期刊文献+
共找到1,730篇文章
< 1 2 87 >
每页显示 20 50 100
Optimal Bidding and Operation of a Power Plant with Solvent-BasedCarbon Capture under a CO2 Allowance Market: A Solution with aReinforcement Learning-Based Sarsa Temporal-Difference Algorithm
1
作者 Ziang Li Zhengtao Ding Meihong Wang 《Engineering》 SCIE EI 2017年第2期257-265,共9页
In this paper, a reinforcement learning (RL)-based Sarsa temporal-difference (TD) algorithm is applied tosearch for a unified bidding and operation strategy for a coal-fired power plant with monoethanolamine(MEA... In this paper, a reinforcement learning (RL)-based Sarsa temporal-difference (TD) algorithm is applied tosearch for a unified bidding and operation strategy for a coal-fired power plant with monoethanolamine(MEA)-based post-combustion carbon capture under different carbon dioxide (CO2) allowance market con-ditions. The objective of the decision maker for the power plant is to maximize the discounted cumulativeprofit during the power plant lifetime. Two constraints are considered for the objective formulation. Firstly,the tradeoff between the energy-intensive carbon capture and the electricity generation should be made un-der presumed fixed fuel consumption. Secondly, the CO2 allowances purchased from the CO2 allowance mar-ket should be approximately equal to the quantity of COs emission from power generation. Three case stud-ies are demonstrated thereafter. In the first case, we show the convergence of the Sarsa TD algorithm andfind a deterministic optimal bidding and operation strategy. In the second case, compared with the inde-pendently designed operation and bidding strategies discussed in most of the relevant literature, the SarsaTD-based unified bidding and operation strategy with time-varying flexible market-oriented CO2 capturelevels is demonstrated to help the power plant decision maker gain a higher discounted cumulative profit.In the third case, a competitor operating another power plant identical to the preceding plant is consideredunder the same CO2 allowance market. The competitor also has carbon capture facilities but applies a differ-ent strategy to earn profits. The discounted cumulative profits of the two power plants are then compared,thus exhibiting the competitiveness of the power plant that is using the unified bidding and operation strat-egy explored by the Sarsa TD algorithm. 展开更多
关键词 Power plants Post-combustion carbon capture Chemical absorption C02 ALLOWANCE MARKET OPTIMAL DECISION-MAKING Reinforcement learning
下载PDF
High-throughput microfluidic production of carbon capture microcapsules:fundamentals,applications,and perspectives
2
作者 Xiangdong Liu Wei Gao +2 位作者 Yue Lu Liangyu Wu Yongping Chen 《International Journal of Extreme Manufacturing》 SCIE EI CAS CSCD 2024年第3期330-361,共32页
In the last three decades,carbon dioxide(CO_(2)) emissions have shown a significant increase from various sources.To address this pressing issue,the importance of reducing CO_(2) emissions has grown,leading to increas... In the last three decades,carbon dioxide(CO_(2)) emissions have shown a significant increase from various sources.To address this pressing issue,the importance of reducing CO_(2) emissions has grown,leading to increased attention toward carbon capture,utilization,and storage strategies.Among these strategies,monodisperse microcapsules,produced by using droplet microfluidics,have emerged as promising tools for carbon capture,offering a potential solution to mitigate CO_(2) emissions.However,the limited yield of microcapsules due to the inherent low flow rate in droplet microfluidics remains a challenge.In this comprehensive review,the high-throughput production of carbon capture microcapsules using droplet microfluidics is focused on.Specifically,the detailed insights into microfluidic chip fabrication technologies,the microfluidic generation of emulsion droplets,along with the associated hydrodynamic considerations,and the generation of carbon capture microcapsules through droplet microfluidics are provided.This review highlights the substantial potential of droplet microfluidics as a promising technique for large-scale carbon capture microcapsule production,which could play a significant role in achieving carbon neutralization and emission reduction goals. 展开更多
关键词 carbon capture MICROCAPSULES droplet microfluidic high-throughput production carbon neutralization
下载PDF
Offshore Carbon Capture, Utilization, and Storage
3
作者 Jianghui Li 《哈尔滨工程大学学报(英文版)》 CSCD 2024年第3期525-528,共4页
