Chemical solvents instead of pure water being as hydraulic fracturing fluid could effectively increase permeability and improve clean methane extraction efficiency.However,pore-fracture variation features of lean coal...Chemical solvents instead of pure water being as hydraulic fracturing fluid could effectively increase permeability and improve clean methane extraction efficiency.However,pore-fracture variation features of lean coal synergistically affected by solvents have not been fully understood.Ultrasonic testing,nuclear magnetic resonance analysis,liquid phase mass spectrometry was adopted to comprehensively analyze pore-fracture change characteristics of lean coal treated by combined solvent(NMP and CS_(2)).Meanwhile,quantitative characterization of above changing properties was conducted using geometric fractal theory.Relationship model between permeability,fractal dimension and porosity were established.Results indicate that the end face fractures of coal are well developed after CS2and combined solvent treatments,of which,end face box-counting fractal dimensions range from 1.1227 to 1.4767.Maximum decreases in ultrasonic longitudinal wave velocity of coal affected by NMP,CS_(2)and combined solvent are 2.700%,20.521%,22.454%,respectively.Solvent treatments could lead to increasing amount of both mesopores and macropores.Decrease ratio of fractal dimension Dsis 0.259%–2.159%,while permeability increases ratio of NMR ranges from 0.1904 to 6.4486.Meanwhile,combined solvent could dissolve coal polar and non-polar small molecules and expand flow space.Results could provide reference for solvent selection and parameter optimization of permeability-enhancement technology.展开更多
Carbazole is an irreplaceable basic organic chemical raw material and intermediate in industry.The separation of carbazole from anthracene oil by environmental benign solvents is important but still a challenge in che...Carbazole is an irreplaceable basic organic chemical raw material and intermediate in industry.The separation of carbazole from anthracene oil by environmental benign solvents is important but still a challenge in chemical engineering.Deep eutectic solvents (DESs) as a sustainable green separation solvent have been proposed for the separation of carbazole from model anthracene oil.In this research,three quaternary ammonium-based DESs were prepared using ethylene glycol (EG) as hydrogen bond donor and tetrabutylammonium chloride (TBAC),tetrabutylammonium bromide or choline chloride as hydrogen bond acceptors.To explore their extraction performance of carbazole,the conductor-like screening model for real solvents (COSMO-RS) model was used to predict the activity coefficient at infinite dilution (γ^(∞)) of carbazole in DESs,and the result indicated TBAC:EG (1:2) had the stronger extraction ability for carbazole due to the higher capacity at infinite dilution (C^(∞)) value.Then,the separation performance of these three DESs was evaluated by experiments,and the experimental results were in good agreement with the COSMO-RS prediction results.The TBAC:EG (1:2) was determined as the most promising solvent.Additionally,the extraction conditions of TBAC:EG (1:2) were optimized,and the extraction efficiency,distribution coefficient and selectivity of carbazole could reach up to 85.74%,30.18 and 66.10%,respectively.Moreover,the TBAC:EG (1:2) could be recycled by using environmentally friendly water as antisolvent.In addition,the separation performance of TBAC:EG (1:2) was also evaluated by real crude anthracene,the carbazole was obtained with purity and yield of 85.32%,60.27%,respectively.Lastly,the extraction mechanism was elucidated byσ-profiles and interaction energy analysis.Theoretical calculation results showed that the main driving force for the extraction process was the hydrogen bonding ((N–H...Cl) and van der Waals interactions (C–H...O and C–H...π),which corresponding to the blue and green isosurfaces in IGMH analysis.This work presented a novel method for separating carbazole from crude anthracene oil,and will provide an important reference for the separation of other high value-added products from coal tar.展开更多
Corn as one of the world's major food crops,its by-product corn cob is also rich in resources.However,the unreasonable utilization of corn cob often causes the environmental pollution,waste of resources and other ...Corn as one of the world's major food crops,its by-product corn cob is also rich in resources.However,the unreasonable utilization of corn cob often causes the environmental pollution,waste of resources and other problems.As one of the most abundant polymers in nature,xylan is widely used in food,medicine,materials and other fields.Corn cob is rich in xylan,which is an ideal raw material for extracting xylan.However,the intractable lignin is covalently linked to xylan,which increases the difficulty of xylan extraction.It has been reported that the deep eutectic solvent(DES)could preferentially dissolve lignin in biomass,thereby dissolving the xylan.Then,the xylan in the extract was separated by ethanol precipitation method.The xylan precipitate was obtained after centrifugation,while the supernatant was retained.The components of the supernatant after ethanol precipitation were separated by the rotary evaporator.The ethanol,water and DES were collected for the subsequent extraction of corn cob xylan.In this study,a novel way was provided for the green production of corn cob xylan.The DES was used to extract xylan from corn cob which was used as the raw material.The effects of solid-liquid ratio,reaction time,reaction temperature and water content of DES on the extraction rate of corn cob xylan were investigated by the single factor test.Furthermore,the orthogonal test was designed to optimize the xylan extraction process.The structure of corn cob xylan was analyzed and verified.The results showed that the optimum extraction conditions of corn cob xylan were as follows:the ratio of corn cob to DES was 1:15(g:mL),the extraction time was 3 h,the extraction temperature was 60℃,and the water content of DES was 70%.Under these conditions,the extraction rate of xylan was 16.46%.The extracted corn cob xylan was distinctive triple helix of polysaccharide,which was similar to the structure of commercially available xylan.Xylan was effectively and workably extracted from corn cob by the DES method.This study provided a new approach for high value conversion of corn cob and the clean production of xylan.展开更多
As a new type of green solvents,deep eutectic solvents(DESs)have the advantages of strong extraction ability,designability,simple preparation,low price,recoverability and biodegradation,and show great application pote...As a new type of green solvents,deep eutectic solvents(DESs)have the advantages of strong extraction ability,designability,simple preparation,low price,recoverability and biodegradation,and show great application potential in the field of plant flavonoid extraction.In this paper,the definition,classification and preparation methods of DESs were introduced.The effects of DES composition,molar ratio of DES components,water content of DES systems,liquid-material ratio,extraction temperature,extraction time and extraction auxiliary techniques on the extraction yield of plant flavonoids were expounded.The recycling methods of DESs were summarized.Existing problems of DESs in the field of plant flavonoids extraction were pointed out,and further research direction and trend were analyzed and prospected.展开更多
