages in describing strongly correlated and strongly hydrated electrolyte solutions.展开更多
In this paper,we consider entire solutions of higher order homogeneous differential equations with the entire coefficients having the same order,and prove that the entire solutions are of infinite lower order.The prop...In this paper,we consider entire solutions of higher order homogeneous differential equations with the entire coefficients having the same order,and prove that the entire solutions are of infinite lower order.The properties on the radial distribution,the limit direction of the Julia set and the existence of a Baker wandering domain of the entire solutions are also discussed.展开更多
Under investigation in this paper is a complex modified Korteweg–de Vries(KdV) equation, which describes the propagation of short pulses in optical fibers. Bilinear forms and multi-soliton solutions are obtained thro...Under investigation in this paper is a complex modified Korteweg–de Vries(KdV) equation, which describes the propagation of short pulses in optical fibers. Bilinear forms and multi-soliton solutions are obtained through the Hirota method and symbolic computation. Breather-like and bound-state solitons are constructed in which the signs of the imaginary parts of the complex wave numbers and the initial separations of the two parallel solitons are important factors for the interaction patterns. The periodic structures and position-induced phase shift of some solutions are introduced.展开更多
On one hand,we study the existence of transcendental entire solutions with finite order of the Fermat type difference equations.On the other hand,we also investigate the existence and growth of solutions of nonlinear ...On one hand,we study the existence of transcendental entire solutions with finite order of the Fermat type difference equations.On the other hand,we also investigate the existence and growth of solutions of nonlinear differential-difference equations.These results extend and improve some previous in[5,14].展开更多
We study the global existence and uniqueness of a strong solution to the kinetic thermomechanical Cucker-Smale(for short,TCS) model coupled with Stokes equations in the whole space.The coupled system consists of the k...We study the global existence and uniqueness of a strong solution to the kinetic thermomechanical Cucker-Smale(for short,TCS) model coupled with Stokes equations in the whole space.The coupled system consists of the kinetic TCS equation for a particle ensemble and the Stokes equations for a fluid via a drag force.In this paper,we present a complete analysis of the existence of global-in-time strong solutions to the coupled model without any smallness restrictions on the initial data.展开更多
In this paper,we consider the semilinear elliptic equation systems{△u+u=αQ_(n)(x)|u|^(α-2)|v|^(β)u in R^(N),-△v+v=βQ(x)|u|^(α)|v|^(β-2)v in R^(N),where N≥3,α,β>1,α+β<2^(*),2^(*)=2N/N-2 and Q_(n) are...In this paper,we consider the semilinear elliptic equation systems{△u+u=αQ_(n)(x)|u|^(α-2)|v|^(β)u in R^(N),-△v+v=βQ(x)|u|^(α)|v|^(β-2)v in R^(N),where N≥3,α,β>1,α+β<2^(*),2^(*)=2N/N-2 and Q_(n) are bounded given functions whose self-focusing cores{x∈R^(N)|Q_(n)(x)>0} shrink to a set with finitely many points as n→∞.Motivated by the work of Fang and Wang[13],we use variational methods to study the limiting profile of ground state solutions which are concentrated at one point of the set with finitely many points,and we build the localized concentrated bound state solutions for the above equation systems.展开更多
Based on the Landau-Lifshitz-Gilbert(LLG)equation,the precession relaxation of magnetization is studied when the external field H is parallel to the uniaxial anisotropic field H_(k).The evolution of three-component ma...Based on the Landau-Lifshitz-Gilbert(LLG)equation,the precession relaxation of magnetization is studied when the external field H is parallel to the uniaxial anisotropic field H_(k).The evolution of three-component magnetization is solved analytically under the condition of H=nH_(k)(n=3,1 and 0).It is found that with an increase of H or a decrease of the initial polar angle of magnetization,the relaxation time decreases and the angular frequency of magnetization increases.For comparison,the analytical solution for H_(k)=0 is also given.When the magnetization becomes stable,the angular frequency is proportional to the total effective field acting on the magnetization.The analytical solutions are not only conducive to the understanding of the precession relaxation of magnetization,but also can be used as a standard model to test the numerical calculation of LLG equation.展开更多