Climate change, resulting from human-caused CO_(2) and other greenhouse gas emissions, is an urgent problem that demands immediate action from everyone. The need to decrease emissions has sparked a renewed emphasis on... Climate change, resulting from human-caused CO_(2) and other greenhouse gas emissions, is an urgent problem that demands immediate action from everyone. The need to decrease emissions has sparked a renewed emphasis on developing and utilizing offshore Carbon Capture,Utilization,and Storage(CCUS) technologies.While these technologies offer potential solutions to mitigate greenhouse gas emissions,many challenges must be addressed to ensure successful implementation. 展开更多
关键词 capture STORAGE carbon
下载PDF
Indispensable gutter layers in thin-film composite membranes for carbon capture
4
作者 Gengyi Zhang Haiqing Lin 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第8期1220-1238,共19页
Industrial thin-film composite(TFC)membranes achieve superior gas separation properties from high-performance selective layer materials,while the success of membrane technology relies on high-performance gutter layers... Industrial thin-film composite(TFC)membranes achieve superior gas separation properties from high-performance selective layer materials,while the success of membrane technology relies on high-performance gutter layers to achieve production scalability and low-cost manufacturing.However,the current literature predominantly focuses on the design of polymer architectures to obtain high permeability and selectivity,while the art of fabricating gutter layers is usually safeguarded by industrial manufacturers and appears lackluster to academic researchers.This is the first report aiming to provide a comprehensive and critical review of state-of-the-art gutter layer materials and their design and modification to enable TFC membranes with superior separation performance.We first elucidate the importance of the gutter layer on membrane performance through modeling and experimental results.Then various gutter layer materials used to obtain high-performance composite membranes are critically reviewed,and the strategies to improve their compatibility with the selective layer are highlighted,such as oxygen plasma treatment,polydopamine deposition,and surface grafting.Finally,we present the opportunities of the gutter layer design for practical applications. 展开更多
关键词 Thin-film composite membranes Gutter layer Gas separation carbon capture
下载PDF
Hollow tubes constructed by carbon nanotubes self-assembly for CO_(2) capture
5
作者 CHEN Xu-rui WU Jun +1 位作者 GU Li CAO Xue-bo 《Journal of Central South University》 SCIE EI CAS CSCD 2024年第7期2256-2267,共12页
Carbon nanotubes(CNTs)have garnered significant attention in the fields of science,engineering,and medicine due to their numerous advantages.The initial step towards harnessing the potential of CNTs involves their mac... Carbon nanotubes(CNTs)have garnered significant attention in the fields of science,engineering,and medicine due to their numerous advantages.The initial step towards harnessing the potential of CNTs involves their macroscopic assembly.The present study employed a gentle and direct self-assembly technique,wherein controlled growth of CNT sheaths occurred on the metal wire’s surface,followed by etching of the remaining metal to obtain the hollow tubes composed of CNTs.By controlling the growth time and temperature,it is possible to alter the thickness of the CNTs sheath.After immersing in a solution containing 1 g/L of CNTs at 60℃ for 24 h,the resulting CNTs layer achieved a thickness of up to 60μm.These hollow CNTs tubes with varying inner diameters were prepared through surface reinforcement using polymers and sacrificing metal wires,thereby exhibiting exceptional attributes such as robustness,flexibility,air tightness,and high adsorption capacity that effectively capture CO_(2) from the gas mixture. 展开更多
关键词 carbon nanotubes SELF-ASSEMBLY hollow tubes CO_(2) capture
下载PDF
Technological advancement and industrialization path of Sinopec in carbon capture,utilization and storage,China
6
作者 Yang Li Rui Wang +1 位作者 Qingmin Zhao Zhaojie Xue 《Energy Geoscience》 EI 2024年第1期204-211,共8页
Carbon capture,utilization and storage(CCUS)technology is an important means to effectively reduce carbon emissions from fossil energy combustion and industrial processes.With the crisis of climate change,CCUS has att... Carbon capture,utilization and storage(CCUS)technology is an important means to effectively reduce carbon emissions from fossil energy combustion and industrial processes.With the crisis of climate change,CCUS has attracted increasing attention in the world.CCUS technology as developed rapidly in China is technically feasible for large-scale application in various industries.The R&D and demonstration of CCUS in China Petroleum&Chemical Corporation(Sinopec)are summarized,including carbon capture,carbon transport,CO_(2)enhanced energy recovery(including oil,gas,and water,etc.),and comprehensive utilization of CO_(2).Based on the source-sink matching characteristics in China,two CCUS industrialization scenarios are proposed,namely,CO_(2)-EOR,CO_(2)-driven enhanced oil recovery using centralized carbon sinks in East China and CO_(2)-EWR,CO_(2)-driven enhanced water recovery(EWR)using centralized carbon sources from the coal chemical industry in West China.Finally,a CCUS industrialization path from Sinopec's perspective is suggested,using CO_(2)-EOR as the major means and CO_(2)-EWR,CO_(2)-driven enhanced gas recovery(CO_(2)-EGR)and other utilization methods as important supplementary means. 展开更多