A synergistic solvent extraction system comprising trioctylamine(TOA)and ligands with hydroxyl and carboxyl groups can efficiently recover boric acid(H_(3)BO_(3))and separate boron isotopes.However,the structure of li...A synergistic solvent extraction system comprising trioctylamine(TOA)and ligands with hydroxyl and carboxyl groups can efficiently recover boric acid(H_(3)BO_(3))and separate boron isotopes.However,the structure of ligands might impact H_(3)BO_(3) extraction,boron isotope separation,and solvent loss,which has not been thoroughly investigated.This study initially evaluated the influence of ligand's type,pKa,and substituents on H_(3)BO_(3) extraction efficiency,as well as the impact of the B_((4))-O structure(boron is bound to four oxygen atoms)in the organic phase on isotope separation efficiency.Subsequently,by synthesizing the highly hydrophobic 2-hydroxydodecanoic acid(HYA),the extraction performance and mechanism of the TOA/HYA system were investigated.The findings highlight the superior extraction efficiency when employing di-phenolic hydroxyl,phenolic hydroxyl + carbinol hydroxyl,and alcoholic hydroxyl + carboxyl ligands compared to phenolic hydroxyl + carboxyl,phenolic hydroxyl + ethanol hydroxyl,diol hydroxyl,and dicarboxylic ligands.The organic phase anion complex,exclusively comprising the B_((4))-O structure,enhances isotope separation effectiveness.The TOA/HYA system achieves an 80%single-stage extraction efficiency for H_(3)BO_(3).H_(3)BO_(3) and HYA are extracted into the organic phase at a ratio of 1:2,with the anion complex solely containing the B_((4))-O structure.This study paves the way for the construction of novel boric acid extraction and boron isotope separation systems.展开更多
In this study, the natural fibers from Coconuts of the species Coco nucifera L. were Chemically extracted in different solvents such as sodium hydroxide (SH), acetone (AC) and sodium hydroxide-acetone (SHA) for their ...In this study, the natural fibers from Coconuts of the species Coco nucifera L. were Chemically extracted in different solvents such as sodium hydroxide (SH), acetone (AC) and sodium hydroxide-acetone (SHA) for their applications in the textile industries. Structural, morphological and physico-mechanical characterizations such as X-ray diffraction (XRD), Fourier transform infrared spectrometry (FTIR), scanned electron microscopy (SEM), measurements of density, Young’s modulus, water absorption rate and humidity were evaluated. The XRD and FTIR results show that Coco nucifera L. fibers contains type I cellulose. Mechanical characterizations were also carried out. These results show that by varying the different solvents used, the physico-chemical, mechanical and morphological properties of the fibers change, which implies that the solvent has an influence on the properties of these fibers. The fibers extracted by the sodium hydroxide-acetone mixture have a linear density of 1.636, the percentage of water absorption is 62.428%, the percentage of moisture absorption 9.605% compared to other values in the literature shows that this solvent mixture improves the properties of coconut fibers which contain type I cellulose. The tensile stress is 0.013 GPa, the percentage strain is 49.836% and the Young’s modulus is 0.114 GPa as well as the percentage elongation show that these fibers are elasto-plastic. The values obtained mean that these fibers are suitable for use in textiles.展开更多
Solvent extraction,a separation and purification technology,is crucial in critical metal metallurgy.Organic solvents commonly used in solvent extraction exhibit disadvantages,such as high volatility,high toxicity,and ...Solvent extraction,a separation and purification technology,is crucial in critical metal metallurgy.Organic solvents commonly used in solvent extraction exhibit disadvantages,such as high volatility,high toxicity,and flammability,causing a spectrum of hazards to human health and environmental safety.Neoteric solvents have been recognized as potential alternatives to these harmful organic solvents.In the past two decades,several neoteric solvents have been proposed,including ionic liquids(ILs)and deep eutectic solvents(DESs).DESs have gradually become the focus of green solvents owing to several advantages,namely,low toxicity,degradability,and low cost.In this critical review,their classification,formation mechanisms,preparation methods,characterization technologies,and special physicochemical properties based on the most recent advancements in research have been systematically described.Subsequently,the major separation and purification applications of DESs in critical metal metallurgy were comprehensively summarized.Finally,future opportunities and challenges of DESs were explored in the current research area.In conclusion,this review provides valuable insights for improving our overall understanding of DESs,and it holds important potential for expanding separation and purification applications in critical metal metallurgy.展开更多
Background:Ampelopsis grossedentata,vine tea,which is the tea alternative beverages in China.In vine tea processing,a large amount of broken tea is produced,which has low commercial value.Methods:This study investigat...Background:Ampelopsis grossedentata,vine tea,which is the tea alternative beverages in China.In vine tea processing,a large amount of broken tea is produced,which has low commercial value.Methods:This study investigates the influence of different extraction methods(room temperature water extraction,boiling water extraction,ultrasonic-assisted room temperature water extraction,and ultrasonic-assisted boiling water extraction,referred to as room temperature water extraction(RE),boiling water extraction(BE),ultrasonic assistance at room temperature water extraction(URE),and ultrasonic assistance in boiling water extraction(UBE))on the yield,dihydromyricetin(DMY)content,free amino acid composition,volatile aroma components,and antioxidant properties of vine tea extracts.Results:A notable influence of extraction temperature on the yield of vine tea extracts(P<0.05),with BE yielding the highest at 43.13±0.26%,higher than that of RE(34.29±0.81%).Ultrasound-assisted extraction significantly increased the DMY content of the extracts(P<0.05),whereas DMY content in the RE extracts was 59.94±1.70%,that of URE reached 66.14±2.78%.Analysis revealed 17 amino acids,with L-serine and aspartic acid being the most abundant in the extracts,nevertheless ultrasound-assisted extraction reduced total free amino acid content.Gas chromatography-mass spectrometry analysis demonstrated an increase in the diversity and quantity of compounds in the vine tea water extracts obtained through ultrasonic-assisted extraction.Specifically,69 and 68 volatile compounds were found in URE and UBE extracts,which were higher than the number found in RE and BE extracts.In vitro,antioxidant activity assessments revealed varying antioxidant capacities among different extraction methods,with RE exhibiting the highest DPPH scavenging rate,URE leading in ABTS•+free radical scavenging,and BE demonstrating superior ferric ion reducing antioxidant activity.Conclusion:The findings suggest that extraction methods significantly influence the chemical composition and antioxidant properties of vine tea extracts.Ultrasonic-assisted extraction proved instrumental in elevating the DMY content in vine tea extracts,thereby enriching its flavor profile while maintaining its antioxidant properties.展开更多