A Hamiltonian system is derived for the plane elasticity problem of two-dimensional dodecagonal quasicrystals by introducing the simple state function. By using symplectic elasticity approach, the analytic solutions o...A Hamiltonian system is derived for the plane elasticity problem of two-dimensional dodecagonal quasicrystals by introducing the simple state function. By using symplectic elasticity approach, the analytic solutions of the phonon and phason displacements are obtained further for the quasicrystal plates. In addition, the effectiveness of the approach is verified by comparison with the data of the finite integral transformation method.展开更多
In this paper,we are concerned with solutions to the fractional Schrodinger-Poisson system■ with prescribed mass ∫_(R^(3))|u|^(2)dx=a^(2),where a> 0 is a prescribed number,μ> 0 is a paremeter,s ∈(0,1),2 <...In this paper,we are concerned with solutions to the fractional Schrodinger-Poisson system■ with prescribed mass ∫_(R^(3))|u|^(2)dx=a^(2),where a> 0 is a prescribed number,μ> 0 is a paremeter,s ∈(0,1),2 <q <2_(s)^(*),and 2_(s)^(*)=6/(3-2s) is the fractional critical Sobolev exponent.In the L2-subcritical case,we show the existence of multiple normalized solutions by using the genus theory and the truncation technique;in the L^(2)-supercritical case,we obtain a couple of normalized solutions by developing a fiber map.Under both cases,to recover the loss of compactness of the energy functional caused by the doubly critical growth,we need to adopt the concentration-compactness principle.Our results complement and improve upon some existing studies on the fractional Schrodinger-Poisson system with a nonlocal critical term.展开更多
The presented study deals with the investigation of nonlinear Bogoyavlenskii equations with conformable time-derivative which has great importance in plasma physics and non-inspectoral scattering problems.Travelling w...The presented study deals with the investigation of nonlinear Bogoyavlenskii equations with conformable time-derivative which has great importance in plasma physics and non-inspectoral scattering problems.Travelling wave solutions of this nonlinear conformable model are constructed by utilizing two powerful analytical approaches,namely,the modified auxiliary equation method and the Sardar sub-equation method.Many novel soliton solutions are extracted using these methods.Furthermore,3D surface graphs,contour plots and parametric graphs are drawn to show dynamical behavior of some obtained solutions with the aid of symbolic software such as Mathematica.The constructed solutions will help to understand the dynamical framework of nonlinear Bogoyavlenskii equations in the related physical phenomena.展开更多
The viscous fluid flow and heat transfer over a stretching(shrinking)and porous sheets of nonuniform thickness are investigated in this paper.The modeled problem is presented by utilizing the stretching(shrinking)and ...The viscous fluid flow and heat transfer over a stretching(shrinking)and porous sheets of nonuniform thickness are investigated in this paper.The modeled problem is presented by utilizing the stretching(shrinking)and porous velocities and variable thickness of the sheet and they are combined in a relation.Consequently,the new problem reproduces the different available forms of flow motion and heat transfer maintained over a stretching(shrinking)and porous sheet of variable thickness in one go.As a result,the governing equations are embedded in several parameters which can be transformed into classical cases of stretched(shrunk)flows over porous sheets.A set of general,unusual and new variables is formed to simplify the governing partial differential equations and boundary conditions.The final equations are compared with the classical models to get the validity of the current simulations and they are exactly matched with each other for different choices of parameters of the current problem when their values are properly adjusted and manipulated.Moreover,we have recovered the classical results for special and appropriate values of the parameters(δ_(1),δ_(2),δ_(3),c,and B).The individual and combined effects of all inputs from the boundary are seen on flow and heat transfer properties with the help of a numerical method and the results are compared with classical solutions in special cases.It is noteworthy that the problem describes and enhances the behavior of all field quantities in view of the governing parameters.Numerical result shows that the dual solutions can be found for different possible values of the shrinking parameter.A stability analysis is accomplished and apprehended in order to establish a criterion for the determinations of linearly stable and physically compatible solutions.The significant features and diversity of the modeled equations are scrutinized by recovering the previous problems of fluid flow and heat transfer from a uniformly heated sheet of variable(uniform)thickness with variable(uniform)stretching/shrinking and injection/suction velocities.展开更多