关键词 carbon capture TRANSPORT Enhanced energy recovery Comprehensive utilization Industrialization path
下载PDF
Hcable for Time-Lapse Seismic Monitoring of Marine Carbon Capture and Storage
7
作者 Bin Liu Yutong Fu Pengfei Wen 《哈尔滨工程大学学报(英文版)》 CSCD 2024年第3期628-633,共6页
To ensure project safety and secure public support, an integrated and comprehensive monitoring program is needed within a carbon capture and storage(CCS) project. Monitoring can be done using many well-established tec... To ensure project safety and secure public support, an integrated and comprehensive monitoring program is needed within a carbon capture and storage(CCS) project. Monitoring can be done using many well-established techniques from various fields, and the seismic method proves to be the crucial one. This method is widely used to determine the CO_(2) distribution, image the plume development, and quantitatively estimate the concentration. Because both the CO_(2) distribution and the potential migration pathway can be spatially small scale, high resolution for seismic imaging is demanded. However, obtaining a high-resolution image of a subsurface structure in marine settings is difficult. Herein, we introduce the novel Hcable(Harrow-like cable system) technique, which may be applied to offshore CCS monitoring. This technique uses a highfrequency source(the dominant frequency>100 Hz) to generate seismic waves and a combination of a long cable and several short streamers to receive seismic waves. Ultrahigh-frequency seismic images are achieved through the processing of Hcable seismic data. Hcable is then applied in a case study to demonstrate its detailed characterization for small-scale structures. This work reveals that Hcable is a promising tool for timelapse seismic monitoring of oceanic CCS. 展开更多
关键词 carbon capture and storage Hcable Seismic monitoring High resolution image High frequency seismic source
下载PDF
Carbon Capture Technologies in OAPEC Member Countries and the Circular Carbon Economy: A Roadmap to Zero Emissions by 2050
8
作者 Salem Baidas 《Open Journal of Energy Efficiency》 2024年第2期25-37,共13页
Several Organization of Arab Petroleum Exporting Countries (OAPEC) member states (OMSs) have updated their nationally determined contributions (NDCs) with the aim of achieving zero carbon emissions by 2050. Carbon neu... Several Organization of Arab Petroleum Exporting Countries (OAPEC) member states (OMSs) have updated their nationally determined contributions (NDCs) with the aim of achieving zero carbon emissions by 2050. Carbon neutrality requires shifting from a linear carbon economy (LCE) to a circular carbon economy (CCE). Carbon capture and storage (CCS) technologies, including reduction, recycle, reuse, removal, and storage technologies, represent an important strategy for achieving such a shift. Herein, we investigate the effects of CCS technology adoption in six OMSs—namely the Kingdom of Saudi Arabia (KSA), Qatar, the United Arab Emirates (UAE), Kuwait, Algeria, and Iraq—by examining their Circular Carbon Economy Index (CCEI) scores, which reflect compliance with CCE-transition policies. Total CCEI, current performance CCEI dimension, and future enabler CCEI dimensions scores were compared among the aforementioned six OMSs and relative to Norway, which was used as a global-high CCEI reference standard. Specifically, CCEI general scope and CCEI oil scope dimension scores were compared. The KSA, Qatar, the UAE, and Kuwait had higher CCEI scores than Algeria and Iraq, reflecting their greater adoption of CCE-transition policies and greater emission-reducing modernization investments. The current performance CCEI scores of Algeria and Iraq appear to be buttressed to some extent by their greater natural carbon sink resources. Based on the findings, we recommend specific actions for OMSs to enhance their CCE transitions and mitigate the negative impacts associated with the associated investments, including: taking rapid practical steps to eliminate carbon oil industry emissions;detailed CCS planning by national oil companies;international cooperation and coordination;and increased investment in domestic CCS utilization infrastructure. 展开更多
