期刊文献+
共找到762篇文章
< 1 2 39 >
每页显示 20 50 100
Low-energy-consumption temperature swing system for CO_(2) capture by combining passive radiative cooling and solar heating 被引量:1
1
作者 Ying-Xi Dang Peng Tan +3 位作者 Bin Hu Chen Gu Xiao-Qin Liu Lin-Bing Sun 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第3期507-515,共9页
Temperature-swing adsorption(TSA)is an effective technique for CO_(2) capture,but the temperature swing procedure is energy-intensive.Herein,we report a low-energy-consumption system by combining passive radiative coo... Temperature-swing adsorption(TSA)is an effective technique for CO_(2) capture,but the temperature swing procedure is energy-intensive.Herein,we report a low-energy-consumption system by combining passive radiative cooling and solar heating for the uptake of CO_(2) on commercial activated carbons(CACs).During adsorption,the adsorbents are coated with a layer of hierarchically porous poly(vinylidene fluoride-co-hexafluoropropene)[P(VdF-HFP)HP],which cools the adsorbents to a low temperature under sunlight through radiative cooling.For desorption,CACs with broad absorption of the solar spectrum are exposed to light irradiation for heating.The heating and cooling processes are completely driven by solar energy.Adsorption tests under mimicked sunlight using the CACs show that the performance of this system is comparable to that of the traditional ones.Furthermore,under real sunlight irradiation,the adsorption capacity of the CACs can be well maintained after multiple cycles.The present work may inspire the development of new temperature swing procedures with little energy consumption. 展开更多
关键词 CO_(2)capture Solar heating Passive radiative cooling Temperature swing adsorption
下载PDF
Highly efficient CO_(2) capture using 2-methylimidazole aqueous solution on laboratory and pilot-scale
2
作者 Kun Li Han Tang +5 位作者 Shuangshuang Li Zixuan Huang Bei Liu Chun Deng Changyu Sun Guangjin Chen 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第3期148-156,共9页
To date,the primary industrial carbon capture approach is still absorption using aqueous solutions of alkanolamines.Here,to pursue a substitute for the amine-based approach to improve the CO_(2) capture efficiency and... To date,the primary industrial carbon capture approach is still absorption using aqueous solutions of alkanolamines.Here,to pursue a substitute for the amine-based approach to improve the CO_(2) capture efficiency and decrease the energy cost further,we report a new carbon capture approach using a 2-methylimidazole(mIm)aqueous solution.The properties and sorption behaviors of this approach have been experimentally investigated.The results show that the mIm solution has higher CO_(2) absorption capacity under relatively higher equilibrium pressure(>130 kPa)and lower desorption heat than the methyldiethanolamine solution.91.6%sorption capacity of mIm solution can be recovered at 353.15 K and 80 kPa.The selectivity for CO_(2)/N_(2) and CO_(2)/CH_(4) can reach an exceptional 7609 and 4324,respectively.Furthermore,the pilot-scale tests were also performed,and the results demonstrate that more than 98%of CO_(2) in the feed gas could be removed and cyclic absorption capacity can reach 1 mol·L^(-1).This work indicates that mIm is an excellent alternative to alkanolamines for carbon capture in the industry. 展开更多
关键词 CO_(2) capture Absorption 2-METHYLIMIDAZOLE Separation Pilot-scale tests
下载PDF
Recent advances in intermediate-temperature CO_(2) capture: Materials,technologies and applications
3
作者 Chengbo Zhao Leiming Wang +4 位作者 Liang Huang Nicholas M.Musyoka Tianshan Xue Jabor Rabeah Qiang Wang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第3期435-452,I0010,共19页