This paper studied the effects of liquid-solid ratio, temperature, time and pH value on the extraction rate of tea saponin from the cake of Camellia oleifera seeds by using single factor experiment with the cake of Ca...This paper studied the effects of liquid-solid ratio, temperature, time and pH value on the extraction rate of tea saponin from the cake of Camellia oleifera seeds by using single factor experiment with the cake of Camellia oleifera seeds as the raw materials, and water as the extraction solvent, and orthogonal test was used to determine the optimal extraction process conditions. The results showed that the extraction ratio of tea saponin could reach up to 95.50% when the liquidsolid ratio was 11:1, extracting temperature of 80 ℃, extraction time of 6 h, and pH value of 9.展开更多
The extraction experiments of chromium(W) from aqueous waste solution by predispersed solvent extraction (PDSE) process with extractant (HEHPEHE) and its mixture, including acidic extractant (D2EHPA), alkaline...The extraction experiments of chromium(W) from aqueous waste solution by predispersed solvent extraction (PDSE) process with extractant (HEHPEHE) and its mixture, including acidic extractant (D2EHPA), alkaline extractant (TOA) and neutral extractant (TBP) were carried out respectively. It is found that the extractant HEHPEHE exhibited high extraction selectivity to chromium(III) from aqueous waste solution. The colloidal liquid aphrons (CLAs) were successfully generated using kerosene as a solvent, HEHPEHE as an extractant, sodium dodecyl benzene sulphate (SDBS) as a surfactant in aqueous phase and polyoxyethylene sorbitol anhydride monolaurate (Tween-20) in oil phase. To study the extraction efficiency and advantages of the PDSE process in the removal of chromium(III), the effects of major factors, such as initial chromium(III) concentration, volume of colloidal gas aphrons (CGAs), HEHPEHE volume fraction, phase ratio (solvent phase to water phase), mass fraction of dodecyl trimethylammonium bromide (HTAB), mass fraction of SDBS, mass fraction of Tween-20 and initial pH of aqueous waste solution were also investigated and the appropriate process conditions were obtained. Under the appropriate conditions, the extraction efficiency of chromium(III) above 99.9 % can be achieved and the treated aqueous waste solution can be discharged directly without polluting the environment.展开更多
A novel process for the separation of hafnium from thiocyanic acid medium using the mixture of diisobutyl ketone(DIBK) and tributyl phosphate(TBP) as the extractant was developed.This extraction process was invest...A novel process for the separation of hafnium from thiocyanic acid medium using the mixture of diisobutyl ketone(DIBK) and tributyl phosphate(TBP) as the extractant was developed.This extraction process was investigated experimentally as a function of the amount of TBP added,acidity,zirconium and hafnium concentrations,salting-out agent,temperature,duration,respectively.The results show that hafnium is enriched in the organic layer and zirconium is in aqueous layer in DIBK-TBP system.Under the optimal technological conditions:TBP addition 20%(v/v),aqueous phase acidity 3.0 mol/L,ammonium sulfate addition 0.8-1.25 mol/L,room temperature and extraction time 10 min,the separation factor of hafnium from zirconium is 9.3.展开更多
The residues of salt lake brine from which potassium had been removed were used to extract Rb+ and Cs+ together with a sulphonated kerosene(SK) solution of 1.0 mol/L 4-tert-butyl-2-(α-methylbenzyl) phenol(t-BA...The residues of salt lake brine from which potassium had been removed were used to extract Rb+ and Cs+ together with a sulphonated kerosene(SK) solution of 1.0 mol/L 4-tert-butyl-2-(α-methylbenzyl) phenol(t-BAMBP). Rb+ and Cs+ were enriched and separated effectively by precipitating Mg2+ before extraction and by scrubbing out K+ and Na+ repeatedly before stripping. The effects of the volume ratio of organic phase to aqueous extraction phase(O/A), alkalinity of aqueous phase(c(OH)-), interference from K+ and Mg2+, and ratio the volume of organic phase to aqueous scrubbing phase(O/A′) were investigated. The experimental brine was extracted optimally by 5-stage extraction with 1.0 mol/L t-BAMBP in SK, c(OH-)=1 mol/L, and O/A=1:1. The scrubbing yield of rubidium was only about 10.5% when the extraction solvent was washed 3 times with 1×10-4 mol/L Na OH at O/A′=1:0.5. After 5-stage countercurrent extraction, the final extraction yields of Rb+ and Cs+ reached 95.04% and 99.80%, respectively.展开更多
For the accurate prediction of equilibrium distribution ratios of rare earth metals during solvent extraction under non-ideal conditions, the extraction equilibria of yttrium (Ⅲ) and europium (Ⅲ) from the hydroc...For the accurate prediction of equilibrium distribution ratios of rare earth metals during solvent extraction under non-ideal conditions, the extraction equilibria of yttrium (Ⅲ) and europium (Ⅲ) from the hydrochloric acid solutions with P507 in Shellsol D70 were studied. A chemically-based model was established and the extraction equilibrium constants were determined by the nonlinear least squares method. The proposed model involves the cation exchange reaction and the solvation extraction in the low and high acidity regions, respectively. In the model, the nonideality of the aqueous phase and was corrected by considering the complexation of the metals with Cl- and by replacing with its effective concentration, respectively. This model was verified by fair agreement between the calculated metal distribution ratios and those experimentally obtained in the single metal systems. The feed concentrations for the systems are in wide ranges of the metal (up to 0.1 mol/L), hydrochloric acid (0.07-3.00 mol/L) and the extractant (0.25-1.00 mol/L). The model enables the engineering prediction of the equilibrium distribution ratios with good accuracy in a binary metal system.展开更多
A new series of dimeric Cu(II) and Ni(II) complexes with some aroylhydrazones of a-pyridoin were synthesized and characterized using different physical techniques. Their chemical formulae were based on their micro...A new series of dimeric Cu(II) and Ni(II) complexes with some aroylhydrazones of a-pyridoin were synthesized and characterized using different physical techniques. Their chemical formulae were based on their microanalysis and IR data. The structures of the solid complexes were determined from the electronic, IR and ESR spectral studies as well as their magnetic susceptibility measurements. The ligands acted as bi-, tri- and tetra-dentate forming different dinuclear complexes with different structures. The assumed molecular structures based on the experimental results were also confirmed by the molecular mechanics calculations. The extraction ability of the hydrazones has been investigated by liquid-liquid extraction for Cu(II) and Ni(II).展开更多
A novel process which can purify the organic solvents from their azeotropes with water is proposed. In this process,water can be drained off both from bottom and overhead of tower at the same time,and the organic solv...A novel process which can purify the organic solvents from their azeotropes with water is proposed. In this process,water can be drained off both from bottom and overhead of tower at the same time,and the organic solvent is concentrated in the tower and accumulated in the middle vessel at last. So the progress is time-shortened and energy-saving. The product purity is 99. 8% and the product yield is more than 99.5%. Simulation of liquid-liquid equilibrium (LLE) and the equipment operation data agree well with the experiment.展开更多