Under investigation is an integrable generalization of the Fokas–Lenells equation, which can be derived from the negative power flow of a 2 × 2 matrix spectral problem with three potentials. Based on the gauge t...Under investigation is an integrable generalization of the Fokas–Lenells equation, which can be derived from the negative power flow of a 2 × 2 matrix spectral problem with three potentials. Based on the gauge transformation of the matrix spectral problem, one kind of Darboux transformation with multi-parameters for the three-component coupled Fokas–Lenells system is constructed. As a reduction, the N-fold Darboux transformation for the generalized Fokas–Lenells equation is obtained, from which the N-soliton solution in a compact Vandermonde-like determinant form is given. Particularly,the explicit one-and two-soliton solutions are presented and their dynamical behaviors are shown graphically.展开更多
In this paper,we address the stability of periodic solutions of piecewise smooth periodic differential equations.By studying the Poincarémap,we give a sufficient condition to judge the stability of a periodic sol...In this paper,we address the stability of periodic solutions of piecewise smooth periodic differential equations.By studying the Poincarémap,we give a sufficient condition to judge the stability of a periodic solution.We also present examples of some applications.展开更多
In this paper,we establish some regularity conditions on the density and velocity fields to guarantee the energy conservation of the weak solutions for the three-dimensional compressible nematic liquid crystal flow in...In this paper,we establish some regularity conditions on the density and velocity fields to guarantee the energy conservation of the weak solutions for the three-dimensional compressible nematic liquid crystal flow in the periodic domain.展开更多
文摘The diffusion of nanoparticles immersed in semidilute polymer solutions is investigated by a hybrid mesoscopic multiparticle collision dynamics method. Effects of polymer concentration and hydrodynamic interactions among polymer monomers are focused. Extensive simulations show that the dependence of diffusion coefficient D on the polymer concentration c agrees with Phillies equation D-exp (-αc^δ) with a scaling exponent δ≈0.97 which coincides with the experimental one in literature. For increasing nanoparticle size, the scaling prefactor α increases monotonically while the scaling exponent always keeps fixed. Moreover, we also study the diffusion of nanoparticle without hydrodynamic interactions and find that mobility of the nanoparticle slows down, and the scaling exponent is obviously different from the one in experiments, implying that hydrodynamic interactions play a crucial role in the diffusion of a nanoparticle in semidilute polymer solutions.
基金Project supported by the National Natural Science of China(Grant Nos.21434001,51561145002,and 11421110001)
文摘When a film of soft matter solutions is being dried, a skin layer often forms at its surface, which is a gel-like elastic phase made of concentrated soft matter solutions. We study the dynamics of this process by using the solute based Lagrangian scheme which was proposed by us recently. In this scheme, the process of the gelation(i.e., the change from sol to gel) can be naturally incorporated in the diffusion equation. Effects of the elasticity of the skin phase, the evaporation rate of the solvents, and the initial concentration of the solutions are discussed. Moreover, the condition for the skin formation is provided.
文摘This paper deals with a case study of a context-sensitive solution of the Jamestown Corridor, located along James City County and the City of Williamsburg in Virginia. The corridor is an important passageway to many tourist attractions in the Historic Triangle of Hampton Roads. During the improvement process, the project should minimize the congestions impacts, maximize convenience, safety and reliability of the surrounding transportation systems, minimize social impact to the local community and address long-term capacity issues. Through the project, the agencies involved learned that projects near any of the historic resources must be context-sensitive and should include all stakeholders early and often to make sure that a comprehensive schedule was developed. They also learned that time should be considered for review and input from key regional stakeholders for a variety of issues.