Carbon capture,utilization and storage(CCUS) is widely recognized as a vital strategy for mitigating the impact of human induced climate change.Among various CO_(2) adsorbents,intermediate-temperature solid adsorbents... Carbon capture,utilization and storage(CCUS) is widely recognized as a vital strategy for mitigating the impact of human induced climate change.Among various CO_(2) adsorbents,intermediate-temperature solid adsorbents have garnered significant attention due to their potential applications in hydrogen utilization,specifically in the water gas shift,steam reforming and gasification processes.These processes are crucial for achieving carbon neutrality.While laboratory-level studies have showcased the high adsorption capacity of these materials via various synthesis and modification methods,their practical application in complex industrial environments remains challenging,impeding the commercialization process.This review aims to critically summarize the recent research progress made in intermediatetemperature(200-400℃) solid CO_(2) adsorbents,particularly focusing on indicators such as cyclability,gas selectivity,and formability,which play vital roles in industrial application scenarios.Additionally,we provide an overview of laboratory-level advanced technologies specifically tailored for industrial applications.Furthermore,we highlight several industrial-ready advanced technologies that can pave the way for overcoming the challenges associated with large-scale implementation.The insights provided by this review aim to assist researchers in identifying the most relevant research directions for industrial applications.By promoting advances in the application of solid adsorbents,we strive to facilitate the ultimate goal of achieving carbon neutrality. 展开更多
关键词 INTERMEDIATE-TEMPERATURE CO_(2) capture MGO LDHS INDUSTRIALIZATION
下载PDF
Regulation of interlayer channels of graphene oxide nanosheets in ultra-thin Pebax mixed-matrix membranes for CO_(2) capture
4
作者 Feifan Yang Yuanhang Jin +5 位作者 Jiangying Liu Haipeng Zhu Rong Xu Fenjuan Xiangli Gongping Liu Wanqin Jin 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第3期257-267,共11页
For the application of carbon capture by membrane process,it is crucial to develop a highly permeable CO_(2)-selective membrane.In this work,we reported an ultra-thin polyether-block-amide(Pebax)mixedmatrix membranes(... For the application of carbon capture by membrane process,it is crucial to develop a highly permeable CO_(2)-selective membrane.In this work,we reported an ultra-thin polyether-block-amide(Pebax)mixedmatrix membranes(MMMs)incorporated by graphene oxide(GO),in which the interlayer channels were regulated to optimize the CO_(2)/N_(2) separation performance.Various membrane preparation conditions were systematically investigated on the influence of the membrane structure and separation performance,including the lateral size of GO nanosheets,GO loading,thermal reduction temperature,and time.The results demonstrated that the precisely regulated interlayer channel of GO nanosheets can rapidly provide CO_(2)-selective transport channels due to the synergetic effects of size sieving and preferential adsorption.The GO/Pebax ultra-thin MMMs exhibited CO_(2)/N_(2) selectivity of 72 and CO_(2) permeance of 400 GPU(1 GPU=106 cm^(3)(STP)·cm^(2)·s^(-1)·cmHg^(-1)),providing a promising candidate for CO_(2) capture. 展开更多
关键词 Mixed-matrix membrane Ultra-thin membrane Pebax Graphene oxide CO_(2) capture
下载PDF
CO_(2)capture costs of chemical looping combustion of biomass:A comparison of natural and synthetic oxygen carrier
5
作者 Benjamin Fleiß Juraj Priscak +3 位作者 Martin Hammerschmid Josef Fuchs Stefan Müller Hermann Hofbauer 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第5期296-310,共15页
Chemical looping combustion has the potential to be an efficient and low-cost technology capable of contributing to the reduction of the atmospheric concentration of CO_(2) in order to reach the 1.5/2°C goal and ... Chemical looping combustion has the potential to be an efficient and low-cost technology capable of contributing to the reduction of the atmospheric concentration of CO_(2) in order to reach the 1.5/2°C goal and mitigate climate change.In this process,a metal oxide is used as oxygen carrier in a dual fluidized bed to generate clean CO_(2) via combustion of biomass.Most commonly,natural ores or synthetic materials are used as oxygen carrier whereas both must meet special requirements for