The solvent extraction technology, was applied to recover Cu^2+ and Ni^2+ from plating wastewater.Lix984N was chosen as the extractant due to-its gooff extraction performance. The influence parame-ters were examlned...The solvent extraction technology, was applied to recover Cu^2+ and Ni^2+ from plating wastewater.Lix984N was chosen as the extractant due to-its gooff extraction performance. The influence parame-ters were examlned. The results show that the separation of Cu^2+ and Ni" from sulphate medium can be realized by adjusting pH value with the help of Lix984N. For extracting Cu^2+ and Ni^2+, the optimal pH values are 4 and 10.5, and the maximal extraction percentages are 92.9% and 93.0%, respectively .With recovered Cu^2+ and Ni^2+ stripped in 170g.L^ -1 and 200 g.L^-1 H2SO4 medium, the stripping percentages of Cu^2+ and Ni^2+ are 92.9% and 93.0%, respectively. This method is simple and can be used to recover Cu^2+ and Ni^2+ from plating wastewater. And a flow sheet for separation of Cu^2+ and Ni^2+ is presented.展开更多
Vanadium extraction from stone-coal was investigated by oxygen pressure acid leaching and solvent extraction.The mineralogy of the stone-coal from Tongren City of Guizhou Province,China,was investigated by various det...Vanadium extraction from stone-coal was investigated by oxygen pressure acid leaching and solvent extraction.The mineralogy of the stone-coal from Tongren City of Guizhou Province,China,was investigated by various determination methods. The effects of leaching time,leaching temperature,leaching agent concentration,leaching L/S ratio,granularity of material,additive consumption were investigated based on the mineralogy.The results show that under the conditions of leaching time of 3-4 h, temperature of 150℃,sulfuric acid consumption of 25%?30%,ratio of liquid to solid of 1.2:1,the granularity less than 0.074 mm, additive consumption of 3%-5%,and oxygen pressure of 1.2 MPa,and the vanadium leaching rate can be more than 92%by the method of two-step pressurized acid leaching.The powdery V2O5 product with 99.52%in V2O5 content is obtained by the flowsheet of acid recovery,removing iron by reduction process,solvent extraction,precipitating vanadium with ammonium water,and pyrolysis from the stone-coal oxygen pressure acid-leaching solution.The total recovery efficiency of vanadium is above 85%,which is more than 20%higher than that obtained in the conventional process.Furthermore,the new process does not cause air pollution since no HCl or Cl2 is released by calcination of the raw material.展开更多
An experimental investigation was presented on the separation of Cu(Ⅱ), Zn(Ⅱ), and Cd(Ⅱ) from a rich sulfate leachate of zinc slag by solvent extraction. The results of orthogonal experiments indicate that LI...An experimental investigation was presented on the separation of Cu(Ⅱ), Zn(Ⅱ), and Cd(Ⅱ) from a rich sulfate leachate of zinc slag by solvent extraction. The results of orthogonal experiments indicate that LIX 984N is highly selective and very efficient in the extraction of Cu(Ⅱ), and the analysis of variance indicates that the sequence of parameters according to their influence on the separation efficiency is phase ratio 〉 LIX 984N concentration 〉 pH value 〉 extraction time. The optimal condition for copper extraction is obtained as 25% of LIX 984N concentration, 7 rain of extraction time, 3:2 of phase ratio O/A, and pH = 1.7. The separation of Zn(Ⅱ) and Cd(Ⅱ) was performed after the copper extraction from the raffinate. Comparative analysis of the separation with di-2-ethylhexyl phosphoric acid (D2EHPA), D2EHPA-tributyl- phosophate (TBP) synergistic extracting system, and 2-ethylhexyl phosphonic acid mono 2-ethylhexyl ester (HEHEHP) was made at pH = 2.0. It is demonstrated that the extraction efficiency with D2EHPA is improved after being saponified by sodium hydroxide, and D2EHPA-TBP synergistic extracting, as well as HEHEHP, has a superior selectivity to Zn(Ⅱ) over Cd(Ⅱ).展开更多
A number of synergistic solvent extraction (SSX) systems have been developed to recover nickel, cobalt, zinc and copper from sulphuric and chloride leach solutions by the solvent extraction team of CSIRO, Australia....A number of synergistic solvent extraction (SSX) systems have been developed to recover nickel, cobalt, zinc and copper from sulphuric and chloride leach solutions by the solvent extraction team of CSIRO, Australia. These in- clude (1) Versatic 10/CLXS0 system for the separation of Ni from Ca in sulphate solutions, (2) Versatic 10/4PC system for the separation of Ni and Co from Mn/Mg/Ca in sulphate solutions, (3) Cyanex 471X/HRJ-4277 system for the separation of Zn from Cd in sulphate solutions, (4) Versatic 10/LIX63 system for the separation of Co from Mn/Mg/Ca in sulphate solutions, (5) Versatic 10/LIX63/TBP system for separation of Ni and Co from Mn/Mg/Ca in sulphate solutions, (6) Versatic 10/LIX63 system for the separation of cobalt from nickel in sulphate solutions by difference in kinetics, (7) Cyanex 272/LIX84 system for the separation of Cu/Fe/Zn from Ni/Co in sulphate solutions, (8) Versatic 10/LIX63fFBP system to recover Cu/Ni from strong chloride solutions, and [9) Versatic 10/LIX63 system to separate Cu from Fe in strong chloride solutions. The synergistic effect on metal separation and efficiency is presented and possible industrial applications are demonstrated. The chemical stability of selected SSX systems is also reported.展开更多
The behaviour of vanadium(V) extracted from sulfuric acid solution was investigated using Cyanex 923 as an extractant. The effects of the concentration of Cyanex 923 and the pH of the solution were studied. The extr...The behaviour of vanadium(V) extracted from sulfuric acid solution was investigated using Cyanex 923 as an extractant. The effects of the concentration of Cyanex 923 and the pH of the solution were studied. The extraction of vanadium(V) increases with the increase of Cyanex 923 concentration and shaking time. Cyanex 923 can extract vanadium(V) from sulfuric acid solution at low pH conditions, and the best pH conditions for extraction of vanadium(V) are at pH 1.0-2.0. The species extracted into the organic phase is VO2HSO4 with one molecule of Cyanex 923. Equilibrium studies were used to assess the extraction efficiency of vanadium(V) recovery from the sulfuric acid solution.展开更多
基金financially supported by National Natural Science Foundation of China(No.52274171)Joint National-Local Engineering Research Centre for Safe and Precise Coal Mining Fund(No.EC2023015)+1 种基金Excellent Youth Project of Universities in Anhui Province(No.2023AH030042)Unveiled List of Bidding Projects of Shanxi Province(No.20201101001)。
文摘Chemical solvents instead of pure water being as hydraulic fracturing fluid could effectively increase permeability and improve clean methane extraction efficiency.However,pore-fracture variation features of lean coal synergistically affected by solvents have not been fully understood.Ultrasonic testing,nuclear magnetic resonance analysis,liquid phase mass spectrometry was adopted to comprehensively analyze pore-fracture change characteristics of lean coal treated by combined solvent(NMP and CS_(2)).Meanwhile,quantitative characterization of above changing properties was conducted using geometric fractal theory.Relationship model between permeability,fractal dimension and porosity were established.Results indicate that the end face fractures of coal are well developed after CS2and combined solvent treatments,of which,end face box-counting fractal dimensions range from 1.1227 to 1.4767.Maximum decreases in ultrasonic longitudinal wave velocity of coal affected by NMP,CS_(2)and combined solvent are 2.700%,20.521%,22.454%,respectively.Solvent treatments could lead to increasing amount of both mesopores and macropores.Decrease ratio of fractal dimension Dsis 0.259%–2.159%,while permeability increases ratio of NMR ranges from 0.1904 to 6.4486.Meanwhile,combined solvent could dissolve coal polar and non-polar small molecules and expand flow space.Results could provide reference for solvent selection and parameter optimization of permeability-enhancement technology.
