期刊文献+
共找到555篇文章
< 1 2 28 >
每页显示 20 50 100
Solvation Engineering via Fluorosurfactant Additive Toward Boosted Lithium-Ion Thermoelectrochemical Cells
1
作者 Yinghong Xu Zhiwei Li +2 位作者 Langyuan Wu Hui Dou Xiaogang Zhang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第4期253-268,共16页
Lithium-ion thermoelectrochemical cell(LTEC), featuring simultaneous energy conversion and storage, has emerged as promising candidate for low-grade heat harvesting. However, relatively poor thermosensitivity and heat... Lithium-ion thermoelectrochemical cell(LTEC), featuring simultaneous energy conversion and storage, has emerged as promising candidate for low-grade heat harvesting. However, relatively poor thermosensitivity and heat-to-current behavior limit the application of LTECs using LiPF_6 electrolyte. Introducing additives into bulk electrolyte is a reasonable strategy to solve such problem by modifying the solvation structure of electrolyte ions. In this work, we develop a dual-salt electrolyte with fluorosurfactant(FS) additive to achieve high thermopower and durability of LTECs during the conversion of low-grade heat into electricity. The addition of FS induces a unique Li~+ solvation with the aggregated double anions through a crowded electrolyte environment,resulting in an enhanced mobility kinetics of Li~+ as well as boosted thermoelectrochemical performances. By coupling optimized electrolyte with graphite electrode, a high thermopower of 13.8 mV K^(-1) and a normalized output power density of 3.99 mW m^(–2) K^(–2) as well as an outstanding output energy density of 607.96 J m^(-2) can be obtained.These results demonstrate that the optimization of electrolyte by regulating solvation structure will inject new vitality into the construction of thermoelectrochemical devices with attractive properties. 展开更多
关键词 solvation engineering FLUOROSURFACTANT Ionic thermoelectric Lithium-ion thermoelectrochemical cell Low-grade heat
下载PDF
Critical Solvation Structures Arrested Active Molecules for Reversible Zn Electrochemistry
2
作者 Junjie Zheng Bao Zhang +14 位作者 Xin Chen Wenyu Hao Jia Yao Jingying Li Yi Gan Xiaofang Wang Xingtai Liu Ziang Wu Youwei Liu Lin Lv Li Tao Pei Liang Xiao Ji Hao Wang Houzhao Wan 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第8期64-78,共15页
Aqueous Zn-ion batteries(AZIBs)have attracted increasing attention in next-generation energy storage systems due to their high safety and economic.Unfortunately,the side reactions,dendrites and hydrogen evolution effe... Aqueous Zn-ion batteries(AZIBs)have attracted increasing attention in next-generation energy storage systems due to their high safety and economic.Unfortunately,the side reactions,dendrites and hydrogen evolution effects at the zinc anode interface in aqueous electrolytes seriously hinder the application of aqueous zinc-ion batteries.Here,we report a critical solvation strategy to achieve reversible zinc electrochemistry by introducing a small polar molecule acetonitrile to form a“catcher”to arrest active molecules(bound water molecules).The stable solvation structure of[Zn(H_(2)O)_(6)]^(2+)is capable of maintaining and completely inhibiting free water molecules.When[Zn(H_(2)O)_(6)]^(2+)is partially desolvated in the Helmholtz outer layer,the separated active molecules will be arrested by the“catcher”formed by the strong hydrogen bond N-H bond,ensuring the stable desolvation of Zn^(2+).The Zn||Zn symmetric battery can stably cycle for 2250 h at 1 mAh cm^(-2),Zn||V_(6)O_(13) full battery achieved a capacity retention rate of 99.2%after 10,000 cycles at 10 A g^(-1).This paper proposes a novel critical solvation strategy that paves the route for the construction of high-performance AZIBs. 展开更多
关键词 Zinc-ion battery Critical solvation Helmholtz layer Arrest active molecule Reversible zinc anode
下载PDF
Solvation strategies in various electrolytes for advanced zinc metal anode
3
作者 Zhenxu Wang Lichong Bai +2 位作者 Hongguang Fan Yanpeng Wang Wei Liu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第7期740-757,共18页
Aqueous zinc-ion batteries(AZIBs),known for their high safety,low cost,and environmental friendliness,have a wide range of potential applications in large-scale energy storage systems.However,the notorious dendrite gr... Aqueous zinc-ion batteries(AZIBs),known for their high safety,low cost,and environmental friendliness,have a wide range of potential applications in large-scale energy storage systems.However,the notorious dendrite growth and severe side reactions on the anode have significantly hindered their further practical development.Recent studies have shown that the solvation chemistry in the electrolyte is not only closely related to the barriers to the commercialization of AZIBs,but have also sparked a number of valuable ideas to address the challenges of AZIBs.Therefore,we systematically summarize and discuss the regulatory mechanisms of solvation chemistry in various types of electrolytes and the influence of the solvation environment on battery performance.The challenges and future directions for solvation strategies based on the electrolyte environment are proposed to improve their performance and expand their application in AZIBs. 展开更多