the conversion of solid fuels.Synthetic oxygen carriers are characterized by higher reactivity at the expense of higher costs versus the lower-cost natural ores.To determine the viability of both possibilities,a techno-economic comparison of a synthetic material based on manganese,iron,and copper to the natural ore ilmenite was conducted.The synthetic oxygen carrier was characterized and tested in a pilot plant,where high combustion efficiencies up to 98.4%and carbon capture rates up to 98.5%were reached.The techno-economic assessment resulted in CO_(2) capture costs of 75 and 40€/tCO_(2) for the synthetic and natural ore route respectively,whereas a sensitivity analysis showed the high impact of production costs and attrition rates of the synthetic material.The synthetic oxygen carrier could break even with the natural ore in case of lower production costs and attrition rates,which could be reached by adapting the production process and recycling material.By comparison to state-of-the-art technologies,it is demonstrated that both routes are viable and the capture cost of CO_(2) could be reduced by implementing the chemical looping combustion technology. 展开更多
关键词 Chemical looping combustion BECCS Techno-economic assessment CO_(2)capture costs Oxygen carrier development Synthetic materials ILMENITE
下载PDF
Tailor-made microstructures lead to high-performance robust PEO membrane for CO_(2)capture via green fabrication technique 被引量:1
6
作者 Wei-Shi Sun Ming-Jie Yin +3 位作者 Wen-Hai Zhang Shuo Li Naixin Wang Quan-Fu An 《Green Energy & Environment》 SCIE EI CAS CSCD 2023年第5期1389-1397,共9页
Emerging excessive greenhouse gas emissions pose great threats to the ecosystem,which thus requires efficient CO_(2)capture to mitigate the disastrous issue.In this report,large molecular size bisphenol A ethoxylate d... Emerging excessive greenhouse gas emissions pose great threats to the ecosystem,which thus requires efficient CO_(2)capture to mitigate the disastrous issue.In this report,large molecular size bisphenol A ethoxylate diacrylate(BPA)was employed to crosslink poly(ethylene glycol)methyl ether acrylate(PEGMEA)via the green and rapid UV polymerization strategy.The microstructure of such-prepared membrane could be conveniently tailored by tuning the ratio of the two prepolymers,aiming at obtaining the optimized microstructures with suitable mesh size and PEO sol content,which was approved by a novel low-field nuclear magnetic resonance technique.The optimum membrane overcomes the tradeoff challenge:dense microstructures lower the gas permeability while loose microstructures lower high-pressure-resistance capacity,realizing a high CO_(2)permeability of 1711 Barrer and 100-h long-term running stability under 15 atm.The proposed membrane fabrication approach,hence,opens a novel gate for developing high-performance robust membranes for CO_(2)capture. 展开更多
关键词 CO_(2)capture PEO membrane Membrane microstructures PEO sol PHOTO-CROSSLINKING
下载PDF
Integrated vacuum pressure swing adsorption and Rectisol process for CO_(2) capture from underground coal gasification syngas 被引量:1
7
作者 Jian Wang Yuanhui Shen +2 位作者 Donghui Zhang Zhongli Tang Wenbin Li 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第5期265-279,共15页
An integrated vacuum pressure swing adsorption(VPSA) and Rectisol process is proposed for CO_(2) capture from underground coal gasification(UCG) syngas. A ten-bed VPSA process with silica gel adsorbent is firstly desi... An integrated vacuum pressure swing adsorption(VPSA) and Rectisol process is proposed for CO_(2) capture from underground coal gasification(UCG) syngas. A ten-bed VPSA process with silica gel adsorbent is firstly designed to pre-separate and capture 74.57% CO_(2) with a CO_(2) purity of 98.35% from UCG syngas(CH_(4)/CO/CO_(2)/H_(2)/N_(2)= 30.77%/6.15%/44.10%/18.46%/0.52%, mole fraction, from Shaar Lake Mine Field,Xinjiang Province, China) with a feed pressure of 3.5 MPa. Subsequently, the Rectisol process is constructed to furtherly remove and capture the residual CO_(2)remained in light product gas from the VPSA process using