基金supported by the Key Project of the NSFC(12131010)the NSFC(11771155,12271032)+1 种基金the NSF of Guangdong Province(2021A1515010249,2021A1515010303)supported by the NSFC(11971179,12371205)。
文摘This paper is concerned with the Navier-Stokes/Allen-Cahn system,which is used to model the dynamics of immiscible two-phase flows.We consider a 1D free boundary problem and assume that the viscosity coefficient depends on the density in the form ofη(ρ)=ρ^(α).The existence of unique global H^(2m)-solutions(m∈N)to the free boundary problem is proven for when 0<α<1/4.Furthermore,we obtain the global C^(∞)-solutions if the initial data is smooth.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.12275172 and 11905124)。
文摘This paper studies the(2+1)-dimensional Hirota-Satsuma-Ito equation.Based on an associated Hirota bilinear form,lump-type solution,two types of interaction solutions,and breather wave solution of the(2+1)-dimensional Hirota-Satsuma-Ito equation are obtained,which are all related to the seed solution of the equation.It is interesting that the rogue wave is aroused by the interaction between one-lump soliton and a pair of resonance stripe solitons,and the fusion and fission phenomena are also found in the interaction between lump solitons and one-stripe soliton.Furthermore,the breather wave solution is also obtained by reducing the two-soliton solutions.The trajectory and period of the one-order breather wave are analyzed.The corresponding dynamical characteristics are demonstrated by the graphs.
基金supported by the National Natural Science Foundation of China(12301251,12271232)the Natural Science Foundation of Shandong Province,China(ZR2021QA038)the Scientific Research Foundation of Linyi University,China(LYDX2020BS014)。
文摘This paper is concerned with the following attraction-repulsion chemotaxis system with p-Laplacian diffusion and logistic source:■The system here is under a homogenous Neumann boundary condition in a bounded domainΩ ■ R^(n)(n≥2),with χ,ξ,α,β,γ,δ,k_(1),k_(2)> 0,p> 2.In addition,the function f is smooth and satisfies that f(s)≤κ-μs~l for all s≥0,with κ ∈ R,μ> 0,l> 1.It is shown that(ⅰ)if l> max{2k_(1),(2k_(1)n)/(2+n)+1/(p-1)},then system possesses a global bounded weak solution and(ⅱ)if k_(2)> max{2k_(1)-1,(2k_(1)n)/(2+n)+(2-p)/(p-1)} with l> 2,then system possesses a global bounded weak solution.
基金supported by the National Natural Science Foundation of China(No.21776264).
文摘Studying the relationship between ionic interactions and salt solubility in seawater has implications for seawater desalination and mineral extraction.In this paper,a new method of expressing ion-to-ion interaction is proposed by using molecular dynamics simulation,and the relationship between ion-to-ion interaction and salt solubility in a simulated seawater water-salt system is investigated.By analyzing the variation of distance and contact time between ions in an electrolyte solution,from both spatial and temporal perspectives,new parameters were proposed to describe the interaction between ions:interaction distance(ID),and interaction time ratio(ITR).The best correlation between characteristic time ratio and solubility was found for a molar ratio of salt-to-water of 10:100 with a correlation coefficient of 0.96.For the same salt,a positive correlation was found between CTR and the molar ratio of salt and water.For type 1-1,type 2-1,type 1-2,and type 2-2 salts,the correlation coefficients between CTR and solubility were 0.93,0.96,0.92,and 0.98 for a salt-to-water molar ratio of 10:100,respectively.The solubility of multiple salts was predicted by simulations and compared with experimental values,yielding an average relative deviation of 12.4%.The new ion-interaction parameters offer significant advantages in describing strongly correlated and strongly hydrated electrolyte solutions.
基金supported partly by the National Natural Science Foundation of China(11926201,12171050)the National Science Foundation of Guangdong Province(2018A030313508)。
文摘In this paper,we consider entire solutions of higher order homogeneous differential equations with the entire coefficients having the same order,and prove that the entire solutions are of infinite lower order.The properties on the radial distribution,the limit direction of the Julia set and the existence of a Baker wandering domain of the entire solutions are also discussed.
基金Project supported by the National Natural Science Foundation of China (Grant No. 12161061)the Fundamental Research Funds for the Inner Mongolia University of Finance and Economics (Grant No. NCYWT23036)+2 种基金the Young Innovative and Entrepreneurial Talents of the Inner Mongolia Grassland Talents Project in 2022,Autonomous Region “Five Major Tasks” Research Special Project for the Inner Mongolia University of Finance and Economics in 2024 (Grant No. NCXWD2422)High Quality Research Achievement Cultivation Fund for the Inner Mongolia University of Finance and Economics in 2024 (Grant No. GZCG2426)the Talent Development Fund of Inner Mongolia Autonomous Region, China。
文摘Under investigation in this paper is a complex modified Korteweg–de Vries(KdV) equation, which describes the propagation of short pulses in optical fibers. Bilinear forms and multi-soliton solutions are obtained through the Hirota method and symbolic computation. Breather-like and bound-state solitons are constructed in which the signs of the imaginary parts of the complex wave numbers and the initial separations of the two parallel solitons are important factors for the interaction patterns. The periodic structures and position-induced phase shift of some solutions are introduced.