关键词 OAPEC PETROLEUM Fossil Fuels carbon capture and Storage Circular carbon Economy
下载PDF
Effect of sulfation during carbonation on CO_2 capture in calcium looping cycle 被引量:1
9
作者 王春波 刘洪才 +2 位作者 陈亮 Lufei Jia Yewen Tan 《Journal of Southeast University(English Edition)》 EI CAS 2015年第2期215-219,共5页
Abstract: Two Canadian limestones with different properties were tested to determine the effect of SO2 during the carbonation of sorbent on the CO2 capture performance in Ca- looping. When the reaction gas is mixed w... Abstract: Two Canadian limestones with different properties were tested to determine the effect of SO2 during the carbonation of sorbent on the CO2 capture performance in Ca- looping. When the reaction gas is mixed with SO2, the carbonation ratio of the sorbent is always lower than that without SO2 for each cycle under the same conditions, and the sulfation ratio increases almost linearly with the increase in the cycle times. At 650 ℃, there is little difference in the carbonation ratio of the sorbent during the first four cycles for the two carbonation time, 5 and 10 rain at 0. 18% SO2. The indirect sulfation reaction that occurs simultaneously with the carbonation of CaO is responsible for the degradation of the sorbent for CO2 capture, and the carbonation duration is not the main factor that affects the ability of the sorbent. 680℃ is the best carbonation temperature among the three tested temperatures and the highest carbonation ratio can be obtained. Also, the sulfation ratio is the highest. The probable cause is the different effects of temperature on the carbonation rate and sulfation rate. A higher SO2 concentration will decrease the carbonation ratio clearly, but the decrease in the carbonation capability of the sorbent is not proportional to the increase of the SO2 concentration in flue gases. 展开更多
关键词 Ca-based sorbent carbonATION SULFATION LOOPING CO2 capture
下载PDF
Carbon dioxide capture by solvent absorption using amino acids: A review 被引量:5
10
作者 Guoping Hu Kathryn H.Smith +3 位作者 Yue Wu Kathryn A.Mumford Sandra E.Kentish Geoffrey W.Stevens 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2018年第11期2229-2237,共9页
The emission of large amounts of carbon dioxide is of major concern with regard to increasing the risk of climate change. Carbon capture, utilisation and storage (CCUS) has been proposed as an important pathway for sl... The emission of large amounts of carbon dioxide is of major concern with regard to increasing the risk of climate change. Carbon capture, utilisation and storage (CCUS) has been proposed as an important pathway for slowing the rate of these emissions. Solvent absorption of CO_2 using amino acid solvents has drawn much attention over the last few years due to advantages including their ionic nature, low evaporation rate, low toxicity, high absorption rate and high biodegradation potential, compared to traditional amine solvents. In this review, recent progress on the absorption kinetics of amino acids is summarised, and the engineering potential of using amino acids as carbon capture solvents is discussed. The reaction orders between amino acids and carbon dioxide are typ- ically between 1 and 2. Glycine exhibits a reaction order of 1, whilst, by comparison, lysine, proline and sarcosine have the largest reaction constants with carbon dioxide which is much larger than that of the benchmark solvent monoethanolamine (MEA). Ionic strength, p H and cations such as sodium and potassium have been shown to be important factors influencing the reactivity of amino acids. Corrosivity and reactivity with impurities such as SOx and NOxare not considered to be significant problems for amino acids solvents. The precipitation of CO_2 loaded amino acid salts is thought to be a good pathway for increasing CO_2loading capacity and cutting desorption energy costs if well-controlled. It is recommended that more detailed research on amino acid degradation and overall process energy costs is conducted. Overall, amino acid solvents are recognised as promising potential solvents for car- bon dioxide capture. 展开更多
关键词 AMINO ACIDS carbon capture ABSORPTION Solvents
下载PDF
Technical Perspective of Carbon Capture,Utilization,and Storage 被引量:14
11
作者 Qingyang Lin Xiao Zhang +2 位作者 Tao Wang Chenghang Zheng Xiang Gao 《Engineering》 SCIE EI CAS 2022年第7期27-32,共6页