cryogenic methanol(233.15 K, 100%(mass)) as absorbent. A final purified gas with CO_(2) concentration lower than 3% and a regenerated CO_(2) product with CO_(2) purity higher than 95% were achieved by using the Rectisol process. Comparisons indicate that the energy consumption is deceased from 2.143 MJ·kg^(-1) of the single Rectisol process to 1.008 MJ·kg^(-1) of the integrated VPSA & Rectisol process, which demonstrated that the deployed VPSA was an energy conservation process for CO_(2) capture from UCG syngas. Additionally, the high-value gas(e.g., CH_(4)) loss can be decreased and the effects of key operating parameters on the process performances were detailed. 展开更多
关键词 Underground coal gasification Vacuum pressure swing adsorption Rectisol process CO_(2)capture Integrated process
下载PDF
Enhancing hydrophobicity via core-shell metal organic frameworks for high-humidity flue gas CO_(2) capture
8
作者 Yinji Wan Dekai Kong +9 位作者 Feng Xiong Tianjie Qiu Song Gao Qiuning Zhang Yefan Miao Mulin Qin Shengqiang Wu Yonggang Wang Ruiqin Zhong Ruqiang Zou 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第9期82-89,共8页
Developing metal-organic framework(MOF)materials with the moisture-resistant feature is highly desirable for CO_(2)capture from highly humid flue gas.In this work,a new core-shell MOF@MOF composite using Mg-MOF-74 wit... Developing metal-organic framework(MOF)materials with the moisture-resistant feature is highly desirable for CO_(2)capture from highly humid flue gas.In this work,a new core-shell MOF@MOF composite using Mg-MOF-74 with high CO_(2)capture capacity as a functional core and hydrophobic zeolitic imidazolate framework-8(ZIF-8)as a protective shell is fabricated by the epitaxial growth method.Experimental results show that the CO_(2)adsorption performance of the core-shell structured Mg-MOF-74@ZIF-8 composites from water-containing flue gas is enhanced along with their improved hydrophobicity.The dynamic breakthrough results show that the Mg-MOF-74@ZIF-8 with three assembled layers(Mg-MOF-74@ZIF-8-3)can capture 3.56 mmol-g^(-1)CO_(2)from wet CO_(2)/N_(2)(VCO_(2):V_(N_(2))=15:85)mixtures,which outperforms Mg-MOF-74(0.37 mmol·g^(-1))and most of the reported physisorbents. 展开更多
关键词 CORE-SHELL Mg-MOF-74@ZIF-8 CO_(2)capture Hydrophobic effect
下载PDF
Improved SSZ-13 thin membranes fabricated by seeded-gel approach for efficient CO_(2) capture
9
作者 Xingzhong Li Kunlin Yu +3 位作者 Zibo He Bo Liu Rongfei Zhou Weihong Xing 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第4期273-280,共8页
High-quality standard oil synthetic zeolite-13(SSZ-13) membranes with thickness only ~ 1.0 μm were prepared on tubular supports by the new seeded-gel approach. Seeded-gel approach is simpler than the normal secondary... High-quality standard oil synthetic zeolite-13(SSZ-13) membranes with thickness only ~ 1.0 μm were prepared on tubular supports by the new seeded-gel approach. Seeded-gel approach is simpler than the normal secondary-growth one since adding seeds in the gel is simpler than seeding on the support surface. The synthesis time was greatly reduced from 3.0 to 1.0 d after synthesis modification of gel aging and seed sizes. Low temperature ozone calcination was used for the removal of the organic structural directing agent. The best SSZ-13 membrane displayed CO_(2)permeances of 1.3 × 10^(-6) and 1.5 × 10^(-6) mol·m^(-2)·s^(-1)·Pa^(-1) and CO_(2)/CH_(4) and CO_(2)/N_(2) selectivities of 125 and 27 for equimolar CO_(2)/CH_(4) and CO_(2)/N2mixtures at 0.2 MPa pressure drop and 298 K, respectively. Separation performance of the membrane in the two binary mixtures is higher than that of most zeolite membranes. Three SSZ-13 membranes were reproducibly prepared on tubular supports by seeded-gel approach and the standard deviation ratios of CO_(2) permeance and CO_(2)/CH_(4) selectivity are 12.5% and 7%, respectively. It suggests that this new synthesis approach is creditable. The effects of temperature and pressure on separation performance of the thin SSZ-13 membranes were studied in the two binary mixtures. The tubular SSZ-13 membranes displayed great potentials for CO_(2) capture from natural gas, biogas and flue gas. 展开更多