关键词 solvation strategy ELECTROLYTE Aqueous zinc-ion batteries Zinc dendrite
下载PDF
Regulating the Solvation Structure of Li^(+) Enables Chemical Prelithiation of Silicon-Based Anodes Toward High-Energy Lithium-Ion Batteries 被引量:5
4
作者 Wenjie He Hai Xu +5 位作者 Zhijie Chen Jiang Long Jing Zhang Jiangmin Jiang Hui Dou Xiaogang Zhang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第7期293-305,共13页
The solvation structure of Li^(+) in chemical prelithiation reagent plays a key role in improving the low initial Coulombic efficiency(ICE) and poor cycle performance of silicon-based materials. Never theless, the che... The solvation structure of Li^(+) in chemical prelithiation reagent plays a key role in improving the low initial Coulombic efficiency(ICE) and poor cycle performance of silicon-based materials. Never theless, the chemical prelithiation agent is difficult to dope active Li^(+) in silicon-based anodes because of their low working voltage and sluggish Li^(+) diffusion rate. By selecting the lithium–arene complex reagent with 4-methylbiphenyl as an anion ligand and 2-methyltetrahydrofuran as a solvent, the as-prepared micro-sized Si O/C anode can achieve an ICE of nearly 100%. Interestingly, the best prelithium efficiency does not correspond to the lowest redox half-potential(E_(1/2)), and the prelithiation efficiency is determined by the specific influencing factors(E_(1/2), Li^(+) concentration, desolvation energy, and ion diffusion path). In addition, molecular dynamics simulations demonstrate that the ideal prelithiation efficiency can be achieved by choosing appropriate anion ligand and solvent to regulate the solvation structure of Li^(+). Furthermore, the positive effect of prelithiation on cycle performance has been verified by using an in-situ electrochemical dilatometry and solid electrolyte interphase film characterizations. 展开更多
关键词 Lithium-ion batteries Silicon-based anodes Prelithiation Molecular dynamics simulations solvation structure
下载PDF
Air-Stable Binary Hydrated Eutectic Electrolytes with Unique Solvation Structure for Rechargeable Aluminum-Ion Batteries 被引量:2
5
作者 Pengyu Meng Jian Huang +6 位作者 Zhaohui Yang Min Jiang Yibo Wang Wei Zhang Jiao Zhang Baode Sun Chaopeng Fu 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第10期595-608,共14页
Aluminum-ion batteries(AIBs)have been highlighted as a potential alternative to lithium-ion batteries for large-scale energy storage due to the abundant reserve,light weight,low cost,and good safety of Al.However,the ... Aluminum-ion batteries(AIBs)have been highlighted as a potential alternative to lithium-ion batteries for large-scale energy storage due to the abundant reserve,light weight,low cost,and good safety of Al.However,the development of AIBs faces challenges due to the usage of AlCl_(3)-based ionic liquid electrolytes,which are expensive,corrosive,and sensitive to humidity.Here,we develop a low-cost,non-corrosive,and air-stable hydrated eutectic electrolyte composed of aluminum perchlorate nonahydrate and methylurea(MU)ligand.Through optimizing the molar ratio to achieve the unique solvation structure,the formed Al(ClO_4)_(3)·9H_(2)O/MU hydrated deep eutectic electrolyte(AMHEE)with an average coordination number of 2.4 can facilely realize stable and reversible deposition/stripping of Al.When combining with vanadium oxide nanorods positive electrode,the Al-ion full battery delivers a high discharge capacity of 320 mAh g^(-1)with good capacity retention.The unique solvation structure with a low desolvation energy of the AMHEE enables Al^(3+)insertion/extraction during charge/discharge processes,which is evidenced by in situ synchrotron radiation X-ray diffraction.This work opens a new pathway of developing low-cost,safe,environmentally friendly and high-performance electrolytes for practical and sustainable AIBs. 展开更多
关键词 Al-ion battery Hydrated eutectic electrolyte Mechanism solvation structure
下载PDF
Tailoring Mg^(2+)Solvation Structure in a Facile All-Inorganic[Mg_(x)Li_(y)Cl2_(x+y)·nTHF]Complex Electrolyte for High Rate and Long Cycle-Life Mg Battery 被引量:2
6