基金financially supported by Shanxi Province Natural Science Foundation of China(20210302123167)NSFC-Shanxi joint fund for coal-based low carbon(U1610223)Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering(2021SX-TD006).
文摘Carbazole is an irreplaceable basic organic chemical raw material and intermediate in industry.The separation of carbazole from anthracene oil by environmental benign solvents is important but still a challenge in chemical engineering.Deep eutectic solvents (DESs) as a sustainable green separation solvent have been proposed for the separation of carbazole from model anthracene oil.In this research,three quaternary ammonium-based DESs were prepared using ethylene glycol (EG) as hydrogen bond donor and tetrabutylammonium chloride (TBAC),tetrabutylammonium bromide or choline chloride as hydrogen bond acceptors.To explore their extraction performance of carbazole,the conductor-like screening model for real solvents (COSMO-RS) model was used to predict the activity coefficient at infinite dilution (γ^(∞)) of carbazole in DESs,and the result indicated TBAC:EG (1:2) had the stronger extraction ability for carbazole due to the higher capacity at infinite dilution (C^(∞)) value.Then,the separation performance of these three DESs was evaluated by experiments,and the experimental results were in good agreement with the COSMO-RS prediction results.The TBAC:EG (1:2) was determined as the most promising solvent.Additionally,the extraction conditions of TBAC:EG (1:2) were optimized,and the extraction efficiency,distribution coefficient and selectivity of carbazole could reach up to 85.74%,30.18 and 66.10%,respectively.Moreover,the TBAC:EG (1:2) could be recycled by using environmentally friendly water as antisolvent.In addition,the separation performance of TBAC:EG (1:2) was also evaluated by real crude anthracene,the carbazole was obtained with purity and yield of 85.32%,60.27%,respectively.Lastly,the extraction mechanism was elucidated byσ-profiles and interaction energy analysis.Theoretical calculation results showed that the main driving force for the extraction process was the hydrogen bonding ((N–H...Cl) and van der Waals interactions (C–H...O and C–H...π),which corresponding to the blue and green isosurfaces in IGMH analysis.This work presented a novel method for separating carbazole from crude anthracene oil,and will provide an important reference for the separation of other high value-added products from coal tar.
基金This work was supported by the National Natural Science Foundation of China[21978070]Natural Science Foundation of Henan[212300410032,232103810065]+2 种基金Key Research and Development Projects of Henan Province[221111320500]Program for Science&Technology Innovation Talents in Universities of Henan Province[20HASTIT034]Henan Province“Double First-Class”Project-Food Science and Technology.
文摘Corn as one of the world's major food crops,its by-product corn cob is also rich in resources.However,the unreasonable utilization of corn cob often causes the environmental pollution,waste of resources and other problems.As one of the most abundant polymers in nature,xylan is widely used in food,medicine,materials and other fields.Corn cob is rich in xylan,which is an ideal raw material for extracting xylan.However,the intractable lignin is covalently linked to xylan,which increases the difficulty of xylan extraction.It has been reported that the deep eutectic solvent(DES)could preferentially dissolve lignin in biomass,thereby dissolving the xylan.Then,the xylan in the extract was separated by ethanol precipitation method.The xylan precipitate was obtained after centrifugation,while the supernatant was retained.The components of the supernatant after ethanol precipitation were separated by the rotary evaporator.The ethanol,water and DES were collected for the subsequent extraction of corn cob xylan.In this study,a novel way was provided for the green production of corn cob xylan.The DES was used to extract xylan from corn cob which was used as the raw material.The effects of solid-liquid ratio,reaction time,reaction temperature and water content of DES on the extraction rate of corn cob xylan were investigated by the single factor test.Furthermore,the orthogonal test was designed to optimize the xylan extraction process.The structure of corn cob xylan was analyzed and verified.The results showed that the optimum extraction conditions of corn cob xylan were as follows:the ratio of corn cob to DES was 1:15(g:mL),the extraction time was 3 h,the extraction temperature was 60℃,and the water content of DES was 70%.Under these conditions,the extraction rate of xylan was 16.46%.The extracted corn cob xylan was distinctive triple helix of polysaccharide,which was similar to the structure of commercially available xylan.Xylan was effectively and workably extracted from corn cob by the DES method.This study provided a new approach for high value conversion of corn cob and the clean production of xylan.
基金Supported by Project of The Education Department of Fujian Province(JAT201227).