关键词 Zeolite CHA Zeolite membranes SSZ-13 Gas separation CO_(2)capture Seeded-gel approach
下载PDF
Dynamic Modeling and Sensitivity Analysis for an MEA-Based CO_(2) Capture Absorber
10
作者 Hongwei Guan Lingjian Ye +2 位作者 Yurun Wang Feifan Shen Yuchen He 《Intelligent Automation & Soft Computing》 SCIE 2023年第6期3535-3550,共16页
The absorber is the key unit in the post-combustion monoethanolamine(MEA)-based carbon dioxide(CO_(2))capture process.A rate-based dynamic model for the absorber is developed and validated using steady-state experimen... The absorber is the key unit in the post-combustion monoethanolamine(MEA)-based carbon dioxide(CO_(2))capture process.A rate-based dynamic model for the absorber is developed and validated using steady-state experimental data reported in open literature.Sensitivity analysis is performed with respect to important model parameters associated with the reaction,mass transport and phy-sical property relationships.Then,a singular value decomposition(SVD)-based subspace parameter estimation method is proposed to improve the model accu-racy.Finally,dynamic simulations are carried out to investigate the effects of the feed rate of lean MEA solution and the flue inlet conditions.Simulation results indicate that the established dynamic model can reasonably reflect the physical behavior of the absorber.Some new insights are gained from the simulation results. 展开更多
关键词 CO_(2)capture dynamic modeling sensitivity analysis model validation
下载PDF
CO_2 capture from binary mixture via forming hydrate with the help of tetra-n-butyl ammonium bromide 被引量:22
11
作者 Shifeng Li Shuanshi Fan +2 位作者 Jingqu Wang Xuemei Lang Deqing Liang 《Journal of Natural Gas Chemistry》 EI CAS CSCD 2009年第1期15-20,共6页
Hydrate formation rate and separation effect on the capture of CO2 from binary mixture via forming hydrate with 5 wt% tetra-n-butyl ammonium bromide (TBAB) solution were studied. The results showed that the inductio... Hydrate formation rate and separation effect on the capture of CO2 from binary mixture via forming hydrate with 5 wt% tetra-n-butyl ammonium bromide (TBAB) solution were studied. The results showed that the induction time was 5 min, and the hydrate formation process finished in 1 h at 4.5 ℃ and 4.01 MPa. The hydrate formation rate constant reached the maximum of 1.84× 10^-7 molZ/(s.J) with the feed pressure of 7.30 MPa. The CO2 recovery was about 45 % in the feed pressure range from 4.30 to 7.30 MPa. Under the feed pressure of 4.30 MPa, the maximum separation factor and CO2 concentration in hydrate phase were 7.3 and 38.2 mol%, respectively. The results demonstrated that TBAB accelerated hydrate formation and enriched CO2 in hydrate phase under the gentle condition. 展开更多
关键词 co2 capture HYDRATE tetra-n-butyl ammonium bromide
下载PDF
Amine-silica composites for CO_2 capture: A short review 被引量:7
12
作者 Chao Chen Siqian Zhang +1 位作者 Kyung Ho Row Wha-Seung Ahn 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2017年第5期868-880,共13页
Amine-silica composite materials for post-combustion COcapture have attracted considerable attention because of their high COuptake at low COconcentrations, excellent COcapture selectivity in the presence of moisture,... Amine-silica composite materials for post-combustion COcapture have attracted considerable attention because of their high COuptake at low COconcentrations, excellent COcapture selectivity in the presence of moisture, and lower energy requirements for sorbent regeneration. This review discusses the recent advances in amine-silica composites for COcapture, including adsorbent preparation and characterization, COcapture under dry and moisture conditions at different COpartial pressures, sorbent regeneration, and stability after many cyclic sorption-desorption runs. 展开更多
关键词 Amine impregnation GRAFTING SILICA co2 capture SORPTION
下载PDF
Recent developments and consideration issues in solid adsorbents for CO_2 capture from flue gas 被引量:5
13