作者 Haiyan Fan Xinxin Zhang +9 位作者 Yuxing Zhao Jianhua Xiao Hua Yuan Guang Wang Yitao Lin Jifang Zhang Ludi Pan Ting Pan Yang Liu Yuegang Zhang 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2023年第2期152-158,共7页
A high-performance all-inorganic magnesium-lithium chloride complex(MLCC)electrolyte is synthesized by a simple room-temperature reaction of LiCl with MgCl_(2) in tetrahydrofuran(THF)solvent.Molecular dynamics simulat... A high-performance all-inorganic magnesium-lithium chloride complex(MLCC)electrolyte is synthesized by a simple room-temperature reaction of LiCl with MgCl_(2) in tetrahydrofuran(THF)solvent.Molecular dynamics simulation,density functional theory calculation,Raman spectroscopy,and nuclear magnetic resonance spectroscopy reveal that the formation of[Mg_(x)Li_(y)Cl_(2x+y)·nTHF]complex solvation structure significantly lowers the coordination number of THF in the first solvation sheath of Mg^(2+),which significantly enhances its de-solvation kinetics.The MLCC electrolyte presents a stable electrochemical window up to 3.1 V(vs Mg/Mg^(2+))and enables reversible cycling of Mg metal deposition/stripping with an outstanding Coulombic efficiency up to 99%at current densities as high as 10 mA cm^(-2).Utilizing the MLCC electrolyte,a Mg/Mo_(6)S_(8) full cell can be cycled for over 10000 cycles with a superior capacity retention of 85 mA h g^(-1) under an ultrahigh rate of 50 C(1 C=128.8 mA g^(-1)).The facile synthesis of highperformance MLCC electrolyte provides a promising solution for future practical magnesium batteries. 展开更多
关键词 cycle life ELECTROLYTE Mg battery solvation structure
下载PDF
Electrode-compatible fluorine-free multifunctional additive regulating solid electrolyte interphase and solvation structure for high-performance lithium-ion batteries 被引量:1
7
作者 Qing-Song Liu Yi-Zhou Quan +4 位作者 Mei-Chen Liu Guo-Rui Zhu Xiu-Li Wang Gang Wu Yu-Zhong Wang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第8期239-246,I0008,共9页
The rapid development and widespread application of lithium-ion batteries(LIBs) have increased demand for high-safety and high-performance LIBs. Accordingly, various additives have been used in commercial liquid elect... The rapid development and widespread application of lithium-ion batteries(LIBs) have increased demand for high-safety and high-performance LIBs. Accordingly, various additives have been used in commercial liquid electrolytes to severally adjust the solvation structure of lithium ions, control the components of solid electrolyte interphase, or reduce flammability. While it is highly desirable to develop low-cost multifunctional electrolyte additives integrally that address both safety and performance on LIBs, significant challenges remain. Herein, a novel phosphorus-containing organic small molecule, bis(2-methoxyethyl) methylphosphonate(BMOP), was rationally designed to serve as a fluorine-free and multifunctional additive in commercial electrolytes. This novel electrolyte additive is low-toxicity,high-efficiency, low-cost, and electrode-compatible, which shows the significant improvement to both electrochemical performance and fire safety for LIBs through regulating the electrolyte solvation structure, constructing the stable electrode-electrolyte interphase, and suppressing the electrolyte combustion. This work provides a new avenue for developing safer and high-performance LIBs. 展开更多
关键词 Multifunctional additives Electrode compatibility Solid electrolyte interface solvation structure Lithium-ion batteries
下载PDF
Structural regulation chemistry of lithium-ion solvation in nonflammable phosphate-based electrolytes for high interfacial compatibility with graphite anode 被引量:1
8
作者 Chenyang Shi Xinjing Huang +8 位作者 Jiahao Gu Zeyu Huang Fangyan Liu Mengran Wang Qiyu Wang Bo Hong Zhian Zhang Jie Li Yanqing Lai 《Journal of Energy Chemistry》 SCIE EI CSCD 2023年第12期501-508,I0013,共9页
With the booming development of lithium-ion batteries,safety has become one of the most primary focuses of current researches.Although there are various approaches to enhance the safety of lithiumion batteries,phospha... With the booming development of lithium-ion batteries,safety has become one of the most primary focuses of current researches.Although there are various approaches to enhance the safety of lithiumion batteries,phosphate-based electrolyte holds the greatest potential for practical application due to their non-flammability.Nonetheless,its compatibility issue with the graphite anode remains a significant obstacle to its widespread use.Herein,an effective method is proposed to improve the compatibility of electrolyte with graphite(Gr)anode by rationally adjusting the proportion of lithium salt and solvent components to optimize the Li^(+)solvation structure.By slightly