文摘As a new type of green solvents,deep eutectic solvents(DESs)have the advantages of strong extraction ability,designability,simple preparation,low price,recoverability and biodegradation,and show great application potential in the field of plant flavonoid extraction.In this paper,the definition,classification and preparation methods of DESs were introduced.The effects of DES composition,molar ratio of DES components,water content of DES systems,liquid-material ratio,extraction temperature,extraction time and extraction auxiliary techniques on the extraction yield of plant flavonoids were expounded.The recycling methods of DESs were summarized.Existing problems of DESs in the field of plant flavonoids extraction were pointed out,and further research direction and trend were analyzed and prospected.
基金supported by the National Natural Science Foundation of China(22278407,21922814,22138012,22178349)CAS Project for Young Scientists in Basic Research(YSBR-038)+1 种基金National Key Research and Development Program of China(2021YFC2901500,2022YFC2105302)Shandong Energy Institute(SEI U202306).
文摘A synergistic solvent extraction system comprising trioctylamine(TOA)and ligands with hydroxyl and carboxyl groups can efficiently recover boric acid(H_(3)BO_(3))and separate boron isotopes.However,the structure of ligands might impact H_(3)BO_(3) extraction,boron isotope separation,and solvent loss,which has not been thoroughly investigated.This study initially evaluated the influence of ligand's type,pKa,and substituents on H_(3)BO_(3) extraction efficiency,as well as the impact of the B_((4))-O structure(boron is bound to four oxygen atoms)in the organic phase on isotope separation efficiency.Subsequently,by synthesizing the highly hydrophobic 2-hydroxydodecanoic acid(HYA),the extraction performance and mechanism of the TOA/HYA system were investigated.The findings highlight the superior extraction efficiency when employing di-phenolic hydroxyl,phenolic hydroxyl + carbinol hydroxyl,and alcoholic hydroxyl + carboxyl ligands compared to phenolic hydroxyl + carboxyl,phenolic hydroxyl + ethanol hydroxyl,diol hydroxyl,and dicarboxylic ligands.The organic phase anion complex,exclusively comprising the B_((4))-O structure,enhances isotope separation effectiveness.The TOA/HYA system achieves an 80%single-stage extraction efficiency for H_(3)BO_(3).H_(3)BO_(3) and HYA are extracted into the organic phase at a ratio of 1:2,with the anion complex solely containing the B_((4))-O structure.This study paves the way for the construction of novel boric acid extraction and boron isotope separation systems.
文摘In this study, the natural fibers from Coconuts of the species Coco nucifera L. were Chemically extracted in different solvents such as sodium hydroxide (SH), acetone (AC) and sodium hydroxide-acetone (SHA) for their applications in the textile industries. Structural, morphological and physico-mechanical characterizations such as X-ray diffraction (XRD), Fourier transform infrared spectrometry (FTIR), scanned electron microscopy (SEM), measurements of density, Young’s modulus, water absorption rate and humidity were evaluated. The XRD and FTIR results show that Coco nucifera L. fibers contains type I cellulose. Mechanical characterizations were also carried out. These results show that by varying the different solvents used, the physico-chemical, mechanical and morphological properties of the fibers change, which implies that the solvent has an influence on the properties of these fibers. The fibers extracted by the sodium hydroxide-acetone mixture have a linear density of 1.636, the percentage of water absorption is 62.428%, the percentage of moisture absorption 9.605% compared to other values in the literature shows that this solvent mixture improves the properties of coconut fibers which contain type I cellulose. The tensile stress is 0.013 GPa, the percentage strain is 49.836% and the Young’s modulus is 0.114 GPa as well as the percentage elongation show that these fibers are elasto-plastic. The values obtained mean that these fibers are suitable for use in textiles.
基金financially supported by the Original Exploration Project of the National Natural Science Foundation of China(No.52150079)the National Natural Science Foundation of China(Nos.U22A20130,U2004215,and 51974280)+1 种基金the Natural Science Foundation of Henan Province of China(No.232300421196)the Project of Zhongyuan Critical Metals Laboratory of China(Nos.GJJSGFYQ202304,GJJSGFJQ202306,GJJSGFYQ202323,GJJSGFYQ202308,and GJJSGFYQ202307)。
文摘Solvent extraction,a separation and purification technology,is crucial in critical metal metallurgy.Organic solvents commonly used in solvent extraction exhibit disadvantages,such as high volatility,high toxicity,and flammability,causing a spectrum of hazards to human health and environmental safety.Neoteric solvents have been recognized as potential alternatives to these harmful organic solvents.In the past two decades,several neoteric solvents have been proposed,including ionic liquids(ILs)and deep eutectic solvents(DESs).DESs have gradually become the focus of green solvents owing to several advantages,namely,low toxicity,degradability,and low cost.In this critical review,their classification,formation mechanisms,preparation methods,characterization technologies,and special physicochemical properties based on the most recent advancements in research have been systematically described.Subsequently,the major separation and purification applications of DESs in critical metal metallurgy were comprehensively summarized.Finally,future opportunities and challenges of DESs were explored in the current research area.In conclusion,this review provides valuable insights for improving our overall understanding of DESs,and it holds important potential for expanding separation and purification applications in critical metal metallurgy.
基金supported by the Key Research and Development Program of Hunan Province of China(No.2022NK2036)Xiangxi Prefecture Science and Technology Plan Project"School-Local Integration"Special Project(No.2022001)the scientific research project of Hunan Provincial Department of Education(No.22B0520).
文摘Background:Ampelopsis grossedentata,vine tea,which is the tea alternative beverages in China.In vine tea processing,a large amount of broken tea is produced,which has low commercial value.Methods:This study investigates the influence of different extraction methods(room temperature water extraction,boiling water extraction,ultrasonic-assisted room temperature water extraction,and ultrasonic-assisted boiling water extraction,referred to as room temperature water extraction(RE),boiling water extraction(BE),ultrasonic assistance at room temperature water extraction(URE),and ultrasonic assistance in boiling water extraction(UBE))on the yield,dihydromyricetin(DMY)content,free amino acid composition,volatile aroma components,and antioxidant properties of vine tea extracts.Results:A notable influence of extraction temperature on the yield of vine tea extracts(P<0.05),with BE yielding the highest at 43.13±0.26%,higher than that of RE(34.29±0.81%).Ultrasound-assisted extraction significantly increased the DMY content of the extracts(P<0.05),whereas DMY content in the RE extracts was 59.94±1.70%,that of URE reached 66.14±2.78%.Analysis revealed 17 amino acids,with L-serine and aspartic acid being the most abundant in the extracts,nevertheless ultrasound-assisted extraction reduced total free amino acid content.Gas chromatography-mass spectrometry analysis demonstrated an increase in the diversity and quantity of compounds in the vine tea water extracts obtained through ultrasonic-assisted extraction.Specifically,69 and 68 volatile compounds were found in URE and UBE extracts,which were higher than the number found in RE and BE extracts.In vitro,antioxidant activity assessments revealed varying antioxidant capacities among different extraction methods,with RE exhibiting the highest DPPH scavenging rate,URE leading in ABTS•+free radical scavenging,and BE demonstrating superior ferric ion reducing antioxidant activity.Conclusion:The findings suggest that extraction methods significantly influence the chemical composition and antioxidant properties of vine tea extracts.Ultrasonic-assisted extraction proved instrumental in elevating the DMY content in vine tea extracts,thereby enriching its flavor profile while maintaining its antioxidant properties.