作者 Lijuan Nie Yuanyuan Mu +2 位作者 Junsu Jin Jian Chen Jianguo Mi 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2018年第11期2303-2317,共15页
The increase in energy demand caused by industrialization leads to abundant CO_2 emissions into atmosphere and induces abrupt rise in earth temperature. It is vital to acquire relatively simple and cost-effective tech... The increase in energy demand caused by industrialization leads to abundant CO_2 emissions into atmosphere and induces abrupt rise in earth temperature. It is vital to acquire relatively simple and cost-effective technologies to separate CO_2 from the flue gas and reduce its environmental impact. Solid adsorption is now considered an economic and least interfering way to capture CO_2, in that it can accomplish the goal of small energy penalty and few modifications to power plants. In this regard, we attempt to review the CO_2 adsorption performances of several types of solid adsorbents, including zeolites, clays, activated carbons, alkali metal oxides and carbonates, silica materials, metal–organic frameworks, covalent organic frameworks, and polymerized high internal phase emulsions. These solid adsorbents have been assessed in their CO_2 adsorption capacities along with other important parameters including adsorption kinetics, effect of water, recycling stability and regenerability. In particular,the superior properties of adsorbents enhanced by impregnating or grafting amine groups have been discussed for developing applicable candidates for industrial CO_2 capture. 展开更多
关键词 co2 capture Adsorption Adsorbents INORGANIC MATERIALS Organic MATERIALS
下载PDF
Preparation of composite poly(ether block amide)membrane for CO_2 capture 被引量:4
14
作者 Lianjun Wang Yang Li +2 位作者 Shuguang Li Pengfei Ji Chengzhang Jiang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2014年第6期717-725,共9页
In this study, a poly(ether block amide) (Pebax 1657) composite membrane applied for COa capture was prepared by coating Pebax 1657 solution on polyacrylonitrile (PAN) ultrafiltration membrane. Ethanol/water mix... In this study, a poly(ether block amide) (Pebax 1657) composite membrane applied for COa capture was prepared by coating Pebax 1657 solution on polyacrylonitrile (PAN) ultrafiltration membrane. Ethanol/water mixture was used as the solvent of Pebax and the effects of ethanol/water mass ratios and Pebax concentration on the permeation properties of composite membrane were studied. To enhance the com- posite membrane permeance, the gutter layer, made from reactive amino silicone crosslinking with potydimethylsiloxane (PDMS), was de- signed. The influence of crosslinldng degree of the gutter layer on membrane performance was investigated. As a result, a Pebardamino- PDMS/PAN multilayer membrane with hexane resistance was developed, showing CO2 permeance of 350 GPU and CO2/N2 selectivity over 50. The blend of polyethylene glycol dimethyl ether (PEG-DME) with Pebax as coating material was studied to further improve the membrane performance. After being combined with PEG-DME additive, CO2 permeance of the final Pebax-PEG-DME/amino-PDMS/PAN composite membrane reached 400 GPU above with CO2/Na selectivity over 65. 展开更多
关键词 co2 capture composite membrane gutter layer COATING
下载PDF
Resorcinol-formaldehyde resin-based porous carbon spheres with high CO_2 capture capacities 被引量:3
15
作者 Xuan Wang Jin Zhou +5 位作者 Wei Xing Boyu Liu Jianlin Zhang Hongtao Lin Hongyou Cui Shuping Zhuo 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2017年第5期1007-1013,共7页
Porous carbon spheres are prepared by direct carbonization of potassium salt of resorcinol-formaldehyde resin spheres, and are investigated as COadsorbents. It is found that the prepared carbon materials still maintai... Porous carbon spheres are prepared by direct carbonization of potassium salt of resorcinol-formaldehyde resin spheres, and are investigated as COadsorbents. It is found that the prepared carbon materials still maintain the typical spherical shapes after the activation, and have highly developed ultra-microporosity with uniform pore size, indicating that almost the activation takes place in the interior of the polymer spheres. The narrow-distributed ultra-micropores are attributed to the "in-situ homogeneous activation"effect produced by the mono-dispersed potassium ions as a form of -OK groups in the bulk of polymer spheres. The CS-1 sample prepared under a KOH/resins weight ratio of 1 shows a very high COcapture capacity of 4.83 mmol/g and good CO/Nselectivity of7-45. We believe that the presence of a welldeveloped ultra-microporosity is responsible for excellent COsorption performance at room temperature and ambient pressure. 展开更多