increasing the Li^(+)/triethyl phosphate(TEP)ratio,TEP alone cannot fully occupy the inner solvation sheath and therefore less polar ethylene carbonate(EC)has to be recruited,and the solvation structure gradually changes from Li^(+)–[TEP]_(4)to Li^(+)–[TEP]_(3)[EC]with the coexistence of EC and TEP.Simultaneously,EC molecules in the Li^(+)–[TEP]_(3)[EC]could be preferentially reduced on graphite compared to the TEP molecules,resulting in the formation of a uniform and durable solid-electrolyte interphase(SEI)layer.Benefiting from the optimized phosphate-based electrolyte,the Gr|Li battery exhibits a capacity retention rate of 96.8%after stable cycling at 0.5 C for 470 cycles which shows a longer cycle life than the battery with carbonate electrolyte(cycling at 0.5 C for 450 cycles).Therefore,this work provides the guidance for designing a non-flammable phosphate-based electrolyte for high-safety and long cycling-life lithium-ion batteries. 展开更多
关键词 Ethylene carbonate Triethyl phosphate solvation structure Non-flammable electrolyte
下载PDF
Rationalizing Na-ion solvation structure by weakening carbonate solvent coordination ability for high-voltage sodium metal batteries
9
作者 Yan Deng Shuai Feng +8 位作者 Zhiwen Deng Ye Jia Xuemei Zhang Changhaoyue Xu Sicheng Miao Meng Yao Kaipeng Wu Yun Zhang Wenlong Cai 《Journal of Energy Chemistry》 SCIE EI CSCD 2023年第12期105-113,I0004,共10页
Commercial carbonate-based electrolytes feature highly reactive activities with alkali metals,yielding low Coulombic efficiencies and poor cycle life in lithium metal batteries,which possess much higher chemical activ... Commercial carbonate-based electrolytes feature highly reactive activities with alkali metals,yielding low Coulombic efficiencies and poor cycle life in lithium metal batteries,which possess much higher chemical activity in the rising star sodium metal batteries.To be motivated,we have proposed that decreasing the solvent solvation ability in carbonate-based electrolytes stepwise could enable longterm stable cycling of high-voltage sodium metal batteries.As the solvation capacity reduces,more anions are enticed into the solvation sheath of Na^(+),resulting in the formation of the more desirable interphase layers on the surface of the anode and the cathode.The inorganic-dominated interphases allow highly efficient Na^(+)deposition/stripping processes with a lower rate of dead sodium generation,as well as maintain a stable structure of the high-voltage cathode material.Specifically,the assembled Na||Na_(3)V_(2)(PO_(4))_(2)F_(3)battery exhibits an accelerated ion diffusion kinetics and achieves a higher capacity retention of 85.9%with during the consecutive 200 cycles under the high voltage of 4.5 V.It is anticipated that the tactics we have proposed could be applicable in other secondary metal battery systems as well. 展开更多
关键词 Electrolyte solvation structure Interfacial chemistry Sodium metal anode HIGH-VOLTAGE
下载PDF
Tuning desolvation kinetics of in-situ weakly solvating polyacetal electrolytes for dendrite-free lithium metal batteries
10
作者 Peng Wen Yimin Liu +8 位作者 Jinyan Mao Xiaotong Liu Weiping Li Yang Ren Yang Zhou Fei Shao Mao Chen Jun Lin Xinrong Lin 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第4期340-347,共8页
The host structure of polymers significantly influences ion transport and interfacial stability of electrolytes,dictating battery cycle life and safety for solid-state lithium metal batteries.Despite promising propert... The host structure of polymers significantly influences ion transport and interfacial stability of electrolytes,dictating battery cycle life and safety for solid-state lithium metal batteries.Despite promising properties of ethylene oxide-based electrolytes,their typical clamp-like coordination geometry leads to crowd solvation sheath and overly strong interactions between Li^(+)and electrolytes,rendering difficult dissociation of Li+and unfavorable solid electrolyte interface(SEI).Herein,we explore weakly solvating characteristics of polyacetal electrolytes owing to their alternately changing intervals between–O–coordinating sites in the main chain.Such structural asymmetry leads to unique distorted helical solvation sheath,and can effectively reduce Li^(+)-electrolyte binding and tune Li^(+)desolvation kinetics in the insitu formed polymer electrolytes,yielding anion-derived SEI and dendrite-free Li electrodeposition.Combining with photoinitiated cationic ring-opening polymerization,polyacetal electrolytes can be instantly formed within 5 min at the surface of electrode,with high segmental chain motion and well adapted interfaces.Such in-situ polyacetal electrolytes enabled more than 1300-h of stable lithium electrodeposition and prolonged cyclability over 200 cycles in solid-state batteries at ambient temperatures,demonstrating the vital role of molecular structure in changing solvating behavior and Li deposition stability for high-performance electrolytes. 展开更多