文摘This paper studied the effects of liquid-solid ratio, temperature, time and pH value on the extraction rate of tea saponin from the cake of Camellia oleifera seeds by using single factor experiment with the cake of Camellia oleifera seeds as the raw materials, and water as the extraction solvent, and orthogonal test was used to determine the optimal extraction process conditions. The results showed that the extraction ratio of tea saponin could reach up to 95.50% when the liquidsolid ratio was 11:1, extracting temperature of 80 ℃, extraction time of 6 h, and pH value of 9.
基金Project (NCET-07-0577) supported by New Century Excellent Talents of Ministry of Education, China
文摘The extraction experiments of chromium(W) from aqueous waste solution by predispersed solvent extraction (PDSE) process with extractant (HEHPEHE) and its mixture, including acidic extractant (D2EHPA), alkaline extractant (TOA) and neutral extractant (TBP) were carried out respectively. It is found that the extractant HEHPEHE exhibited high extraction selectivity to chromium(III) from aqueous waste solution. The colloidal liquid aphrons (CLAs) were successfully generated using kerosene as a solvent, HEHPEHE as an extractant, sodium dodecyl benzene sulphate (SDBS) as a surfactant in aqueous phase and polyoxyethylene sorbitol anhydride monolaurate (Tween-20) in oil phase. To study the extraction efficiency and advantages of the PDSE process in the removal of chromium(III), the effects of major factors, such as initial chromium(III) concentration, volume of colloidal gas aphrons (CGAs), HEHPEHE volume fraction, phase ratio (solvent phase to water phase), mass fraction of dodecyl trimethylammonium bromide (HTAB), mass fraction of SDBS, mass fraction of Tween-20 and initial pH of aqueous waste solution were also investigated and the appropriate process conditions were obtained. Under the appropriate conditions, the extraction efficiency of chromium(III) above 99.9 % can be achieved and the treated aqueous waste solution can be discharged directly without polluting the environment.
基金Project (2012BAB10B10) supported by the National Key Technology R&D Program during the 12th Five-year Plan of ChinaProject (51174146) supported by the National Natural Science Foundation of China+2 种基金Project (212110) supported by the Foundation for Key Program of Ministry of Education,ChinaProject (Q20111509) supported by the Program for Excellent Talents of the Education Department of Hubei Province,ChinaProject (10125042) supported by the Scientific Research Foundation of Wuhan Institute of Technology,China
文摘A novel process for the separation of hafnium from thiocyanic acid medium using the mixture of diisobutyl ketone(DIBK) and tributyl phosphate(TBP) as the extractant was developed.This extraction process was investigated experimentally as a function of the amount of TBP added,acidity,zirconium and hafnium concentrations,salting-out agent,temperature,duration,respectively.The results show that hafnium is enriched in the organic layer and zirconium is in aqueous layer in DIBK-TBP system.Under the optimal technological conditions:TBP addition 20%(v/v),aqueous phase acidity 3.0 mol/L,ammonium sulfate addition 0.8-1.25 mol/L,room temperature and extraction time 10 min,the separation factor of hafnium from zirconium is 9.3.
基金Project(20606008)supported by the National Natural Science Foundation of ChinaProject(11070210)supported by the Fundamental Research Funds for the Central Universities of China
文摘The residues of salt lake brine from which potassium had been removed were used to extract Rb+ and Cs+ together with a sulphonated kerosene(SK) solution of 1.0 mol/L 4-tert-butyl-2-(α-methylbenzyl) phenol(t-BAMBP). Rb+ and Cs+ were enriched and separated effectively by precipitating Mg2+ before extraction and by scrubbing out K+ and Na+ repeatedly before stripping. The effects of the volume ratio of organic phase to aqueous extraction phase(O/A), alkalinity of aqueous phase(c(OH)-), interference from K+ and Mg2+, and ratio the volume of organic phase to aqueous scrubbing phase(O/A′) were investigated. The experimental brine was extracted optimally by 5-stage extraction with 1.0 mol/L t-BAMBP in SK, c(OH-)=1 mol/L, and O/A=1:1. The scrubbing yield of rubidium was only about 10.5% when the extraction solvent was washed 3 times with 1×10-4 mol/L Na OH at O/A′=1:0.5. After 5-stage countercurrent extraction, the final extraction yields of Rb+ and Cs+ reached 95.04% and 99.80%, respectively.
基金Project(P02426)supported by the Japan Society for the Promotion of Science for Postdoctoral Fellowships for Foreign Researchers
文摘For the accurate prediction of equilibrium distribution ratios of rare earth metals during solvent extraction under non-ideal conditions, the extraction equilibria of yttrium (Ⅲ) and europium (Ⅲ) from the hydrochloric acid solutions with P507 in Shellsol D70 were studied. A chemically-based model was established and the extraction equilibrium constants were determined by the nonlinear least squares method. The proposed model involves the cation exchange reaction and the solvation extraction in the low and high acidity regions, respectively. In the model, the nonideality of the aqueous phase and was corrected by considering the complexation of the metals with Cl- and by replacing with its effective concentration, respectively. This model was verified by fair agreement between the calculated metal distribution ratios and those experimentally obtained in the single metal systems. The feed concentrations for the systems are in wide ranges of the metal (up to 0.1 mol/L), hydrochloric acid (0.07-3.00 mol/L) and the extractant (0.25-1.00 mol/L). The model enables the engineering prediction of the equilibrium distribution ratios with good accuracy in a binary metal system.
文摘A new series of dimeric Cu(II) and Ni(II) complexes with some aroylhydrazones of a-pyridoin were synthesized and characterized using different physical techniques. Their chemical formulae were based on their microanalysis and IR data. The structures of the solid complexes were determined from the electronic, IR and ESR spectral studies as well as their magnetic susceptibility measurements. The ligands acted as bi-, tri- and tetra-dentate forming different dinuclear complexes with different structures. The assumed molecular structures based on the experimental results were also confirmed by the molecular mechanics calculations. The extraction ability of the hydrazones has been investigated by liquid-liquid extraction for Cu(II) and Ni(II).