关键词 co2 capture Porous carbon Carbon sphere Ultra-micropore Resorcinol formaldehyde resins
下载PDF
Modelling of a tubular membrane contactor for pre-combustion CO_2 capture using ionic liquids:Influence of the membrane configuration, absorbent properties and operation parameters 被引量:3
16
作者 Zhongde Dai Muhammad Usman +1 位作者 Magne Hillestad Liyuan Deng 《Green Energy & Environment》 SCIE 2016年第3期266-275,共10页
A membrane contactor using ionic liquids(ILs) as solvent for pre-combustion capture CO_2 at elevated temperature(303-393 K) and pressure(20 bar) has been studied using mathematic model in the present work. A comprehen... A membrane contactor using ionic liquids(ILs) as solvent for pre-combustion capture CO_2 at elevated temperature(303-393 K) and pressure(20 bar) has been studied using mathematic model in the present work. A comprehensive two-dimensional(2 D) mass-transfer model was developed based on finite element method. The effects of liquid properties, membrane configurations, as well as operation parameters on the CO_2 removal efficiency were systematically studied. The simulation results show that CO_2 can be effectively removed in this process. In addition, it is found that the liquid phase mass transfer dominated the overall mass transfer. Membranes with high porosity and small thickness could apparently reduce the membrane resistance and thus increase the separation efficiency. On the other hand, the membrane diameter and membrane length have a relatively small influence on separation performance within the operation range. 展开更多
关键词 co2 capture Pre-combustion Membrane contactor Ionic liquids MODELLING
下载PDF
CO_2 capture:Challenges and opportunities 被引量:3
17
作者 Liyuan Deng Hanne Kvamsdal 《Green Energy & Environment》 SCIE 2016年第3期179-179,共1页
Although not everybody wants to admit,climate change has been happening with irreversible consequences.It is getting worse and worse and becoming more and more influential to not only the environment but also to all k... Although not everybody wants to admit,climate change has been happening with irreversible consequences.It is getting worse and worse and becoming more and more influential to not only the environment but also to all kinds of beings;our earth is now seriously threatened by climate change.It is a critical issue the whole society must face and actions must 展开更多
关键词 CCS co2 capture:Challenges and opportunities
下载PDF
Designing a green and efficient absorbent for CO_2 capture
18
作者 DAI Yue,WANG Guannan,WU Youting,ZHANG Zhibing (Separation Engineering Research Center,School of Chemistry and Chemical Engineering, Nanjing University,Nanjing 210093,Jiangsu,China) 《化工进展》 EI CAS CSCD 北大核心 2011年第S2期167-170,共4页
Several task-specific ionic liquids(TSILs) with weak alkalinity have been designed based on tetraalkyl-ammonium cation and L-alanine anion([N<sub>2222</sub>][L-Ala]) for the CO<sub>2</sub> ab... Several task-specific ionic liquids(TSILs) with weak alkalinity have been designed based on tetraalkyl-ammonium cation and L-alanine anion([N<sub>2222</sub>][L-Ala]) for the CO<sub>2</sub> absorption.[N<sub>2222</sub>][L-Ala]has been chosen as a green and efficient activator for methyldiethanolamine(MDEA).The densities,viscosities and absorption properties of the equimolar[N<sub>2222</sub>][L-Ala]-MDEA blended absorbents were investigated.Low viscosity and density values support the idea that blended absorbents are preferred in the industrial applications.[N<sub>2222</sub>][L-Ala]-MDEA behave similarly to the aqueous counterparts but offer more advantages,such as large absorption capacities,fast absorption rate and relatively low damage to the environment. 展开更多
