Solvent-free polyurethanes are synthesized under certain conditions via a rapid reaction between liquid prepolymers.During this process the molecular weight of the polymer is rapidly increased to produce polymeric mat...Solvent-free polyurethanes are synthesized under certain conditions via a rapid reaction between liquid prepolymers.During this process the molecular weight of the polymer is rapidly increased to produce polymeric materials containing a carbamate-based structure at a very fast rate.The organic solvents are completely avoided in the solvent-free polyurethane synthesis process,thus avoiding all the problems associated with the use of organic solvents.Solvent-free polyurethane synthetic leather is extruded directly without adding solvents in the production and processing process,which has the advantages of low VOC emission and environmentally friendly.This review brings together theoretical and experimental research on the application and synthesis and preparation of solvent-free polyurethanes to generate an understanding of the theory and synthesis and preparation techniques associated with solvent-free polyurethanes.The review includes(i)the application and development direction of solvent-free polyurethane,(ii)an overview of the technology of solvent-free polyurethane synthetic leather preparation,(iii)a study of the modification and synthesis of solvent-free polyurethane prepolymers,(iv)a summary of the technology of rapid foam forming of solvent-free polyurethane and its influencing factors,(v)a review of the technology of solvent-free polyurethane synthetic leather preparation.In addition to the review,a corresponding overview of the theoretical and experimental advances in solvent-free delayed foaming technology in recent years and a summary of the technology and experience in the preparation of solvent-free polyurethanes are also presented.展开更多
Mordenite with different Si/Al ratios were synthesized by solvent-free method and used for dimethyl ether(DME)carbonylation reaction.The influence of Si/Al ratio in the feedstock on the structure,porosity and acid sit...Mordenite with different Si/Al ratios were synthesized by solvent-free method and used for dimethyl ether(DME)carbonylation reaction.The influence of Si/Al ratio in the feedstock on the structure,porosity and acid sites were systematically investigated.The characterization results showed that with the increase of Si/Al ratio in the feedstock,part of silicon species fail to enter the skeleton and the specific surface area and pore volume of the samples decreased.The amount of weak acid and medium strong acid decreased alongside with the increasing Si/Al ratio,and the amount of strong acid slightly increased.The Al atoms preferentially enter the strong acid sites in the 8 member ring(MR)channel during the crystallization process.The high Si/Al ratio sample had more acid sites located in the 8 MR channel,leading to more active sites for carbonylation reaction and higher catalytic performance.Appropriately increasing the Si/Al ratio was beneficial for the improvement of carbonylation reaction activity over the mordenite(MOR)catalyst.展开更多
A nonionic waterborne polyurethane(WPU) was synthesized by the self-emulsification method using polyether diol(N220),isophorone diisocyanate(IPDI),trimethylolpropane poly(ethylene glycol monomethyl ether)(N120),1,4-bu...A nonionic waterborne polyurethane(WPU) was synthesized by the self-emulsification method using polyether diol(N220),isophorone diisocyanate(IPDI),trimethylolpropane poly(ethylene glycol monomethyl ether)(N120),1,4-butanediol(BDO) and trimethylolpropane(TMP) as the main materials.The effects of the NCO/OH ratio on the emulsion and film properties of NWPU were explored.The experimental results show that the NWPU prepared at an NCO/OH ratio of 1.1 has good emulsion stability and easy film formation,and the resultant film was elastic,soft,and transparent.The sample was used for wool finishing and the application performance was evaluated.When the NWPU dosage reached 40 g·L^(-1),the fabric area felt shrinkage rate reduced from 8.97% to 4.75%,the pilling rating raised from grade 2-3 to grade 4,and the whiteness value only decreased by 3.87%.展开更多
Porous materials are widely used in the field of protection because of their excellent energy absorption characteristics.In this work,a series of polyurethane microscopic models are established and the effect of poros...Porous materials are widely used in the field of protection because of their excellent energy absorption characteristics.In this work,a series of polyurethane microscopic models are established and the effect of porosity on the shock waves is studied with classical molecular dynamics simulations.Firstly,shock Hugoniot relations for different porosities are obtained,which compare well with the experimental data.The pores collapse and form local stress wave,which results in the complex multi-wave structure of the shock wave.The microstructure analysis shows that the local stress increases and the local velocity decreases gradually during the process of pore collapse to complete compaction.Finally,it leads to stress relaxation and velocity homogenization.The shock stress peaks can be fitted with two exponential functions,and the amplitude of attenuation coefficient decreases with the increase of density.Besides,the pore collapse under shock or non-shock are discussed by the entropy increase rate of the system.The energy is dissipated mainly through the multiple interactions of the waves under shock.The energy is dissipated mainly by the friction between atoms under non-shock.展开更多
Slurry casting has been used to fabricate lithium-ion battery electrodes for decades,which involves toxic and expensive organic solvents followed by high-cost vacuum drying and electrode calendering.This work presents...Slurry casting has been used to fabricate lithium-ion battery electrodes for decades,which involves toxic and expensive organic solvents followed by high-cost vacuum drying and electrode calendering.This work presents a new manufacturing method using a nonthermal plasma to create inter-particle binding without using any polymeric binding materials,enabling solvent-free manufacturing electrodes with any electrochemistry of choice.The cold-plasma-coating technique enables fabricating electrodes with thickness(>200 pm),high mass loading(>30 mg cm^(-2)),high peel strength,and the ability to print lithium-ion batteries in an arbitrary geometry.This crosscutting,chemistry agnostic,platform technology would increase energy density,eliminate the use of solvents,vacuum drying,and calendering processes during production,and reduce manufacturing cost for current and future cell designs.Here,lithium iron phosphate and lithium cobalt oxide were used as examples to demonstrate the efficacy of the cold-plasma-coating technique.It is found that the mechanical peel strength of cold-plasma-coating-manufactured lithium iron phosphate is over an order of magnitude higher than that of slurry-casted lithium iron phosphate electrodes.Full cells assembled with a graphite anode and the cold-plasma-coating-lithium iron phosphate cathode offer highly reversible cycling performance with a capacity retention of 81.6%over 500 cycles.For the highly conductive cathode material lithium cobalt oxide,an areal capacity of 4.2 mAh cm^(-2)at 0.2 C is attained.We anticipate that this new,highly scalable manufacturing technique will redefine global lithium-ion battery manufacturing providing significantly reduced plant footprints and material costs.展开更多