Carbon dioxide(CO_(2))is the primary greenhouse gas contributing to anthropogenic climate change which is associated with human activities.The majority of CO_(2) emissions are results of the burning of fossil fuels fo... Carbon dioxide(CO_(2))is the primary greenhouse gas contributing to anthropogenic climate change which is associated with human activities.The majority of CO_(2) emissions are results of the burning of fossil fuels for energy,as well as industrial processes such as steel and cement production.Carbon capture,utilization,and storage(CCUS)is a sustainable technology promising in terms of reducing CO_(2) emissions that would otherwise contribute to climate change.From this perspective,the discussion on carbon capture focuses on chemical absorption technology,primarily due to its commercialization potential.The CO_(2) absorptive capacity and absorption rate of various chemical solvents have been summarized.The carbon utilization focuses on electrochemical conversion routes converting CO_(2) into potentially valuable chemicals which have received particular attention in recent years.The Faradaic conversion efficiencies for various CO_(2) reduction products are used to describe efficiency improvements.For carbon storage,successful deployment relies on a better understanding of fluid mechanics,geomechanics,and reactive transport,which are discussed in details. 展开更多
关键词 CCUS carbon capture carbon utilization carbon storage Chemical absorption Electrochemical conversion Storage mechanism
下载PDF
Progress and prospects of carbon dioxide capture,EOR-utilization and storage industrialization 被引量:8
12
作者 YUAN Shiyi MA Desheng +3 位作者 LI Junshi ZHOU Tiyao JI Zemin HAN Haishui 《Petroleum Exploration and Development》 CSCD 2022年第4期955-962,共8页
Carbon dioxide capture,EOR-utilization and storage(CCUS-EOR)are the most practical and feasible large-scale carbon reduction technologies,and also the key technologies to greatly improve the recovery of low-permeabili... Carbon dioxide capture,EOR-utilization and storage(CCUS-EOR)are the most practical and feasible large-scale carbon reduction technologies,and also the key technologies to greatly improve the recovery of low-permeability oil fields.This paper sorts out the main course of CCUS-EOR technological development abroad and its industrialization progress.The progress of CCUS-EOR technological research and field tests in China are summarized,the development status,problems and challenges of the entire industry chain of CO_(2) capture,transportation,oil displacement,and storage are analyzed.The results show a huge potential of the large-scale application of CCUS-EOR in China in terms of carbon emission reduction and oil production increase.At present,CCUS-EOR in China is in a critical stage of development,from field pilot tests to industrialization.Aiming at the feature of continental sedimentary oil and gas reservoirs in China,and giving full play to the advantages of the abundant reserves for CO_(2) flooding,huge underground storage space,surface infrastructure,and wide distribution of wellbore injection channels,by cooperating with carbon emission enterprises,critical technological research and demonstration project construction should be accelerated,including the capture of low-concentration CO_(2) at low-cost and on large-scale,supercritical CO_(2) long-distance transportation,greatly enhancing oil recovery and storage rate,and CO_(2) large-scale and safe storage.CCUS-EOR theoretical and technical standard system should be constructed for the whole industrial chain to support and promote the industrial scale application,leading the rapid and profitable development of CCUS-EOR emerging industrial chain with innovation. 展开更多
关键词 carbon dioxide CCUS-EOR carbon capture TRANSPORTATION oil displacement carbon storage enhanced oil recovery INDUSTRIALIZATION
下载PDF
Resorcinol-formaldehyde resin-based porous carbon spheres with high CO_2 capture capacities 被引量:3
13
作者 Xuan Wang Jin Zhou +5 位作者 Wei Xing Boyu Liu Jianlin Zhang Hongtao Lin Hongyou Cui Shuping Zhuo 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2017年第5期1007-1013,共7页
Porous carbon spheres are prepared by direct carbonization of potassium salt of resorcinol-formaldehyde resin spheres, and are investigated as COadsorbents. It is found that the prepared carbon materials still maintai... Porous carbon spheres are prepared by direct carbonization of potassium salt of resorcinol-formaldehyde resin spheres, and are investigated as COadsorbents. It is found that the prepared carbon materials still maintain the typical spherical shapes after the activation, and have highly developed ultra-microporosity with uniform pore size, indicating that almost the activation takes place in the interior of the polymer spheres. The narrow-distributed ultra-micropores are attributed to the "in-situ homogeneous activation"effect produced by the mono-dispersed potassium ions as a form of -OK groups in the bulk of polymer spheres. The CS-1 sample prepared under a KOH/resins weight ratio of 1 shows a very high COcapture capacity of 4.83 mmol/g and good CO/Nselectivity of7-45. We believe that the presence of a welldeveloped ultra-microporosity is responsible for excellent COsorption performance at room temperature and ambient pressure. 展开更多