关键词 Polymer electrolyte In-situ photoinitiated polymerization Weakly solvating effect POLYACETAL Lithium electrodeposition
下载PDF
Li^(+)Solvation Mediated Interfacial Kinetic of Alloying Matrix for Stable Li Anodes
11
作者 Xingyi Wang Kailin Luo +6 位作者 Lixin Xiong Tengpeng Xiong Zhendong Li Jie Sun Haiyong He Chuying Ouyang Zhe Peng 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2023年第2期70-80,共11页
Severe lithium(Li)dendrite growth caused by the uneven overpotential deposition is a formidable challenge for high energy density Li metal batteries(LMBs).Herein,we investigate a synergetic interfacial kinetic to regu... Severe lithium(Li)dendrite growth caused by the uneven overpotential deposition is a formidable challenge for high energy density Li metal batteries(LMBs).Herein,we investigate a synergetic interfacial kinetic to regulate Li deposition behavior and stabilize Li metal anode.Through constructing Li alloying matrix with a bi-functional silver(Ag)-Li_(3)N blended interface,fast Li^(+)conductivity and high Li affinity can be achieved simultaneously,resulting in both decreased Li nucleation and mass transfercontrolled overpotentials.Beyond these properties,a more important feature is demonstrated herein;that is,the inward diffusion depth of the Li adatoms inside of the Ag site can be restricted by the Li^(+)solvation structure in a highly coordinating environment.The latter feature can ensure the durability of the operational Ag sites,thereby elongating the Li protection ability of the Ag-Li_(3)N interface greatly.This work provides a deep insight into the synergetic effect of functional alloying structure and Li^(+)solvation mediated interfacial kinetic on Li metal protection. 展开更多
关键词 Li^(+)solvation structure Li-Ag alloy lithium metal anode lithium metal batteries SEI
下载PDF
Electrolyte Solvation Structure Design for High Voltage Zinc-Based Hybrid Batteries
12
作者 Pauline Jaumaux Shijian Wang +2 位作者 Shuoqing Zhao Bing Sun Guoxiu Wang 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2023年第4期239-247,共9页
Zinc(Zn)metal anodes have enticed substantial curiosity for large-scale energy storage owing to inherent safety,high specific and volumetric energy capacities of Zn metal anodes.However,the aqueous electrolyte traditi... Zinc(Zn)metal anodes have enticed substantial curiosity for large-scale energy storage owing to inherent safety,high specific and volumetric energy capacities of Zn metal anodes.However,the aqueous electrolyte traditionally employed in Zn batteries suffers severe decomposition due to the narrow voltage stability window.Herein,we introduce N-methylformamide(NMF)as an organic solvent and modulate the solvation structure to obtain a stable organic/aqueous hybrid electrolyte for high-voltage Zn batteries.NMF is not only extremely stable against Zn metal anodes but also reduces the free water molecule availability by creating numerous hydrogen bonds,thereby accommodating high-voltage Zn‖LiMn_(2)O_(4)batteries.The introduction of NMF prevented hydrogen evolution reaction and promoted the creation of an Frich solid electrolyte interphase,which in turn hampered dendrite growth on Zn anodes.The Zn‖LiMn_(2)O_(4)full cells delivered a high average Coulombic efficiency of 99.7%over 400 cycles. 展开更多
关键词 aqueous electrolytes electrolyte solvation structures high-voltage zinc batteries hybrid batteries
下载PDF
基于N-P关联式计算溶剂化吉布斯自由能
13
作者 黄赛金 禹新良 《湖南工程学院学报(自然科学版)》 2024年第2期53-57,共5页
溶剂化吉布斯自由能(ΔG_(solv))是一个重要的热力学参数,广泛用于化学、生物、药理等领域.尽管计算溶剂化吉布斯能的模型众多,但仍缺乏简易高效的预测模型.本文提出一种基于Arrhenius方程的N-P关联式计算方法,其中参数N、P分别描述溶剂... 溶剂化吉布斯自由能(ΔG_(solv))是一个重要的热力学参数,广泛用于化学、生物、药理等领域.尽管计算溶剂化吉布斯能的模型众多,但仍缺乏简易高效的预测模型.本文提出一种基于Arrhenius方程的N-P关联式计算方法,其中参数N、P分别描述溶剂-溶质体系的非极性效应及极性效应对溶剂化吉布斯能的贡献.当溶剂及溶质分子被赋予经验参数N、P值时,基于N-P关联式能对任何溶剂-溶质对的溶剂化吉布斯能进行计算.将6 238个溶剂化吉布斯能数据对N-P关联式进行了测试,均方根误差仅为0.698 kcal/mol,低于测试精度1 kcal/mol,证实了本文提出的N-P关联式能快速计算溶剂化吉布斯自由能. 展开更多
关键词 N-P关联式 非极性效应 极性效应 溶剂化吉布斯能
下载PDF
Dilute Aqueous-Aprotic Electrolyte Towards Robust Zn-Ion Hybrid Supercapacitor with High Operation Voltage and Long Lifespan 被引量:2
14
作者 Shuilin Wu Yibing Yang +6 位作者 Mingzi Sun Tian Zhang Shaozhuan Huang Daohong Zhang Bolong Huang Pengfei Wang Wenjun Zhang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第9期1-12,共12页