Aluminum hypophosphite microspheres(AHP) were synthesized by hydrothermal method using NaH2PO2·H2O and AlCl3·6H2O as raw materials, and then the AHP microspheres were polymerized by surface polymerization of...Aluminum hypophosphite microspheres(AHP) were synthesized by hydrothermal method using NaH2PO2·H2O and AlCl3·6H2O as raw materials, and then the AHP microspheres were polymerized by surface polymerization of micro-nanospheres with cyclic cross-linked poly(cyclotriphosphazene-co-4,4'-sulfonyldiphenol)(PZS). A new organic-inorganic poly(phosphonitrile)-modified aluminum hypophosphite microspheres(PZS-AHP) were synthesized by encapsulation and applied to flame retardant thermoplastic polyurethane(TPU). The microstructure and chemical composition of the PZS-AHP microsphere were characterized by scanning electron microscopy, transmission electron microscopy, Fourier transform infrared spectroscopy and X-ray spectroscopy. The thermal stability of PZS-AHP microsphere was explored with thermogravimetric analysis. Thermogravimetric data indicate that the PZS-AHP microspheres have excellent thermal stability. The thermal and flame-retarding properties of the TPU composites were evaluated by thermogravimetric(TG), limited oxygen index tests(LOI), and cone calorimeter test(CCT). The TPU composite achieved vertical burning(UL-94) V-0 grade and LOI value reached 29.2% when 10 wt% PZS-AHP was incorporated. Compared with those of pure TPU, the peak heat release rate(pHRR) and total heat release(THR) of TPU/10%PZS-AHP decreased by 82.2% and 42.5%, respectively. The results of CCT indicated that PZS-AHP microsphere could improve the flame retardancy of TPU composites.展开更多
Bedding slope is a typical heterogeneous slope consisting of different soil/rock layers and is likely to slide along the weakest interface.Conventional slope protection methods for bedding slopes,such as retaining wal...Bedding slope is a typical heterogeneous slope consisting of different soil/rock layers and is likely to slide along the weakest interface.Conventional slope protection methods for bedding slopes,such as retaining walls,stabilizing piles,and anchors,are time-consuming and labor-and energy-intensive.This study proposes an innovative polymer grout method to improve the bearing capacity and reduce the displacement of bedding slopes.A series of large-scale model tests were carried out to verify the effectiveness of polymer grout in protecting bedding slopes.Specifically,load-displacement relationships and failure patterns were analyzed for different testing slopes with various dosages of polymer.Results show the great potential of polymer grout in improving bearing capacity,reducing settlement,and protecting slopes from being crushed under shearing.The polymer-treated slopes remained structurally intact,while the untreated slope exhibited considerable damage when subjected to loads surpassing the bearing capacity.It is also found that polymer-cemented soils concentrate around the injection pipe,forming a fan-shaped sheet-like structure.This study proves the improvement of polymer grouting for bedding slope treatment and will contribute to the development of a fast method to protect bedding slopes from landslides.展开更多
Rice husk powder was used as a carbon source in a high-temperature carbonization reaction for the production of rice husk ash(RHA).Under the catalysis of ferric nitrate,onion-like carbon(OLC)nanomaterial with a partic...Rice husk powder was used as a carbon source in a high-temperature carbonization reaction for the production of rice husk ash(RHA).Under the catalysis of ferric nitrate,onion-like carbon(OLC)nanomaterial with a particle size of approximately 200 nm was successfully prepared and incorporated into waterborne polyurethane(WPU).The tribological properties of the coatings were determined using a controlled-atmosphere tribometer(WMT-2E)under dry-friction conditions.Following the friction test,the friction mechanism was investigated by characterizing the abrasive spot surfaces of the test samples using 3D laser microscopy and scanning electron microscopy/energy dispersive spectrometer.The final results demonstrated that the thermal stability of WPU composite coatings containing various concentrations of OLC nanoparticles was significantly enhanced,binding forces between coatings and steel sheets increased,and hardness improved compared to pure WPU coatings.Tribological tests revealed a notable enhancement in the anti-wear properties of WPU coatings due to the presence of OLC particles.Specifically,the wear rate of the 1.5%OLC/WPU coating was reduced by 45.3%.The coating’s anti-wear mechanism was attributed to the improvement in the mechanical properties of WPU due to OLC,as well as OLC’s participation in the formation of a transfer film under induced friction,which protected the matrix.展开更多
Polyurethane/desulfurization ash(PU/DA)composites were synthesized using"one-pot method",with the incorporation of a silane coupling agent(KH550)as a"molecular bridge"to facilitate the integration ...Polyurethane/desulfurization ash(PU/DA)composites were synthesized using"one-pot method",with the incorporation of a silane coupling agent(KH550)as a"molecular bridge"to facilitate the integration of DA as hard segments into the PU molecular chain.The effects of DA content(φ)on the mechanical properties,thermal stability,and hydrophobicity of PU,both before and after the addition of KH550,were thoroughly examined.The results of microscopic mechanism analysis confirmed that KH550 chemically modified the surface of DA,facilitating its incorporation into the polyurethane molecular chain,thereby significantly enhancing the compatibility and dispersion of DA within the PU matrix.When the mass fraction of modified DA(MDA)reached 12%,the mechanical properties,thermal stability,and hydrophobicity of the composites were substantially improved,with the tensile strength reaching 14.9 MPa,and the contact angle measuring 100.6°.展开更多
In recent years,explosion shock wave has been considered as a signature injury of the current military conflicts.Although strong shock wave is lethal to the human body,weak shock wave can cause many more lasting conse...In recent years,explosion shock wave has been considered as a signature injury of the current military conflicts.Although strong shock wave is lethal to the human body,weak shock wave can cause many more lasting consequences.To investigate the protection ability and characteristics of flexible materials and structures under weak shock wave loading,the blast wave produced by TNT explosive is loaded on the polyurethane foam with the density of 200.0 kg/m3(F-200)and 400.0 kg/m3(F-400),polyurea with the density of 1100.0 kg/m^(3)(P-1100)and structures composed of the two materials,which are intended for individual protection.Experimental results indicate that the shock wave is attenuated to weak pressure disturbance after interacting with the flexible materials which are not damaged.The shock wave protective capability of single-layer materials is dependent on their thickness,density and microscopic characteristics.The overpressure,maximum pressure rise rate and impulse of transmitted wave decrease exponentially with increase in sample thickness.For the same thickness,F-400 provides better protective capability than F-200 while P-1100 shows the best protective capability among the three materials.In this study,as the materials are not destroyed,F-200 with a thickness more than10.0 mm,F-400 with a thickness more than 4.0 mm,and P-1100 with a thickness more than 1.0 mm can attenuate the overpressure amplitude more than 90.0%.Further,multi-layer flexible composites are designed.Different layer layouts of designed structures and layer thickness of the single-layer materials can affect the protective performance.Within the research range,the structure in which polyurea is placed on the impact side shows the optimal shock wave protective performance,and the thicknesses of polyurea and polyurethane foam are 1.0 mm and 4.0 mm respectively.The overpressure attenuation rate reached maximum value of 93.3%and impulse attenuation capacity of this structure are better than those of single-layer polyurea and polyurethane foam with higher areal density.展开更多
The purpose of this research study was to investigate the properties of polyurethane coatings based on lignin nano-particles.For this purpose,the prepared coatings were applied to pine wood surfaces and weathered arti...The purpose of this research study was to investigate the properties of polyurethane coatings based on lignin nano-particles.For this purpose,the prepared coatings were applied to pine wood surfaces and weathered artificially.Subsequently,color and gloss of the coatings were measured before and after the weathering test.Field emission scanning electron microscopy(FE-SEM)micrographs prepared from the coatings showed that the average size of nano-particles in the polyurethane substrate was approximately 500 nm.Nuclear magnetic resonance(13C-NMR)spectroscopy showed that strong urethane bonds were formed in the nano-lignin-based polyurethane.Differential calorimetric analysis(DSC)test revealed that the glass-transition temperature(Tg)of lignin nanoparticles modified with diethylenetriamine(DETA)was 112.8℃ and Tg of lignin nano-particles modified with ethylenediamine(EDA)was 102.5℃,which is lower than the Tg of un-modified lignin(114.6℃)and lignin modified with DETA(126.8℃)and lignin modified with EDA(131.3℃).The coatings modified with lignin nano-particles had a greater change in gloss.The lignin nano-particles in the modified coating are trapping hydroxyl radicals which reduces photoactivity and yellowing of the polyurethane by about 3 times compared to unmodified polyurethane coatings.After weathering test,the nano-lignin-based coating had a rougher surface with a lower contact angle(0.78°)compared to the unmodified polyurethane coating(0.85°).展开更多