关键词 CO2 capture Porous carbon carbon sphere Ultra-micropore Resorcinol formaldehyde resins
下载PDF
Remarkable carbon dioxide catalytic capture (CDCC) leading to solid-form carbon material via a new CVD integrated process (CVD-IP): An alternative route for CO_2 sequestration 被引量:5
14
作者 Wei Chu Maofei Ran +4 位作者 Xu Zhang Ning Wang Yufei Wang Heping Xie Xiusong Zhao 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2013年第1期136-144,共9页
Through our newly-developed "chemical vapor deposition integrated process (ISVD-IP)'" using carbon OlOXlae (t..u2) as me raw matenal and only carbon source introduced, CO2 could be catalytically activated and c... Through our newly-developed "chemical vapor deposition integrated process (ISVD-IP)'" using carbon OlOXlae (t..u2) as me raw matenal and only carbon source introduced, CO2 could be catalytically activated and converted to a new solid-form product, i.e., carbon nanotubes (CO2-derived) at a quite high yield (the single-pass carbon yield in the solid-form carbon-product produced from CO2 catalytic capture and conversion was more than 30% at a single-pass carbon-base). For comparison, when only pure carbon dioxide was introduced using the conventional CVD method without integrated process, no solid-form carbon-material product could be formed. In the addition of saturated steam at room temperature in the feed for CVD, there were much more end-opening carbon nano-tubes produced, at a slightly higher carbon yield. These inspiring works opened a remarkable and alternative new approach for carbon dioxide catalytic capture to solid-form product, comparing with that of CO2 sequestration (CCS) or CO2 mineralization (solidification), etc. As a result, there was much less body volume and almost no greenhouse effect for this solid-form carbon-material than those of primitive carbon dioxide. 展开更多
关键词 carbon dioxide catalytic capture (CDCC) carbon nanotubes (CNTs) chemical vapor deposition integrated process (CVD-IP) solid-formcarbon material debating greenhouse gases (GHG) effects
下载PDF
Carbon Dioxide Captured from Flue Gas by Modified Ca-based Sorbents in Fixed-bed Reactor at High Temperature 被引量:8
15
作者 YANG Lei YU Hongbing WANG Shengqiang WANG Haowen ZHOU Qibin 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2013年第2期199-204,共6页
Four kinds of Ca-based sorbents were prepared by calcination and hydration reactions using different precursors: calcium hydroxide, calcium carbonate, calcium acetate monohydrate and calcium oxide. The CO2 absorption... Four kinds of Ca-based sorbents were prepared by calcination and hydration reactions using different precursors: calcium hydroxide, calcium carbonate, calcium acetate monohydrate and calcium oxide. The CO2 absorption capacity of those sorbents was investigated in a fixed-bed reactor in the temperature range of 350-650 ℃. It was found that all of those sorbents showed higher capacity for CO2 absorption when the operating temperature higher than 450 ℃. The CaAc2-CaO sorbent showed the highest CO2 absorption capacity of 299 mg.g-1. The mor- phology of those sorbents was examined by scanning electron microscope (SEM), and the changes of composition before and after carbonation were also determined by X-ray diffraction (XRD). Results indicated that those sorbents have the similar chemical compositions and crystalline phases before carbonation reaction [mainly Ca(OH)2], and CaCO3 is the main component after carbonation reaction. The SEM morphology shows clearly that the sorbent pores were filled with reaction products after carbonation reaction, and became much denser than before. The N2 adsorption-desorption isotherms indicated that the CaAc2-CaO and CaCO3-CaO sorbents have higher specific surface area. lar2er oore volume and anoropriate pore size distribution than that of CaO-CaO and Ca(OH)2-CaO. 展开更多
关键词 CO2 capture carbonation reaction fixed-bed reactor multicycle reaction
下载PDF
Facile synthesis of microporous carbonaceous materials derived from a covalent triazine polymer for CO2 capture 被引量:2
16
作者 Pillaiyar Puthiaraj Wha-Seung Ahn 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2017年第5期965-971,共7页