With the merits of the high energy density of batteries and power density of supercapacitors,the aqueous Zn-ion hybrid supercapacitors emerge as a promising candidate for applications where both rapid energy delivery ... With the merits of the high energy density of batteries and power density of supercapacitors,the aqueous Zn-ion hybrid supercapacitors emerge as a promising candidate for applications where both rapid energy delivery and moderate energy storage are required.However,the narrow electrochemical window of aqueous electrolytes induces severe side reactions on the Zn metal anode and shortens its lifespan.It also limits the operation voltage and energy density of the Zn-ion hybrid supercapacitors.Using'water in salt'electrolytes can effectively broaden their electrochemical windows,but this is at the expense of high cost,low ionic conductivity,and narrow temperature compatibility,compromising the electrochemical performance of the Zn-ion hybrid supercapacitors.Thus,designing a new electrolyte to balance these factors towards high-performance Zn-ion hybrid supercapacitors is urgent and necessary.We developed a dilute water/acetonitrile electrolyte(0.5 m Zn(CF_(3)SO_(3))_(2)+1 m LiTFSI-H_(2)O/AN)for Zn-ion hybrid supercapacitors,which simultaneously exhibited expanded electrochemical window,decent ionic conductivity,and broad temperature compatibility.In this electrolyte,the hydration shells and hydrogen bonds are significantly modulated by the acetonitrile and TFSI-anions.As a result,a Zn-ion hybrid supercapacitor with such an electrolyte demonstrates a high operating voltage up to 2.2 V and long lifespan beyond 120,000 cycles. 展开更多
关键词 Zn-ion supercapacitors Zn metal anode Electrolyte engineering Hydrogen bonds solvation structures
下载PDF
1,3-二甲基-2-咪唑啉酮-AlCl_(3)-Cu_(2)O离子液体电沉积金属铜 被引量:1
15
作者 关苹苹 刘爱民 +5 位作者 张欣 康红光 苏克箭 孟庆龄 刘兆顺 石忠宁 《中国有色金属学报》 EI CAS CSCD 北大核心 2024年第1期268-278,共11页
为找到一种电沉积金属铜的新方法,选用1,3-二甲基-2-咪唑啉酮(DMI)、AlCl_(3)和Cu_(2)O(摩尔比为90∶10∶4)的溶剂化离子混合液体进行铜的恒电位电沉积,并分析了电解质的离子结构、电导率、黏度和密度等。拉曼光谱和核磁共振分析表明DMI... 为找到一种电沉积金属铜的新方法,选用1,3-二甲基-2-咪唑啉酮(DMI)、AlCl_(3)和Cu_(2)O(摩尔比为90∶10∶4)的溶剂化离子混合液体进行铜的恒电位电沉积,并分析了电解质的离子结构、电导率、黏度和密度等。拉曼光谱和核磁共振分析表明DMI-AlCl_(3)-Cu_(2)O体系中存在[AlCl2(DMI)_(4)]^(+)、AlCl_(3)(DMI)2和[AlCl_(4)]^(-)等离子团,DMI-AlCl_(3)-Cu_(2)O体系的电导率、黏度和密度随温度在323~373 K区间内呈线性变化。循环伏安研究表明,铜的起始还原电位为-0.4 V(vs Al),还原峰电位为-1.35 V;在-1.1 V至-1.4 V条件下恒电位电沉积得到金属铜,在-1.1 V和-1.4 V电位下电沉积得到的产物表面较平整,在-1.2 V和-1.3 V电位下电沉积得到的产物为纳米针状结构的铜颗粒,直径约为20~40μm。 展开更多
关键词 溶剂化离子液体 铜粉 电沉积 物理化学性质
下载PDF
Amphipathic Phenylalanine-Induced Nucleophilic-Hydrophobic Interface Toward Highly Reversible Zn Anode 被引量:1
16
作者 Anbin Zhou Huirong Wang +9 位作者 Fengling Zhang Xin Hu Zhihang Song Yi Chen Yongxin Huang Yanhua Cui Yixiu Cui Li Li Feng Wu Renjie Chen 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第9期95-109,共15页
Aqueous Zn^(2+)-ion batteries(AZIBs),recognized for their high security,reliability,and cost efficiency,have garnered considerable attention.However,the prevalent issues of dendrite growth and parasitic reactions at t... Aqueous Zn^(2+)-ion batteries(AZIBs),recognized for their high security,reliability,and cost efficiency,have garnered considerable attention.However,the prevalent issues of dendrite growth and parasitic reactions at the Zn electrode interface significantly impede their practical application.In this study,we introduced a ubiquitous biomolecule of phenylalanine(Phe)into the electrolyte as a multifunctional additive to improve the reversibility of the Zn anode.Leveraging its exceptional nucleophilic characteristics,Phe molecules tend to coordinate with Zn^(2+)ions for optimizing the solvation environment.Simultaneously,the distinctive lipophilicity of aromatic amino acids empowers Phe with a higher adsorption energy,enabling the construction of a multifunctional protective interphase.The hydrophobic benzene ring ligands act as cleaners for repelling H_(2)O molecules,while the hydrophilic hydroxyl and carboxyl groups attract Zn^(2+)ions for homogenizing Zn^(2+)flux.Moreover,the preferential reduction of Phe molecules prior to H_(2)O facilitates the in situ formation of an organic-inorganic hybrid solid electrolyte interphase,enhancing the interfacial stability of the Zn anode.Consequently,Zn||Zn cells display improved reversibility,achieving an extended cycle life of 5250 h.Additionally,Zn||LMO full cells exhibit enhanced cyclability of retaining 77.3%capacity after 300 cycles,demonstrating substantial potential in advancing the commercialization of AZIBs. 展开更多
关键词 Zn anode PHENYLALANINE Adsorption energy solvation sheath
下载PDF
Branch-Chain-Rich Diisopropyl Ether with Steric Hindrance Facilitates Stable Cycling of Lithium Batteries at-20℃
17
作者 Houzhen Li Yongchao Kang +6 位作者 Wangran Wei Chuncheng Yan Xinrui Ma Hao Chen Yuanhua Sang Hong Liu Shuhua Wang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第10期121-135,共15页