Cryogenic insulation material rigid polyurethane(PU)foams were developed using bio-based and recycled feedstock.Polyols obtained from tall oil fatty acids produced as a side stream of wood biomass pulping and recycled...Cryogenic insulation material rigid polyurethane(PU)foams were developed using bio-based and recycled feedstock.Polyols obtained from tall oil fatty acids produced as a side stream of wood biomass pulping and recycled polyethylene terephthalate were used to develop rigid PU foam formulations.The 4th generation physical blowing agents with low global warming potential and low ozone depletion potential were used to develop rigid PU foam cryogenic insulation with excellent mechanical and thermal properties.Obtained rigid PU foams had a thermal conductivity coefficient as low as 0.0171 W/m·K and an apparent density of 37-40 kg/m^(3).The developed rigid PU foams had anisotropic compression strength properties,which were higher parallel to the foaming direction.Moreover,the compression strength was also influenced by the type of applied bio-based polyol.The bio-based polyols with higher OH group functionality delivered higher crosslinking density of polymer matrix;thus,the mechanical properties were also higher.The mechanical strength of the foams increased when materials were tested at liquid nitrogen temperature due to the stiffening of the polymer matrix.The thermal properties of the developed materials were determined using differential scanning calorimetry,dynamic mechanical analysis,and thermogravimetric analysis methods.Lastly,the developed rigid PU foams had good adhesion to the aluminium substrate before and after applying cyroshock and an excellent safety coefficient of 4-5.Rigid PU foams developed using Solstice LBA delivered adhesion strength of~0.5 MPa and may be considered for application as cryogenic insulation in the aerospace industry.展开更多
Lignin is the most abundant aromatic natural polymer,and receiving great attention in replacing various petro-leum-based polymers.The aim of this study is to investigate the feasibility of technical lignin as a polyol...Lignin is the most abundant aromatic natural polymer,and receiving great attention in replacing various petro-leum-based polymers.The aim of this study is to investigate the feasibility of technical lignin as a polyol for the synthesis of non-isocyanate polyurethane(NIPU)adhesives to substitute current polyurethane(PU)adhesives that have been synthesized with toxic isocyanate and polyols.Crude hardwood kraft lignin(C-HKL)was extracted from black liquor from a pulp mill followed by acetone fractionation to obtain acetone soluble-HKL(AS-HKL).Then,C-HKL,AS-HKL,and softwood sodium lignosulfonate(LS)were used for the synthesis of technical lignin-based NIPU adhesives through carbonation and polyamination and silane as a cross-linker.Their adhesion per-formance was determined for plywood.FTIR spectra showed the formation of urethane bonds and the reaction between lignin and silane.The NIPU adhesives prepared with C-HKL showed the highest adhesion strength among the three lignin-based NIPU adhesives.As the silane addition level increased,the adhesion strength of NIPU adhesives increased whereas formaldehyde emission decreased for all NIPU adhesives prepared.These results indicate that NIPU adhesives based on technical kraft lignin have a great potential as polyol for the synth-esis of bio-based NIPU adhesives for wood bonding.展开更多
Single-ion conductors based on covalent organic frameworks(COFs)have garnered attention as a potential alternative to currently prevalent inorganic ion conductors owing to their structural uniqueness and chemical vers...Single-ion conductors based on covalent organic frameworks(COFs)have garnered attention as a potential alternative to currently prevalent inorganic ion conductors owing to their structural uniqueness and chemical versatility.However,the sluggish Li+conduction has hindered their practical applications.Here,we present a class of solvent-free COF single-ion conductors(Li-COF@P)based on weak ion-dipole interaction as opposed to traditional strong ion-ion interaction.The ion(Li+from the COF)-dipole(oxygen from poly(ethylene glycol)diacrylate embedded in the COF pores)interaction in the Li-COF@P promotes ion dissociation and Li+migration via directional ionic channels.Driven by this single-ion transport behavior,the Li-COF@P enables reversible Li plating/stripping on Li-metal electrodes and stable cycling performance(88.3%after 2000 cycles)in organic batteries(Li metal anode||5,5’-dimethyl-2,2’-bis-p-benzoquinone(Me2BBQ)cathode)under ambient operating conditions,highlighting the electrochemical viability of the Li-COF@P for all-solid-state organic batteries.展开更多
The polyurethane foam(PU)compressible layer is a viable solution to the problem of damage to the secondary lining in squeezing tunnels.Nevertheless,the mechanical behaviour of the multi-layer yielding supports has not...The polyurethane foam(PU)compressible layer is a viable solution to the problem of damage to the secondary lining in squeezing tunnels.Nevertheless,the mechanical behaviour of the multi-layer yielding supports has not been thoroughly investigated.To fill this gap,large-scale model tests were conducted in this study.The synergistic load-bearing mechanics were analyzed using the convergenceconfinement method.Two types of multi-layer yielding supports with different thicknesses(2.5 cm,3.75 cm and 5 cm)of PU compressible layers were investigated respectively.Digital image correlation(DIC)analysis and acoustic emission(AE)techniques were used for detecting the deformation fields and damage evolution of the multi-layer yielding supports in real-time.Results indicated that the loaddisplacement relationship of the multi-layer yielding supports could be divided into the crack initiation,crack propagation,strain-hardening,and failure stages.Compared with those of the stiff support,the toughness,deformability and ultimate load of the yielding supports were increased by an average of 225%,61%and 32%,respectively.Additionally,the PU compressible layer is positioned between two primary linings to allow the yielding support to have greater mechanical properties.The analysis of the synergistic bearing effect suggested that the thickness of PU compressible layer and its location significantly affect the mechanical properties of the yielding supports.The use of yielding supports with a compressible layer positioned between the primary and secondary linings is recommended to mitigate the effects of high geo-stress in squeezing tunnels.展开更多
Based on commercially available polyvinyl alcohol (PVA) stabilised polyvinyl acetate (PVAc), emulsion adhesives are neither heat nor moisture-resistant and show weak strength at high relative humidity and high tempera...Based on commercially available polyvinyl alcohol (PVA) stabilised polyvinyl acetate (PVAc), emulsion adhesives are neither heat nor moisture-resistant and show weak strength at high relative humidity and high temperatures. Pre- or post-crosslinking is another method used to manufacture a conventional vinyl-based homopolymers or copolymers system with improved water resistance. Vinyl neodecanoate (VeoVa), N-methylolacrylamide (NMA), Methacrylamide, methacrylic acid (MAA), and other self-crosslinking comonomers are typically inserted to produce highly water-resistant vinyl based homopolymers or copolymers. Additionally, organic crosslinkers like glyoxal, glutaraldehyde, citric acid, tartaric acid, and the like, as well as inorganic crosslinkers like acidic metal salts like aluminium chloride, aluminium nitrate, boric acid, and the like, can be used to prepare the highly water-resistant vinyl based homopolymers or copolymers. It is also possible to combine the self-crosslinking comonomers with the organic crosslinkers. Recently, a different hybrid chemistry has been developed that improves lap shear strength, has outstanding water resistance, good durability, and doesn’t require any additional crosslinker agents. Two distinct polymers were combined to develop hybrid polymers. They usually involve mixing an organic polymer with a polymer. There are many capping agents that are used for polyurethanes to produce acrylics that are capped with polyurethane and used as an oligomer in PVAc wood glue. Here, in this paper, we reviewed the different hybrid chemistry based on polyurethane chemistry for wood bonding applications.展开更多