Highly porous nitrogen-doped carbon materials were synthesized by the carbonization of a low-cost porous covalent triazine polymer, PCTP-3, which had been synthesized by the AlClcatalyzed FriedelCrafts reaction of rea... Highly porous nitrogen-doped carbon materials were synthesized by the carbonization of a low-cost porous covalent triazine polymer, PCTP-3, which had been synthesized by the AlClcatalyzed FriedelCrafts reaction of readily available monomers. The nature of the bond and structure of the resulting materials were confirmed using various spectroscopic methods, and the effects of KOH activation on the textural properties of the porous carbon materials were also examined. The KOH-activated porous carbon(aPCTP-3c) materials possessed a high surface area of 2271 mgand large micro/total pore volumes of 0.87/0.95 cmg, respectively, with narrower micropore size distributions than the porous carbon prepared without activation(PCTP-3c). The aPCTP-3c exhibited the best COuptakes of 284.5 and 162.3 mg gand CHuptakes of 39.6 and 25.9 mg gat 273 and 298 K/1 bar, respectively, which are comparable to the performance of some benchmark carbon materials under the same conditions. The prepared materials exhibited high CO/Nselectivity and could be regenerated easily. 展开更多
关键词 Porous carbons Covalent triazine polymer carbonIZATION CO2 capture Selectivity
下载PDF
Immobilization of carbonic anhydrase for facilitated CO2 capture and separation 被引量:4
17
作者 Zhenhua Wu Yan Nan +3 位作者 Yang Zhao Xueying Wang Shouying Huang Jiafu Shi 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2020年第11期2817-2831,共15页
Carbonic anhydrase(CA)as a typical metalloenzyme in biological system can accelerate the hydration/dehydration of carbon dioxide(CO2,the major components of greenhouse gases),which performer with high selectivity,envi... Carbonic anhydrase(CA)as a typical metalloenzyme in biological system can accelerate the hydration/dehydration of carbon dioxide(CO2,the major components of greenhouse gases),which performer with high selectivity,environmental friendliness and superior efficiency.However,the free form of CA is quite expensive(~RMB 3000/100 mg),unstable,and non-reusable as the free form of CA is not easy for recovery from the reaction environment,which severely limits its large-scale industrial applications.The immobilization may solve these problems at the same time.In this context,many efforts have been devoted to improving the chemical and thermal stabilities of CA through immobilization strategy.Very recently,a wide range of available inorganic,organic and hybrid compounds have been explored as carrier materials for CA immobilization,which could not only improve the tolerance of CA in hazardous environments,but also improve the efficiency and recovery to reduce the cost of large-scale application of CA.Several excellent reviews about immobilization methods and application potential of CA have been published.By contrast,in our review,we stressed on the way to better retain the biocatalytic activity of immobilized CA system based on different carrier materials and to solve the problems facing in practical operations well.The concluding remarks are presented with a perspective on constructing efficient CO2 conversion systems through rational combining CA and advanced carrier materials. 展开更多
关键词 carbon dioxide carbonic anhydrase Enzyme immobilization capture and separation Carrier materials
下载PDF
Research progress of CO_(2) capture and mineralization based on natural minerals
18
作者 Chenguang Qian Chunquan Li +5 位作者 Peng Huang Jialin Liang Xin Zhang Jifa Wang Jianbing Wang Zhiming Sun 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第6期1208-1227,共20页
Natural minerals,such as kaolinite,halloysite,montmorillonite,attapulgite,bentonite,sepiolite,forsterite,and wollastonite,have considerable potential for use in CO_(2) capture and mineralization due to their abundant ... Natural minerals,such as kaolinite,halloysite,montmorillonite,attapulgite,bentonite,sepiolite,forsterite,and wollastonite,have considerable potential for use in CO_(2) capture and mineralization due to their abundant reserves,low cost,excellent mechanical prop-erties,and chemical stability.Over the past decades,various methods,such as those involving heat,acid,alkali,organic amine,amino sil-ane,and ionic liquid,have been employed to enhance the CO_(2) capture performance of natural minerals to attain high specific surface area,a large number of pore structures,and rich active sites.Future research on CO_(2) capture by natural minerals will focus on the full utiliza-tion of the properties of natural minerals,adoption of suitable modification methods,and preparation of composite materials with high specific surface area and rich active sites.In addition,we provide a summary of the principle and technical route of direct and indirect mineralization of CO_(2) by natural minerals.This process uses minerals with high calcium and magnesium contents,such as forsterite(Mg_(2)SiO_(4)),serpentine[Mg_(3)Si_(2)O(OH)_(4)],and wollastonite(CaSiO_(3)).The research status of indirect mineralization of CO_(2) using hydro-chloric acid,acetic acid,molten salt,and ammonium salt as media is also introduced in detail.The recovery of additives and high-value-added products during the mineralization process to increase economic benefits is another focus of future research on CO_(2) mineralization by natural minerals. 展开更多