关键词 task-specific IONIC liquid WEAK alkanility CO2 capture BLENDED absorbents
下载PDF
Fe-substituted Ba-hexaaluminate with enhanced oxygen mobility for CO_2 capture by chemical looping combustion of methane
19
作者 Fei Huang Ming Tian +5 位作者 Yanyan Zhu Xiaodong Wang Aiqin Wang Lin Li Jian Lin Junhu Wang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2019年第2期50-57,共8页
While Fe-based oxygen carriers(OC) are regarded to be promising for chemical looping combustion(CLC),the decrease of CO_2 selectivity during deep reduction process and the severe agglomeration of Fe_2O_3 often occur a... While Fe-based oxygen carriers(OC) are regarded to be promising for chemical looping combustion(CLC),the decrease of CO_2 selectivity during deep reduction process and the severe agglomeration of Fe_2O_3 often occur after multiple redox cycles due to the low oxygen mobility.Herein,Fe-substituted Bahexaaluminates(Ba Fe_xAl_(12)– xO_(19),denoted as BF_xA-H,x = 1 and 2) prepared by a modified two-step method exhibited not only higher amount of converted oxygen(Ot) and CH_4 conversion(77% and 81% vs.17%and 75%) than those prepared by the traditional co-precipitation method(BF_xA-C,x = 1 and 2) but also high CO_2 selectivity above 92% during the nearly whole reduction from Fe^(3+) to Fe^(2+).Furthermore,the BFxA-H exhibited the excellent recyclability during 50 cycles.The better performance was ascribed to the markedly enhanced oxygen mobility which resulted from dominant occupancy of Fe cations in Al(5) sites(Fe^5: 71% and 70% vs.49% and 41%) in mirror planes of hexaaluminate leading to larger amount of lattice oxygen coordinated with Fe^5(O–Fe^5)(0.45 and 0.85 mmol/g vs.0.31 and 0.50 mmol/g).The improvement of oxygen mobility also favored the preservation of chemical state of Fe cations in hexaaluminate structure in the re-oxidation step,resulting in the excellent recyclability of BF_xA-H. 展开更多
关键词 co2 capture Chemical LOOPING CH4 conversion Oxygen mobility FE-BASED HEXAALUMINATE
下载PDF
Experimental Study of the Absorption and Regeneration Performance of Several Candidate Solvents for PostCombustion CO_2 Capture
20
作者 Gao Jie Chen Xin +3 位作者 Tong Ming Kang Wanzhong Zhou Yanbo Lu Jun 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS 2017年第4期55-64,共10页
At present monoethanolamine(MEA) remains as the standard industrial solvent for CO_2 capture processes. But due to the degradation and high energy consumption problems of MEA, new efficient solvents should be found. I... At present monoethanolamine(MEA) remains as the standard industrial solvent for CO_2 capture processes. But due to the degradation and high energy consumption problems of MEA, new efficient solvents should be found. In the present work, the absorption and regeneration performance of a hybrid solvent MEA-methanol was studied and compared to the aqueous solutions of monoethanolamine(MEA), diethanolamine(DEA) and triethanolamine(TEA) in a bubbling reactor. Also the performance of MEA-methanol solutions(including the absorption performance, regeneration performance,cyclic absorption performance, density and viscosity) was studied with different MEA concentrations. A pilot-plant CO_2 capture test bed was used to study the potential of MEA-methanol to replace aqueous MEA in industrial use. The results showed that the initial absorption rate of MEA-methanol solvent is the fastest compared with other solvents. The 30% MEA-methanol had a faster mass transfer coefficient, a higher CO_2 absorption efficiency and a lower regeneration energy consumption than aqueous MEA. And through the study of the reaction heat of CO_2 into MEA-methanol and aqueous MEA,it can be concluded that the desorption heat of rich MEA-methanol is only about 30% of rich aqueous MEA solvent in the regeneration process which showed that 30% MEA-methanol solvent is a promising candidate for CO_2 capture. 展开更多
关键词 MEA MEA-methanol post combustion co2 capture ABSORPTION REGENERATION
下载PDF
上一页 1 2 39 下一页 到第
使用帮助 返回顶部