Silane coupling agent KH560 was used to modify the surface of nano-α-Al<sub>2</sub>O<sub>3</sub> in ethanol-aqueous solution with different proportions. The particle size of nano-α-Al<sub&...Silane coupling agent KH560 was used to modify the surface of nano-α-Al<sub>2</sub>O<sub>3</sub> in ethanol-aqueous solution with different proportions. The particle size of nano-α-Al<sub>2</sub>O<sub>3</sub> was determined by nano-particle size analyzer, and the effects of nano-α-Al<sub>2</sub>O<sub>3</sub> content, ethanol-aqueous solution ratio and KH560 dosage on the dispersion and particle size of nano-α-Al<sub>2</sub>O<sub>3</sub> were investigated. The material structure before and after modification was determined by Fourier transform infrared spectroscopy (FTIR). Aqueous polyurethane resin and inorganic components are combined with modified nano-α-Al<sub>2</sub>O<sub>3</sub> dispersion to form chromium-free passivation solution. The solution is coated on the galvanized sheet, the adhesion and surface hardness are tested, the bonding strength of the coating and the surface hardness of the substrate are discussed. The corrosion resistance and surface morphology of the matrix were investigated by electrochemical test, neutral salt spray test and scanning electron microscope test. The chromium-free passivation film formed after the modification of nano-α-Al<sub>2</sub>O<sub>3</sub> increases the surface hardness of galvanized sheet by about 85%. The corrosion resistance of the film is better than that of a single polyurethane film. The results show that the surface hardness and corrosion resistance of polyurethane resin composite passivation film are significantly improved by the introduction of nano-α-Al<sub>2</sub>O<sub>3</sub>.展开更多
By using HDI and TMP as the main raw materials,polyethylene glycol 400(PEG400)is used as a non-ionic hydrophilic modifier,and sodium hydroxyethyl sulfonate is used as an ionic hydrophilic modifier to synthesize a dual...By using HDI and TMP as the main raw materials,polyethylene glycol 400(PEG400)is used as a non-ionic hydrophilic modifier,and sodium hydroxyethyl sulfonate is used as an ionic hydrophilic modifier to synthesize a dual hydrophilic modified polyurethane curing agent.Research revealed that introducing PEG400 for hydrophilic chain segments and sodium hydroxyethyl sulfonate for hydrophilic ionic groups in the polyurethane curing agent component leads to a uniform distribution of hydrophilic components,significantly enhancing compatibility with the aqueous polyol component,and results in excellent film performance.The synthesis process and film were characterized using Fourier transform infrared spectroscopy and high-resolution scanning electron microscopy in the study.展开更多
This paper examines the application of polyurethane curing technology in the construction of railway track beds,with a specific focus on its implementation in China’s rapidly developing railway infrastructure.The stu...This paper examines the application of polyurethane curing technology in the construction of railway track beds,with a specific focus on its implementation in China’s rapidly developing railway infrastructure.The study begins by identifying the limitations of traditional ballasted track beds,especially under the demands of high-speed and heavyload railways.It then methodically analyzes the advantages of polyurethane-cured track beds,highlighting their improved mechanical properties,including enhanced stability and durability.The paper further explores the benefits of transitioning to prefabricated polyurethane track beds,emphasizing significant cost reductions,better construction quality,and enhanced maintainability.Through a detailed review of experimental data and practical applications,the paper demonstrates the efficacy of polyurethane track beds in various railway settings.A critical part of the research involves optimizing the structural parameters of polyurethane track beds to achieve the best balance of mechanical and damping properties.The conclusion of the paper underscores the potential of polyurethane curing technology as a transformative approach to railway track bed construction,offering a solution to the challenges posed by traditional methods and aligning with the evolving needs of modern railways.展开更多
Paper-based devices have attracted extensive attention due to the growing demand for disposable flexible electronics.Herein,we integrate semiconducting devices on cellulose paper substrate through a simple abrasion te...Paper-based devices have attracted extensive attention due to the growing demand for disposable flexible electronics.Herein,we integrate semiconducting devices on cellulose paper substrate through a simple abrasion technique that yields high-performance photodetectors.A solvent-free WS_(2) film deposited on paper favors an effective electron-hole separation and hampers recombination.The as-prepared paper-based WS2 photodetectors exhibit a sensitive photoresponse over a wide spectral range spanning from ultraviolet(365 nm)to near-infrared(940 nm).Their responsivity value reaches up to~270 mA W^(−1) at 35 V under a power density of 35 mW cm^(−2).A high performance photodetector was achieved by controlling the environmental exposure as the ambient oxygen molecules were found to decrease the photoresponse and stability of the WS_(2) photodetector.Furthermore,we have built a spectrometer using such a paperbased WS_(2) device as the photodetecting component to illustrate its potential application.The present work could promote the development of cost-effective disposable photodetection devices.展开更多
基金supported by the Fujian STS plan supporting project(Nos.2019T3005,2019T3014,2019T3034)Key deployment project of the Chinese Academy of Sciences(ZDRW-CN-2016-1)+1 种基金the 100-Talent Program of the Chinese Academy of Sciencesthe Open Fund of Provincial Key Laboratory of Eco-Industrial Green Technology,Wuyi University(WYKF2019-7)。
文摘Solvent-free polyurethanes are synthesized under certain conditions via a rapid reaction between liquid prepolymers.During this process the molecular weight of the polymer is rapidly increased to produce polymeric materials containing a carbamate-based structure at a very fast rate.The organic solvents are completely avoided in the solvent-free polyurethane synthesis process,thus avoiding all the problems associated with the use of organic solvents.Solvent-free polyurethane synthetic leather is extruded directly without adding solvents in the production and processing process,which has the advantages of low VOC emission and environmentally friendly.This review brings together theoretical and experimental research on the application and synthesis and preparation of solvent-free polyurethanes to generate an understanding of the theory and synthesis and preparation techniques associated with solvent-free polyurethanes.The review includes(i)the application and development direction of solvent-free polyurethane,(ii)an overview of the technology of solvent-free polyurethane synthetic leather preparation,(iii)a study of the modification and synthesis of solvent-free polyurethane prepolymers,(iv)a summary of the technology of rapid foam forming of solvent-free polyurethane and its influencing factors,(v)a review of the technology of solvent-free polyurethane synthetic leather preparation.In addition to the review,a corresponding overview of the theoretical and experimental advances in solvent-free delayed foaming technology in recent years and a summary of the technology and experience in the preparation of solvent-free polyurethanes are also presented.