Li metal batteries(LMBs)offer signifi-cant potential as high energy density alternatives;nev-ertheless,their performance is hindered by the slow desolvation process of electrolytes,particularly at low temperatures(LT)... Li metal batteries(LMBs)offer signifi-cant potential as high energy density alternatives;nev-ertheless,their performance is hindered by the slow desolvation process of electrolytes,particularly at low temperatures(LT),leading to low coulombic efficiency and limited cycle stability.Thus,it is essential to opti-mize the solvation structure thereby achieving a rapid desolvation process in LMBs at LT.Herein,we introduce branch chain-rich diisopropyl ether(DIPE)into a 2.5 M Li bis(fluorosulfonyl)imide dipropyl ether(DPE)elec-trolyte as a co-solvent for high-performance LMBs at-20℃.The incorporation of DIPE not only enhances the disorder within the electrolyte,but also induces a steric hindrance effect form DIPE’s branch chain,excluding other solvent molecules from Li+solvation sheath.Both of these factors contribute to the weak interactions between Li^(+)and solvent molecules,effectively reducing the desolvation energy of the electrolyte.Consequently,Li(50μm)||LFP(mass loading~10 mg cm^(-2))cells in DPE/DIPE based electrolyte demonstrate stable performance over 650 cycles at-20℃,delivering 87.2 mAh g^(-1),and over 255 cycles at 25℃ with 124.8 mAh g^(-1).DIPE broadens the electrolyte design from molecular structure considera-tions,offering a promising avenue for highly stable LMBs at LT. 展开更多
关键词 solvation structure Li metal battery Low temperature Steric hindrance DISORDER
下载PDF
Non-flammable long chain phosphate ester based electrolyte via competitive solventized structures for high-performance lithium metal batteries
18
作者 Li Liao Zhiqiang Han +16 位作者 Xuanjie Feng Pan Luo Jialin Song Yin Shen Xiaoshuang Luo Xinpeng Li Xuanzhong Wen Bo Yu Junchen Chen Bingshu Guo Mingshan Wang Yun Huang Hongmei Zhang Mengmeng Yin Jiangtao Liu Yuanhua Lin Xing Li 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第10期156-165,I0004,共11页
Safety remains a persistent challenge for high-energy-density lithium metal batteries(LMBs).The development of safe and non-flammable electrolytes is especially important in harsh conditions such as high temperatures.... Safety remains a persistent challenge for high-energy-density lithium metal batteries(LMBs).The development of safe and non-flammable electrolytes is especially important in harsh conditions such as high temperatures.Herein,a flame-retardant,low-cost and thermally stable long chain phosphate ester based(tributyl phosphate,TBP)electrolyte is reported,which can effectively enhance the cycling stability of highly loaded high-nickel LMBs with high safety through co-solvation strategy.The interfacial compatibility between TBP and electrode is effectively improved using a short-chain ether(glycol dimethyl ether,DME),and a specially competitive solvation structure is further constructed using lithium borate difluorooxalate(LiDFOB)to form the stable and inorganic-rich electrode interphases.Benefiting from the presence of the cathode electrolyte interphase(CEI)and solid electrolyte interphase(SEI)enriched with LiF and Li_(x)PO_(y)F_(z),the electrolyte demonstrates excellent cycling stability assembled using a 50μm lithium foil anode in combination with a high loading NMC811(15.4 mg cm^(-2))cathode,with 88%capacity retention after 120 cycles.Furthermore,the electrolyte exhibits excellent high-temperature characteristics when used in a 1-Ah pouch cell(N/P=0.26),and higher thermal runaway temperature(238℃)in the ARC(accelerating rate calorimeter)demonstrating high safety.This novel electrolyte adopts long-chain phosphate as the main solvent for the first time,and would provide a new idea for the development of extremely high safety and high-temperature electrolytes. 展开更多
关键词 Non-flammable electrolyte Long chain phosphate ester solvation structure Lithium metal batteries Battery safety
下载PDF
Coordination structure regulation in non-flammable electrolyte enabling high voltage lithium electrochemistry
19
作者 Zhiwen Deng Ye Jia +6 位作者 Yan Deng Changhaoyue Xu Xuemei Zhang Qiujie He Jianan Peng Hao Wu Wenlong Cai 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第9期282-290,共9页