文摘A novel process which can purify the organic solvents from their azeotropes with water is proposed. In this process,water can be drained off both from bottom and overhead of tower at the same time,and the organic solvent is concentrated in the tower and accumulated in the middle vessel at last. So the progress is time-shortened and energy-saving. The product purity is 99. 8% and the product yield is more than 99.5%. Simulation of liquid-liquid equilibrium (LLE) and the equipment operation data agree well with the experiment.
基金Supported by the National Key Technologies Research and Development Program of China during the 1 lth Five-Year Plan Period (2007BAB22B01) and the Young Science Foundation of Jiangxi Province Education Office (GJJ11124).
文摘The solvent extraction technology, was applied to recover Cu^2+ and Ni^2+ from plating wastewater.Lix984N was chosen as the extractant due to-its gooff extraction performance. The influence parame-ters were examlned. The results show that the separation of Cu^2+ and Ni" from sulphate medium can be realized by adjusting pH value with the help of Lix984N. For extracting Cu^2+ and Ni^2+, the optimal pH values are 4 and 10.5, and the maximal extraction percentages are 92.9% and 93.0%, respectively .With recovered Cu^2+ and Ni^2+ stripped in 170g.L^ -1 and 200 g.L^-1 H2SO4 medium, the stripping percentages of Cu^2+ and Ni^2+ are 92.9% and 93.0%, respectively. This method is simple and can be used to recover Cu^2+ and Ni^2+ from plating wastewater. And a flow sheet for separation of Cu^2+ and Ni^2+ is presented.
基金Project(2006AA06Z130)supported by the High-tech Research and Development Program of ChinaProject(50874053)supported by the National Natural Science Foundation of ChinaProject(2007GA010)supported by Science and Technology Bureau of Yunnan Province,China
文摘Vanadium extraction from stone-coal was investigated by oxygen pressure acid leaching and solvent extraction.The mineralogy of the stone-coal from Tongren City of Guizhou Province,China,was investigated by various determination methods. The effects of leaching time,leaching temperature,leaching agent concentration,leaching L/S ratio,granularity of material,additive consumption were investigated based on the mineralogy.The results show that under the conditions of leaching time of 3-4 h, temperature of 150℃,sulfuric acid consumption of 25%?30%,ratio of liquid to solid of 1.2:1,the granularity less than 0.074 mm, additive consumption of 3%-5%,and oxygen pressure of 1.2 MPa,and the vanadium leaching rate can be more than 92%by the method of two-step pressurized acid leaching.The powdery V2O5 product with 99.52%in V2O5 content is obtained by the flowsheet of acid recovery,removing iron by reduction process,solvent extraction,precipitating vanadium with ammonium water,and pyrolysis from the stone-coal oxygen pressure acid-leaching solution.The total recovery efficiency of vanadium is above 85%,which is more than 20%higher than that obtained in the conventional process.Furthermore,the new process does not cause air pollution since no HCl or Cl2 is released by calcination of the raw material.
文摘An experimental investigation was presented on the separation of Cu(Ⅱ), Zn(Ⅱ), and Cd(Ⅱ) from a rich sulfate leachate of zinc slag by solvent extraction. The results of orthogonal experiments indicate that LIX 984N is highly selective and very efficient in the extraction of Cu(Ⅱ), and the analysis of variance indicates that the sequence of parameters according to their influence on the separation efficiency is phase ratio 〉 LIX 984N concentration 〉 pH value 〉 extraction time. The optimal condition for copper extraction is obtained as 25% of LIX 984N concentration, 7 rain of extraction time, 3:2 of phase ratio O/A, and pH = 1.7. The separation of Zn(Ⅱ) and Cd(Ⅱ) was performed after the copper extraction from the raffinate. Comparative analysis of the separation with di-2-ethylhexyl phosphoric acid (D2EHPA), D2EHPA-tributyl- phosophate (TBP) synergistic extracting system, and 2-ethylhexyl phosphonic acid mono 2-ethylhexyl ester (HEHEHP) was made at pH = 2.0. It is demonstrated that the extraction efficiency with D2EHPA is improved after being saponified by sodium hydroxide, and D2EHPA-TBP synergistic extracting, as well as HEHEHP, has a superior selectivity to Zn(Ⅱ) over Cd(Ⅱ).
文摘A number of synergistic solvent extraction (SSX) systems have been developed to recover nickel, cobalt, zinc and copper from sulphuric and chloride leach solutions by the solvent extraction team of CSIRO, Australia. These in- clude (1) Versatic 10/CLXS0 system for the separation of Ni from Ca in sulphate solutions, (2) Versatic 10/4PC system for the separation of Ni and Co from Mn/Mg/Ca in sulphate solutions, (3) Cyanex 471X/HRJ-4277 system for the separation of Zn from Cd in sulphate solutions, (4) Versatic 10/LIX63 system for the separation of Co from Mn/Mg/Ca in sulphate solutions, (5) Versatic 10/LIX63/TBP system for separation of Ni and Co from Mn/Mg/Ca in sulphate solutions, (6) Versatic 10/LIX63 system for the separation of cobalt from nickel in sulphate solutions by difference in kinetics, (7) Cyanex 272/LIX84 system for the separation of Cu/Fe/Zn from Ni/Co in sulphate solutions, (8) Versatic 10/LIX63fFBP system to recover Cu/Ni from strong chloride solutions, and [9) Versatic 10/LIX63 system to separate Cu from Fe in strong chloride solutions. The synergistic effect on metal separation and efficiency is presented and possible industrial applications are demonstrated. The chemical stability of selected SSX systems is also reported.
基金supported by the Science Foundation of Central South University (No. 76112037) the Postdoctoral Science Foundation of Central South University
文摘The behaviour of vanadium(V) extracted from sulfuric acid solution was investigated using Cyanex 923 as an extractant. The effects of the concentration of Cyanex 923 and the pH of the solution were studied. The extraction of vanadium(V) increases with the increase of Cyanex 923 concentration and shaking time. Cyanex 923 can extract vanadium(V) from sulfuric acid solution at low pH conditions, and the best pH conditions for extraction of vanadium(V) are at pH 1.0-2.0. The species extracted into the organic phase is VO2HSO4 with one molecule of Cyanex 923. Equilibrium studies were used to assess the extraction efficiency of vanadium(V) recovery from the sulfuric acid solution.