基金supported by China National Natural Science Foundation(22008260,21908123)。
文摘Mordenite with different Si/Al ratios were synthesized by solvent-free method and used for dimethyl ether(DME)carbonylation reaction.The influence of Si/Al ratio in the feedstock on the structure,porosity and acid sites were systematically investigated.The characterization results showed that with the increase of Si/Al ratio in the feedstock,part of silicon species fail to enter the skeleton and the specific surface area and pore volume of the samples decreased.The amount of weak acid and medium strong acid decreased alongside with the increasing Si/Al ratio,and the amount of strong acid slightly increased.The Al atoms preferentially enter the strong acid sites in the 8 member ring(MR)channel during the crystallization process.The high Si/Al ratio sample had more acid sites located in the 8 MR channel,leading to more active sites for carbonylation reaction and higher catalytic performance.Appropriately increasing the Si/Al ratio was beneficial for the improvement of carbonylation reaction activity over the mordenite(MOR)catalyst.
文摘A nonionic waterborne polyurethane(WPU) was synthesized by the self-emulsification method using polyether diol(N220),isophorone diisocyanate(IPDI),trimethylolpropane poly(ethylene glycol monomethyl ether)(N120),1,4-butanediol(BDO) and trimethylolpropane(TMP) as the main materials.The effects of the NCO/OH ratio on the emulsion and film properties of NWPU were explored.The experimental results show that the NWPU prepared at an NCO/OH ratio of 1.1 has good emulsion stability and easy film formation,and the resultant film was elastic,soft,and transparent.The sample was used for wool finishing and the application performance was evaluated.When the NWPU dosage reached 40 g·L^(-1),the fabric area felt shrinkage rate reduced from 8.97% to 4.75%,the pilling rating raised from grade 2-3 to grade 4,and the whiteness value only decreased by 3.87%.
基金financial support from National Natural Science Foundation of China(Grant No.12172325)。
文摘Porous materials are widely used in the field of protection because of their excellent energy absorption characteristics.In this work,a series of polyurethane microscopic models are established and the effect of porosity on the shock waves is studied with classical molecular dynamics simulations.Firstly,shock Hugoniot relations for different porosities are obtained,which compare well with the experimental data.The pores collapse and form local stress wave,which results in the complex multi-wave structure of the shock wave.The microstructure analysis shows that the local stress increases and the local velocity decreases gradually during the process of pore collapse to complete compaction.Finally,it leads to stress relaxation and velocity homogenization.The shock stress peaks can be fitted with two exponential functions,and the amplitude of attenuation coefficient decreases with the increase of density.Besides,the pore collapse under shock or non-shock are discussed by the entropy increase rate of the system.The energy is dissipated mainly through the multiple interactions of the waves under shock.The energy is dissipated mainly by the friction between atoms under non-shock.
基金the financial support from Intecells Inc.via an award number AWD_19-08-0127the support from Paul M.Rady Mechanical Engineering Department at University of Colorado Boulder
文摘Slurry casting has been used to fabricate lithium-ion battery electrodes for decades,which involves toxic and expensive organic solvents followed by high-cost vacuum drying and electrode calendering.This work presents a new manufacturing method using a nonthermal plasma to create inter-particle binding without using any polymeric binding materials,enabling solvent-free manufacturing electrodes with any electrochemistry of choice.The cold-plasma-coating technique enables fabricating electrodes with thickness(>200 pm),high mass loading(>30 mg cm^(-2)),high peel strength,and the ability to print lithium-ion batteries in an arbitrary geometry.This crosscutting,chemistry agnostic,platform technology would increase energy density,eliminate the use of solvents,vacuum drying,and calendering processes during production,and reduce manufacturing cost for current and future cell designs.Here,lithium iron phosphate and lithium cobalt oxide were used as examples to demonstrate the efficacy of the cold-plasma-coating technique.It is found that the mechanical peel strength of cold-plasma-coating-manufactured lithium iron phosphate is over an order of magnitude higher than that of slurry-casted lithium iron phosphate electrodes.Full cells assembled with a graphite anode and the cold-plasma-coating-lithium iron phosphate cathode offer highly reversible cycling performance with a capacity retention of 81.6%over 500 cycles.For the highly conductive cathode material lithium cobalt oxide,an areal capacity of 4.2 mAh cm^(-2)at 0.2 C is attained.We anticipate that this new,highly scalable manufacturing technique will redefine global lithium-ion battery manufacturing providing significantly reduced plant footprints and material costs.