关键词 natural mineral carbon dioxide capture MODIFICATION composite material carbon dioxide mineralization
下载PDF
Superb VOCs capture engineering carbon adsorbent derived from shaddock peel owning uncompromising thermal-stability and adsorption property 被引量:3
19
作者 Fu Yang Wenhao Li +8 位作者 Rui Ou Yutong Lu Xuexue Dong Wenlong Tu Wenjian Zhu Xuyu Wang Lulu Li Aihua Yuan Jianming Pan 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2022年第7期120-133,共14页
High applied thermal-stability and superior structural property for activated carbon adsorbent are extremely promising,which also is the determining short slab in volatile organic compounds(VOCs)adsorption application... High applied thermal-stability and superior structural property for activated carbon adsorbent are extremely promising,which also is the determining short slab in volatile organic compounds(VOCs)adsorption applications.Herein,we develop the outstanding engineering carbon adsorbents from waste shaddock peel which affords greatly-enhanced thermal-stability and super structural property(S_(Lang)=4962.6 m2·g^(-1),Vmicro=1.67 cm^(3)·g^(-1)).Such character endows the obtained adsorbent with ultrahigh adsorption capture performance of VOCs specific to benzene(16.58 mmol·g^(-1))and toluene(15.50 mmol·g^(-1),far beyond traditional zeolite and activated carbon even MOFs materials.The structural expression characters were accurately correlated with excellent adsorption efficiency of VOCs by studying synthetic factor-controlling comparative samples.Ulteriorly,adsorption selectivity prediction at different relative humidity was demonstrated through DIH(difference of the isosteric heats),exceedingly highlighting great superiority(nearly sixfold)in selective adsorption of toluene compared to volatile benzene.Our findings provide the possibility for practical industrial application and fabrication of waste biomass-derived outstanding biochar adsorbent in the environmental treatment of threatening VOCs pollutants. 展开更多
关键词 THERMAL-STABILITY carbon absorbent VOCS Shaddock peel capture
下载PDF
Improving Prediction Accuracy of a Rate-Based Model of an MEA-BasedCarbon Capture Process for Large-Scale Commercial Deployment 被引量:2
20
作者 Xiaobo Luo Meihong Wang 《Engineering》 SCIE EI 2017年第2期232-243,共12页
Carbon capture and storage (CCS) technology will play a critical role in reducing anthropogenic carbondioxide (CO2) emission from fossil-fired power plants and other energy-intensive processes. However, theincreme... Carbon capture and storage (CCS) technology will play a critical role in reducing anthropogenic carbondioxide (CO2) emission from fossil-fired power plants and other energy-intensive processes. However, theincrement of energy cost caused by equipping a carbon capture process is the main barrier to its commer-cial deployment. To reduce the capital and operating costs of carbon capture, great efforts have been madeto achieve optimal design and operation through process modeling, simulation, and optimization. Accuratemodels form an essential foundation for this purpose. This paper presents a study on developing a moreaccurate rate-based model in Aspen Plus for the monoethanolamine (MEA)-based carbon capture processby multistage model validations. The modeling framework for this process was established first. The steady-state process model was then developed and validated at three stages, which included a thermodynamicmodel, physical properties calculations, and a process model at the pilot plant scale, covering a wide rangeof pressures, temperatures, and CO2 loadings. The calculation correlations of liquid density and interfacialarea were updated by coding Fortran subroutines in Aspen Plus. The validation results show that the cor-relation combination for the thermodynamic model used in this study has higher accuracy than those ofthree other key publications and the model prediction of the process model has a good agreement with thepilot plant experimental data. A case study was carried out for carbon capture from a 250 MWe combinedcycle gas turbine (CCGT) power plant. Shorter packing height and lower specific duty were achieved usingthis accurate model. 展开更多
关键词 PROCESS modeling Model validation MONOETHANOLAMINE carbon capture Combined cycle gas TURBINE power plant carbon capture and storage
下载PDF
上一页 1 2 87 下一页 到第
使用帮助 返回顶部