基金Supported by the National Natural Science Foundation of China(12261023,11861023)the Foundation of Science and Technology project of Guizhou Province of China([2018]5769-05)。
文摘On one hand,we study the existence of transcendental entire solutions with finite order of the Fermat type difference equations.On the other hand,we also investigate the existence and growth of solutions of nonlinear differential-difference equations.These results extend and improve some previous in[5,14].
基金supported by the National Natural Science Foundation of China (12001033)。
文摘We study the global existence and uniqueness of a strong solution to the kinetic thermomechanical Cucker-Smale(for short,TCS) model coupled with Stokes equations in the whole space.The coupled system consists of the kinetic TCS equation for a particle ensemble and the Stokes equations for a fluid via a drag force.In this paper,we present a complete analysis of the existence of global-in-time strong solutions to the coupled model without any smallness restrictions on the initial data.
基金supported by the NSFC (12071438)supported by the NSFC (12201232)
文摘In this paper,we consider the semilinear elliptic equation systems{△u+u=αQ_(n)(x)|u|^(α-2)|v|^(β)u in R^(N),-△v+v=βQ(x)|u|^(α)|v|^(β-2)v in R^(N),where N≥3,α,β>1,α+β<2^(*),2^(*)=2N/N-2 and Q_(n) are bounded given functions whose self-focusing cores{x∈R^(N)|Q_(n)(x)>0} shrink to a set with finitely many points as n→∞.Motivated by the work of Fang and Wang[13],we use variational methods to study the limiting profile of ground state solutions which are concentrated at one point of the set with finitely many points,and we build the localized concentrated bound state solutions for the above equation systems.
基金Project supported by the National Key R&D Program of China (Grant No.2021YFB3501300)the National Natural Science Foundation of China (Grant Nos.91963201 and 12174163)the 111 Project (Grant No.B20063)。
文摘Based on the Landau-Lifshitz-Gilbert(LLG)equation,the precession relaxation of magnetization is studied when the external field H is parallel to the uniaxial anisotropic field H_(k).The evolution of three-component magnetization is solved analytically under the condition of H=nH_(k)(n=3,1 and 0).It is found that with an increase of H or a decrease of the initial polar angle of magnetization,the relaxation time decreases and the angular frequency of magnetization increases.For comparison,the analytical solution for H_(k)=0 is also given.When the magnetization becomes stable,the angular frequency is proportional to the total effective field acting on the magnetization.The analytical solutions are not only conducive to the understanding of the precession relaxation of magnetization,but also can be used as a standard model to test the numerical calculation of LLG equation.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.12261064 and 11861048)the Natural Science Foundation of Inner Mongolia,China (Grant Nos.2021MS01004 and 2022QN01008)the High-level Talents Scientific Research Start-up Foundation of Inner Mongolia University (Grant No.10000-21311201/165)。
文摘A Hamiltonian system is derived for the plane elasticity problem of two-dimensional dodecagonal quasicrystals by introducing the simple state function. By using symplectic elasticity approach, the analytic solutions of the phonon and phason displacements are obtained further for the quasicrystal plates. In addition, the effectiveness of the approach is verified by comparison with the data of the finite integral transformation method.
基金supported by the BIT Research and Innovation Promoting Project(2023YCXY046)the NSFC(11771468,11971027,11971061,12171497 and 12271028)+1 种基金the BNSF(1222017)the Fundamental Research Funds for the Central Universities。
文摘In this paper,we are concerned with solutions to the fractional Schrodinger-Poisson system■ with prescribed mass ∫_(R^(3))|u|^(2)dx=a^(2),where a> 0 is a prescribed number,μ> 0 is a paremeter,s ∈(0,1),2 <q <2_(s)^(*),and 2_(s)^(*)=6/(3-2s) is the fractional critical Sobolev exponent.In the L2-subcritical case,we show the existence of multiple normalized solutions by using the genus theory and the truncation technique;in the L^(2)-supercritical case,we obtain a couple of normalized solutions by developing a fiber map.Under both cases,to recover the loss of compactness of the energy functional caused by the doubly critical growth,we need to adopt the concentration-compactness principle.Our results complement and improve upon some existing studies on the fractional Schrodinger-Poisson system with a nonlocal critical term.