基金Supported by the Opening Project of Hubei Three Gorges Laboratory (No.SK213008)the Innovation Fund of Key Laboratory of Green Chemical Process of Ministry of Education (No.GCXP202109)。
文摘Aluminum hypophosphite microspheres(AHP) were synthesized by hydrothermal method using NaH2PO2·H2O and AlCl3·6H2O as raw materials, and then the AHP microspheres were polymerized by surface polymerization of micro-nanospheres with cyclic cross-linked poly(cyclotriphosphazene-co-4,4'-sulfonyldiphenol)(PZS). A new organic-inorganic poly(phosphonitrile)-modified aluminum hypophosphite microspheres(PZS-AHP) were synthesized by encapsulation and applied to flame retardant thermoplastic polyurethane(TPU). The microstructure and chemical composition of the PZS-AHP microsphere were characterized by scanning electron microscopy, transmission electron microscopy, Fourier transform infrared spectroscopy and X-ray spectroscopy. The thermal stability of PZS-AHP microsphere was explored with thermogravimetric analysis. Thermogravimetric data indicate that the PZS-AHP microspheres have excellent thermal stability. The thermal and flame-retarding properties of the TPU composites were evaluated by thermogravimetric(TG), limited oxygen index tests(LOI), and cone calorimeter test(CCT). The TPU composite achieved vertical burning(UL-94) V-0 grade and LOI value reached 29.2% when 10 wt% PZS-AHP was incorporated. Compared with those of pure TPU, the peak heat release rate(pHRR) and total heat release(THR) of TPU/10%PZS-AHP decreased by 82.2% and 42.5%, respectively. The results of CCT indicated that PZS-AHP microsphere could improve the flame retardancy of TPU composites.
基金supported by the Fujian Science Foundation for Outstanding Youth(Grant No.2023J06039)the National Natural Science Foundation of China(Grant No.41977259 and No.U2005205)Fujian Province natural resources science and technology innovation project(Grant No.KY-090000-04-2022-019)。
文摘Bedding slope is a typical heterogeneous slope consisting of different soil/rock layers and is likely to slide along the weakest interface.Conventional slope protection methods for bedding slopes,such as retaining walls,stabilizing piles,and anchors,are time-consuming and labor-and energy-intensive.This study proposes an innovative polymer grout method to improve the bearing capacity and reduce the displacement of bedding slopes.A series of large-scale model tests were carried out to verify the effectiveness of polymer grout in protecting bedding slopes.Specifically,load-displacement relationships and failure patterns were analyzed for different testing slopes with various dosages of polymer.Results show the great potential of polymer grout in improving bearing capacity,reducing settlement,and protecting slopes from being crushed under shearing.The polymer-treated slopes remained structurally intact,while the untreated slope exhibited considerable damage when subjected to loads surpassing the bearing capacity.It is also found that polymer-cemented soils concentrate around the injection pipe,forming a fan-shaped sheet-like structure.This study proves the improvement of polymer grouting for bedding slope treatment and will contribute to the development of a fast method to protect bedding slopes from landslides.
基金The financial support received from the National Natural Science Foundation of China (52075144)the Anhui Province Natural Science Foundation of China (2008085ME167)+4 种基金the Anhui University Outstanding Young Talents Programs (gxyqZD2020051)The Talent Research Fund of Hefei University (21-22RC33)the Open Project of Anhui Province Engineering Laboratory of Intelligent Demolition Equipment (APELIDE2021B003)the Open Project of Anhui Province Key Laboratory of Critical Friction Pair for Advanced Equipment (LCFP-2404)the Excellent Scientific Research and Innovation Team of Anhui University (2022AH010096)
文摘Rice husk powder was used as a carbon source in a high-temperature carbonization reaction for the production of rice husk ash(RHA).Under the catalysis of ferric nitrate,onion-like carbon(OLC)nanomaterial with a particle size of approximately 200 nm was successfully prepared and incorporated into waterborne polyurethane(WPU).The tribological properties of the coatings were determined using a controlled-atmosphere tribometer(WMT-2E)under dry-friction conditions.Following the friction test,the friction mechanism was investigated by characterizing the abrasive spot surfaces of the test samples using 3D laser microscopy and scanning electron microscopy/energy dispersive spectrometer.The final results demonstrated that the thermal stability of WPU composite coatings containing various concentrations of OLC nanoparticles was significantly enhanced,binding forces between coatings and steel sheets increased,and hardness improved compared to pure WPU coatings.Tribological tests revealed a notable enhancement in the anti-wear properties of WPU coatings due to the presence of OLC particles.Specifically,the wear rate of the 1.5%OLC/WPU coating was reduced by 45.3%.The coating’s anti-wear mechanism was attributed to the improvement in the mechanical properties of WPU due to OLC,as well as OLC’s participation in the formation of a transfer film under induced friction,which protected the matrix.
基金Funded by the National Key Research and Development Project(No.2019YFC1908204)the Guiding Projects in Fujian Province(No.2023H0023)the Fuzhou Science and Technology Plan Project(No.2022-P-012)。
文摘Polyurethane/desulfurization ash(PU/DA)composites were synthesized using"one-pot method",with the incorporation of a silane coupling agent(KH550)as a"molecular bridge"to facilitate the integration of DA as hard segments into the PU molecular chain.The effects of DA content(φ)on the mechanical properties,thermal stability,and hydrophobicity of PU,both before and after the addition of KH550,were thoroughly examined.The results of microscopic mechanism analysis confirmed that KH550 chemically modified the surface of DA,facilitating its incorporation into the polyurethane molecular chain,thereby significantly enhancing the compatibility and dispersion of DA within the PU matrix.When the mass fraction of modified DA(MDA)reached 12%,the mechanical properties,thermal stability,and hydrophobicity of the composites were substantially improved,with the tensile strength reaching 14.9 MPa,and the contact angle measuring 100.6°.
基金supported by the National Natural Science Foundation of China(Grant Nos.12221002,12102233)。
文摘In recent years,explosion shock wave has been considered as a signature injury of the current military conflicts.Although strong shock wave is lethal to the human body,weak shock wave can cause many more lasting consequences.To investigate the protection ability and characteristics of flexible materials and structures under weak shock wave loading,the blast wave produced by TNT explosive is loaded on the polyurethane foam with the density of 200.0 kg/m3(F-200)and 400.0 kg/m3(F-400),polyurea with the density of 1100.0 kg/m^(3)(P-1100)and structures composed of the two materials,which are intended for individual protection.Experimental results indicate that the shock wave is attenuated to weak pressure disturbance after interacting with the flexible materials which are not damaged.The shock wave protective capability of single-layer materials is dependent on their thickness,density and microscopic characteristics.The overpressure,maximum pressure rise rate and impulse of transmitted wave decrease exponentially with increase in sample thickness.For the same thickness,F-400 provides better protective capability than F-200 while P-1100 shows the best protective capability among the three materials.In this study,as the materials are not destroyed,F-200 with a thickness more than10.0 mm,F-400 with a thickness more than 4.0 mm,and P-1100 with a thickness more than 1.0 mm can attenuate the overpressure amplitude more than 90.0%.Further,multi-layer flexible composites are designed.Different layer layouts of designed structures and layer thickness of the single-layer materials can affect the protective performance.Within the research range,the structure in which polyurea is placed on the impact side shows the optimal shock wave protective performance,and the thicknesses of polyurea and polyurethane foam are 1.0 mm and 4.0 mm respectively.The overpressure attenuation rate reached maximum value of 93.3%and impulse attenuation capacity of this structure are better than those of single-layer polyurea and polyurethane foam with higher areal density.