High-voltage battery systems bring significant increases in energy density but are also accompanied by fast degradation of electrochemical performance and serious safety issues.Herein,Li^(+)coordination structure regu... High-voltage battery systems bring significant increases in energy density but are also accompanied by fast degradation of electrochemical performance and serious safety issues.Herein,Li^(+)coordination structure regulation was conducted to formulate a non-flammable electrolyte,which consists of 1.5 M lithium bis(fluor sulfonyl)imide(LiFSI)in triethyl phosphate and methyl 2,2,2-trifluoromethyl carbonate(FEMC).The renamed TEP-FEMC-FEC(TFF)electrolyte exhibits an FSI^(−)-dominated solvation structure contributed by the weakly-solvating ability of FEMC.The generated inorganic-rich interfacial layers are conducive to stabilizing the phase transition of high-voltage cathodes while suppressing the dendritic growth on lithium metal or co-intercalation behavior in graphite anode.This TFF electrolyte enables LiCoO_(2)||Li batteries to achieve capacity maintenance over 79%after 400 cycles with high-rate of 5 C at an ultra-high voltage of 4.6 V,and an outstanding capacity exceeding 100 mA h g^(−1)even at a super-high current density of 20 C.Additionally,the Ah-level LiCoO_(2)||graphite pouch cells also exhibit high capacity retention and satisfactory safety performance even under fast charging.This work provides a novel research direction for the pursuit of high energy density non-flammable electrolytes. 展开更多
关键词 NON-FLAMMABLE solvation structure HIGH-VOLTAGE Lithium batteries
下载PDF
Reversible aqueous aluminum metal batteries enabled by a water-in-salt electrolyte
20
作者 Wenjing Tang Lijun Deng +3 位作者 Longyuan Guo Shoubin Zhou Qinhai Jiang Jiayan Luo 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第7期1183-1191,共9页
Aluminum(Al),the most abundant metallic element on the earth crust,has been reckoned as a promising battery material for its the highest theoretical volume capacity(8046 mAh cm^(-3)).Being rechargeable in ionic liquid... Aluminum(Al),the most abundant metallic element on the earth crust,has been reckoned as a promising battery material for its the highest theoretical volume capacity(8046 mAh cm^(-3)).Being rechargeable in ionic liquid electrolytes,however,the Al anode and battery case suffer from corrosion.On the other hand,Al is irreversible in aqueous electrolyte with severe hydrogen evolution reaction.Here,we demonstrate a water-in-salt aluminum ion electrolyte(WISE)based on Al and lithium salts to tackle the above challenges.In the WISE system,water molecules can be confined within the Li^(+)solvation structures.This diminished Al^(3+)-H_(2)O interaction essentially eliminates the hydrolysis effect,effectively protecting Al anode from corrosion.Therefore,long-term Al plating/stripping can be realized.Furthermore,two types of high-performance full batteries have been demonstrated using copper hexacyanoferrate(CuHCF,a Prussian Blue Analogues)and LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2)(NCM)as cathodes.The reversibility of Al anode laid the foundation for low cost rechargeable batteries suffering for large-scale energy storage.Broader context:Al batteries are expected to become a safe and sustainable alternative to lithium batteries.For decades,chase for a feasible Al secondary battery has not been successful.The key challenge is to find suitable cathode and electrolyte materials,together with which Al anode battery can function reversibly.Currently,fatal drawbacks have impeded the practical application of Al metal batteries(AMBs),such as sustained corrosion of Al anode and battery case in ionic liquid electrolytes,irreversibility issues as well as severe hydrogen evolution reaction during cycling in aqueous electrolyte.Therefore,electrolyte and their electrochemical kinetics play a vital role in the performance and environmental operating limitations of high-energy Al metal batteries.In this work,we demonstrate a nearly neutral Al ion water-in-salt electrolyte(WISE)to tackle the above challenges.The WISE shows excellent stability in the open atmosphere.The distinct solvation-sheath structure of Al^(3+)in the WISE system would protect Al metal anodes from corrosion and eliminate hydrogen evolution reaction effectively,further promoting the reversibility of Al metal anodes with dendrite-free morphology.Moreover,such a WISE exhibits superior compatibility with LiNi_(0.3)Co_(0.3)Mn_(0.3)O_(2)(NCM)and copper hexacyanoferrate(CuHCF)cathodes and long-term stabilities with high coulombic efficiency(CE)can be attained for full batteries with the WISE.The approach in this study can furnish an opportunity to develop reversible AMBs and lay the foundation for other potential multivalent-metalbased secondary batteries suffering from interface passivation and poor reversibility,which suggest the promise of multivalent metal batteries and their applications in large-scale energy storage. 展开更多
关键词 Water-in-salt electrolyte Rechargeable aluminum anode solvation sheath Hybrid battery Abundance
下载PDF
上一页 1 2 28 下一页 到第
使用帮助 返回顶部