文摘The presented study deals with the investigation of nonlinear Bogoyavlenskii equations with conformable time-derivative which has great importance in plasma physics and non-inspectoral scattering problems.Travelling wave solutions of this nonlinear conformable model are constructed by utilizing two powerful analytical approaches,namely,the modified auxiliary equation method and the Sardar sub-equation method.Many novel soliton solutions are extracted using these methods.Furthermore,3D surface graphs,contour plots and parametric graphs are drawn to show dynamical behavior of some obtained solutions with the aid of symbolic software such as Mathematica.The constructed solutions will help to understand the dynamical framework of nonlinear Bogoyavlenskii equations in the related physical phenomena.
文摘The viscous fluid flow and heat transfer over a stretching(shrinking)and porous sheets of nonuniform thickness are investigated in this paper.The modeled problem is presented by utilizing the stretching(shrinking)and porous velocities and variable thickness of the sheet and they are combined in a relation.Consequently,the new problem reproduces the different available forms of flow motion and heat transfer maintained over a stretching(shrinking)and porous sheet of variable thickness in one go.As a result,the governing equations are embedded in several parameters which can be transformed into classical cases of stretched(shrunk)flows over porous sheets.A set of general,unusual and new variables is formed to simplify the governing partial differential equations and boundary conditions.The final equations are compared with the classical models to get the validity of the current simulations and they are exactly matched with each other for different choices of parameters of the current problem when their values are properly adjusted and manipulated.Moreover,we have recovered the classical results for special and appropriate values of the parameters(δ_(1),δ_(2),δ_(3),c,and B).The individual and combined effects of all inputs from the boundary are seen on flow and heat transfer properties with the help of a numerical method and the results are compared with classical solutions in special cases.It is noteworthy that the problem describes and enhances the behavior of all field quantities in view of the governing parameters.Numerical result shows that the dual solutions can be found for different possible values of the shrinking parameter.A stability analysis is accomplished and apprehended in order to establish a criterion for the determinations of linearly stable and physically compatible solutions.The significant features and diversity of the modeled equations are scrutinized by recovering the previous problems of fluid flow and heat transfer from a uniformly heated sheet of variable(uniform)thickness with variable(uniform)stretching/shrinking and injection/suction velocities.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.12326305,11931017,and 12271490)the Excellent Youth Science Fund Project of Henan Province(Grant No.242300421158)+2 种基金the Natural Science Foundation of Henan Province(Grant No.232300420119)the Excellent Science and Technology Innovation Talent Support Program of ZUT(Grant No.K2023YXRC06)Funding for the Enhancement Program of Advantageous Discipline Strength of ZUT(2022)。
文摘Under investigation is an integrable generalization of the Fokas–Lenells equation, which can be derived from the negative power flow of a 2 × 2 matrix spectral problem with three potentials. Based on the gauge transformation of the matrix spectral problem, one kind of Darboux transformation with multi-parameters for the three-component coupled Fokas–Lenells system is constructed. As a reduction, the N-fold Darboux transformation for the generalized Fokas–Lenells equation is obtained, from which the N-soliton solution in a compact Vandermonde-like determinant form is given. Particularly,the explicit one-and two-soliton solutions are presented and their dynamical behaviors are shown graphically.
文摘In this paper,we address the stability of periodic solutions of piecewise smooth periodic differential equations.By studying the Poincarémap,we give a sufficient condition to judge the stability of a periodic solution.We also present examples of some applications.
基金support by the NSFC(12071391,12231016)the Guangdong Basic and Applied Basic Research Foundation(2022A1515010860)support by the China Postdoctoral Science Foundation(2023M742401)。
文摘In this paper,we establish some regularity conditions on the density and velocity fields to guarantee the energy conservation of the weak solutions for the three-dimensional compressible nematic liquid crystal flow in the periodic domain.