文摘The purpose of this research study was to investigate the properties of polyurethane coatings based on lignin nano-particles.For this purpose,the prepared coatings were applied to pine wood surfaces and weathered artificially.Subsequently,color and gloss of the coatings were measured before and after the weathering test.Field emission scanning electron microscopy(FE-SEM)micrographs prepared from the coatings showed that the average size of nano-particles in the polyurethane substrate was approximately 500 nm.Nuclear magnetic resonance(13C-NMR)spectroscopy showed that strong urethane bonds were formed in the nano-lignin-based polyurethane.Differential calorimetric analysis(DSC)test revealed that the glass-transition temperature(Tg)of lignin nanoparticles modified with diethylenetriamine(DETA)was 112.8℃ and Tg of lignin nano-particles modified with ethylenediamine(EDA)was 102.5℃,which is lower than the Tg of un-modified lignin(114.6℃)and lignin modified with DETA(126.8℃)and lignin modified with EDA(131.3℃).The coatings modified with lignin nano-particles had a greater change in gloss.The lignin nano-particles in the modified coating are trapping hydroxyl radicals which reduces photoactivity and yellowing of the polyurethane by about 3 times compared to unmodified polyurethane coatings.After weathering test,the nano-lignin-based coating had a rougher surface with a lower contact angle(0.78°)compared to the unmodified polyurethane coating(0.85°).
基金funded by projects“Smart Materials,Photonics,Technologies and Engineering Ecosystem(MOTE)”(Contract No.VPP-EM-FOTONIKA-2022/1-0001)“Bio-Based Cryogenic Insulation for Aerospace Application(BioSpace)”(Contract No.4000135271/21/NL/SC).
文摘Cryogenic insulation material rigid polyurethane(PU)foams were developed using bio-based and recycled feedstock.Polyols obtained from tall oil fatty acids produced as a side stream of wood biomass pulping and recycled polyethylene terephthalate were used to develop rigid PU foam formulations.The 4th generation physical blowing agents with low global warming potential and low ozone depletion potential were used to develop rigid PU foam cryogenic insulation with excellent mechanical and thermal properties.Obtained rigid PU foams had a thermal conductivity coefficient as low as 0.0171 W/m·K and an apparent density of 37-40 kg/m^(3).The developed rigid PU foams had anisotropic compression strength properties,which were higher parallel to the foaming direction.Moreover,the compression strength was also influenced by the type of applied bio-based polyol.The bio-based polyols with higher OH group functionality delivered higher crosslinking density of polymer matrix;thus,the mechanical properties were also higher.The mechanical strength of the foams increased when materials were tested at liquid nitrogen temperature due to the stiffening of the polymer matrix.The thermal properties of the developed materials were determined using differential scanning calorimetry,dynamic mechanical analysis,and thermogravimetric analysis methods.Lastly,the developed rigid PU foams had good adhesion to the aluminium substrate before and after applying cyroshock and an excellent safety coefficient of 4-5.Rigid PU foams developed using Solstice LBA delivered adhesion strength of~0.5 MPa and may be considered for application as cryogenic insulation in the aerospace industry.
基金supported by the National Research Foundation(NRF)of Korea,and funded by the Korean Government(MSIT)(Grant No.RS-2023-00240043).
文摘Lignin is the most abundant aromatic natural polymer,and receiving great attention in replacing various petro-leum-based polymers.The aim of this study is to investigate the feasibility of technical lignin as a polyol for the synthesis of non-isocyanate polyurethane(NIPU)adhesives to substitute current polyurethane(PU)adhesives that have been synthesized with toxic isocyanate and polyols.Crude hardwood kraft lignin(C-HKL)was extracted from black liquor from a pulp mill followed by acetone fractionation to obtain acetone soluble-HKL(AS-HKL).Then,C-HKL,AS-HKL,and softwood sodium lignosulfonate(LS)were used for the synthesis of technical lignin-based NIPU adhesives through carbonation and polyamination and silane as a cross-linker.Their adhesion per-formance was determined for plywood.FTIR spectra showed the formation of urethane bonds and the reaction between lignin and silane.The NIPU adhesives prepared with C-HKL showed the highest adhesion strength among the three lignin-based NIPU adhesives.As the silane addition level increased,the adhesion strength of NIPU adhesives increased whereas formaldehyde emission decreased for all NIPU adhesives prepared.These results indicate that NIPU adhesives based on technical kraft lignin have a great potential as polyol for the synth-esis of bio-based NIPU adhesives for wood bonding.
基金supported by the Basic Science Research Program (No.RS-2024-00344021) through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT and future Planningthe financial support from the National Natural Science Foundation of China (52103277)+2 种基金the Program for Science & Technology Innovation Talents in Universities of Henan Province (23HASTIT015)Natural Science Foundation of Henan Province (242300421073)supported by the Technology Innovation Program (20010960) funded by the Ministry of Trade, Industry & Energy (MOTIE, Korea)
文摘Single-ion conductors based on covalent organic frameworks(COFs)have garnered attention as a potential alternative to currently prevalent inorganic ion conductors owing to their structural uniqueness and chemical versatility.However,the sluggish Li+conduction has hindered their practical applications.Here,we present a class of solvent-free COF single-ion conductors(Li-COF@P)based on weak ion-dipole interaction as opposed to traditional strong ion-ion interaction.The ion(Li+from the COF)-dipole(oxygen from poly(ethylene glycol)diacrylate embedded in the COF pores)interaction in the Li-COF@P promotes ion dissociation and Li+migration via directional ionic channels.Driven by this single-ion transport behavior,the Li-COF@P enables reversible Li plating/stripping on Li-metal electrodes and stable cycling performance(88.3%after 2000 cycles)in organic batteries(Li metal anode||5,5’-dimethyl-2,2’-bis-p-benzoquinone(Me2BBQ)cathode)under ambient operating conditions,highlighting the electrochemical viability of the Li-COF@P for all-solid-state organic batteries.
基金supported by the National Key Research and Development Program of China (Grant No.2021YFB2600800)the National Key Research and Development 451 Program of China (Grant No.2021YFC3100803)the Guangdong Innovative and Entrepreneurial Research Team Program (Grant No.2016ZT06N340).
文摘The polyurethane foam(PU)compressible layer is a viable solution to the problem of damage to the secondary lining in squeezing tunnels.Nevertheless,the mechanical behaviour of the multi-layer yielding supports has not been thoroughly investigated.To fill this gap,large-scale model tests were conducted in this study.The synergistic load-bearing mechanics were analyzed using the convergenceconfinement method.Two types of multi-layer yielding supports with different thicknesses(2.5 cm,3.75 cm and 5 cm)of PU compressible layers were investigated respectively.Digital image correlation(DIC)analysis and acoustic emission(AE)techniques were used for detecting the deformation fields and damage evolution of the multi-layer yielding supports in real-time.Results indicated that the loaddisplacement relationship of the multi-layer yielding supports could be divided into the crack initiation,crack propagation,strain-hardening,and failure stages.Compared with those of the stiff support,the toughness,deformability and ultimate load of the yielding supports were increased by an average of 225%,61%and 32%,respectively.Additionally,the PU compressible layer is positioned between two primary linings to allow the yielding support to have greater mechanical properties.The analysis of the synergistic bearing effect suggested that the thickness of PU compressible layer and its location significantly affect the mechanical properties of the yielding supports.The use of yielding supports with a compressible layer positioned between the primary and secondary linings is recommended to mitigate the effects of high geo-stress in squeezing tunnels.
文摘Based on commercially available polyvinyl alcohol (PVA) stabilised polyvinyl acetate (PVAc), emulsion adhesives are neither heat nor moisture-resistant and show weak strength at high relative humidity and high temperatures. Pre- or post-crosslinking is another method used to manufacture a conventional vinyl-based homopolymers or copolymers system with improved water resistance. Vinyl neodecanoate (VeoVa), N-methylolacrylamide (NMA), Methacrylamide, methacrylic acid (MAA), and other self-crosslinking comonomers are typically inserted to produce highly water-resistant vinyl based homopolymers or copolymers. Additionally, organic crosslinkers like glyoxal, glutaraldehyde, citric acid, tartaric acid, and the like, as well as inorganic crosslinkers like acidic metal salts like aluminium chloride, aluminium nitrate, boric acid, and the like, can be used to prepare the highly water-resistant vinyl based homopolymers or copolymers. It is also possible to combine the self-crosslinking comonomers with the organic crosslinkers. Recently, a different hybrid chemistry has been developed that improves lap shear strength, has outstanding water resistance, good durability, and doesn’t require any additional crosslinker agents. Two distinct polymers were combined to develop hybrid polymers. They usually involve mixing an organic polymer with a polymer. There are many capping agents that are used for polyurethanes to produce acrylics that are capped with polyurethane and used as an oligomer in PVAc wood glue. Here, in this paper, we reviewed the different hybrid chemistry based on polyurethane chemistry for wood bonding applications.
文摘Silane coupling agent KH560 was used to modify the surface of nano-α-Al<sub>2</sub>O<sub>3</sub> in ethanol-aqueous solution with different proportions. The particle size of nano-α-Al<sub>2</sub>O<sub>3</sub> was determined by nano-particle size analyzer, and the effects of nano-α-Al<sub>2</sub>O<sub>3</sub> content, ethanol-aqueous solution ratio and KH560 dosage on the dispersion and particle size of nano-α-Al<sub>2</sub>O<sub>3</sub> were investigated. The material structure before and after modification was determined by Fourier transform infrared spectroscopy (FTIR). Aqueous polyurethane resin and inorganic components are combined with modified nano-α-Al<sub>2</sub>O<sub>3</sub> dispersion to form chromium-free passivation solution. The solution is coated on the galvanized sheet, the adhesion and surface hardness are tested, the bonding strength of the coating and the surface hardness of the substrate are discussed. The corrosion resistance and surface morphology of the matrix were investigated by electrochemical test, neutral salt spray test and scanning electron microscope test. The chromium-free passivation film formed after the modification of nano-α-Al<sub>2</sub>O<sub>3</sub> increases the surface hardness of galvanized sheet by about 85%. The corrosion resistance of the film is better than that of a single polyurethane film. The results show that the surface hardness and corrosion resistance of polyurethane resin composite passivation film are significantly improved by the introduction of nano-α-Al<sub>2</sub>O<sub>3</sub>.
文摘By using HDI and TMP as the main raw materials,polyethylene glycol 400(PEG400)is used as a non-ionic hydrophilic modifier,and sodium hydroxyethyl sulfonate is used as an ionic hydrophilic modifier to synthesize a dual hydrophilic modified polyurethane curing agent.Research revealed that introducing PEG400 for hydrophilic chain segments and sodium hydroxyethyl sulfonate for hydrophilic ionic groups in the polyurethane curing agent component leads to a uniform distribution of hydrophilic components,significantly enhancing compatibility with the aqueous polyol component,and results in excellent film performance.The synthesis process and film were characterized using Fourier transform infrared spectroscopy and high-resolution scanning electron microscopy in the study.
文摘This paper examines the application of polyurethane curing technology in the construction of railway track beds,with a specific focus on its implementation in China’s rapidly developing railway infrastructure.The study begins by identifying the limitations of traditional ballasted track beds,especially under the demands of high-speed and heavyload railways.It then methodically analyzes the advantages of polyurethane-cured track beds,highlighting their improved mechanical properties,including enhanced stability and durability.The paper further explores the benefits of transitioning to prefabricated polyurethane track beds,emphasizing significant cost reductions,better construction quality,and enhanced maintainability.Through a detailed review of experimental data and practical applications,the paper demonstrates the efficacy of polyurethane track beds in various railway settings.A critical part of the research involves optimizing the structural parameters of polyurethane track beds to achieve the best balance of mechanical and damping properties.The conclusion of the paper underscores the potential of polyurethane curing technology as a transformative approach to railway track bed construction,offering a solution to the challenges posed by traditional methods and aligning with the evolving needs of modern railways.
基金Felix Carrascoso (ICMM-CSIC) for support with the metal evaporationfunding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program (grant agreement n°755655,ERC-StG 2017 project2D-TOPSENSE)+5 种基金the Ministry of Science and Innovation (Spain) through the project PID2020-115566RB-I00support from the National Natural Science Foundation of China under grant No.61704129 and No.62011530438the Key Research and Development Program of Shaanxi (Program No.2021KW-02)Fundamental Research Funds for the Central Universities (JB211409)the grant from China Scholarship Council (CSC) under No.201908610178the support from European Union’s Horizon 2020 research and innovation program under the grant agreement 956813 (2Exciting)。
文摘Paper-based devices have attracted extensive attention due to the growing demand for disposable flexible electronics.Herein,we integrate semiconducting devices on cellulose paper substrate through a simple abrasion technique that yields high-performance photodetectors.A solvent-free WS_(2) film deposited on paper favors an effective electron-hole separation and hampers recombination.The as-prepared paper-based WS2 photodetectors exhibit a sensitive photoresponse over a wide spectral range spanning from ultraviolet(365 nm)to near-infrared(940 nm).Their responsivity value reaches up to~270 mA W^(−1) at 35 V under a power density of 35 mW cm^(−2).A high performance photodetector was achieved by controlling the environmental exposure as the ambient oxygen molecules were found to decrease the photoresponse and stability of the WS_(2) photodetector.Furthermore,we have built a spectrometer using such a paperbased WS_(2) device as the photodetecting component to illustrate its potential application.The present work could promote the development of cost-effective disposable photodetection devices.