High alumina fly ash(FAHAl)is a kind of bulk solid waste unique to China,whose availability of high-value aluminum and the threat to the environment makes its high-value utilization urgent.In this work,the alumina con...High alumina fly ash(FAHAl)is a kind of bulk solid waste unique to China,whose availability of high-value aluminum and the threat to the environment makes its high-value utilization urgent.In this work,the alumina containing leaching solution obtained from Na_(2)CO_(3) roasting and HCl leaching of FAHAl was used as the mother liquor to prepare layered boehmite in situ.The preparation process with AlCl_(3) as the raw material was also compared.The formation process and mechanism of boehmite,the choice of solvent,along with the adsorption capability of Congo red were analyzed by X-ray diffraction,scanning electron microscopy,Fourier transform infrared spectroscopy,Brunauer-Emmett-Teller method and adsorption experiments.Results showed that during the preparation of layered boehmite,the precursor Al(OH)_(3) from the reaction of Al^(3+) and OH-is transformed into boehmiteγ-AlOOH.The existence of ethanol is beneficial to regulate and promote the growth of boehmite crystal effectively.When water and ethanol are mixed with a volume ratio of 2:1 and used as the solvent,the maximum specific surface area of the boehmite is obtained at 135.7 m^(2)·g^(-1),and 99.16%of Congo red can be absorbed after 10 min when AlCl3 is used as a raw material.As purified leaching solution is used as the mother liquid,the crystallinity of boehmite decreases slightly when the pH value decreases from 12.5 to 11.When pH is 11,the removal efficiency of Congo red reaches a maximum of 72.25%.This process not only achieves the extraction of aluminum and high-value utilization of FAHAl but also provides a thought to prepare layered boehmite with adsorption properties.展开更多
We used the surface-pretreated graphite paper(Gp)as a carrier and loaded BiOCl with high selectivity to Cl^(-)on its surface by solvothermal method to form BiOCl@Gp electrode.The morphology,structure,and composition o...We used the surface-pretreated graphite paper(Gp)as a carrier and loaded BiOCl with high selectivity to Cl^(-)on its surface by solvothermal method to form BiOCl@Gp electrode.The morphology,structure,and composition of the materials were characterized by scanning electron microscopy and nitrogen adsorption/desorption,and the results showed that the spherical BiOCl particles were uniformly dispersed on the surface of the Gp,forming a mesoporous BiOCl@Gp composite with a specific surface area of 22.82 m^(2)/g and a pore volume of 0.043 cm3/g.Furthermore,cyclic voltammetry and electrochemical impedance spectroscopy were used to test the electrochemical properties of the composites,and the stability of BiOCl and the high conductivity of Gp were synergistic,the BiOCl@Gp exhibited a specific capacitance of 30.2 F·g^(-1) at a current density of 0.5 A·g^(-1),and the selectivity of the BiOCl@Gp materials for Cl^(-)was significantly higher than that of SO_(4)^(2-),NO_(2)^(-),and HCO_(3)^(-).Therefore,BiOCl@Gp composite electrode materials can be used for the selective adsorption of Cl^(-)in wastewater,in order to achieve efficient wastewater recycling.展开更多
化工、纺织印染与农药化肥等产业的蓬勃发展推动着人类社会的进步,但同时也给环境治理带来了巨大难题。目前,光催化降解局限于在特定波长下针对单一有机污染物进行降解,然而现实中的情况往往更复杂。因此,开发一种多功能光催化材料用于...化工、纺织印染与农药化肥等产业的蓬勃发展推动着人类社会的进步,但同时也给环境治理带来了巨大难题。目前,光催化降解局限于在特定波长下针对单一有机污染物进行降解,然而现实中的情况往往更复杂。因此,开发一种多功能光催化材料用于光催化降解不同有机污染物显得尤为重要。采用一步无模板溶剂热法合成了核壳结构的C-TiO_(2)复合材料前驱体,并在氩气气氛下煅烧得到高结晶度的C-TiO_(2)复合光催化材料。运用SEM、TEM、XRD和TG等表征手段对材料进行表征,结论如下:550℃煅烧时的样品为包含少量碳的高结晶度的锐钛矿相TiO 2,且550℃煅烧时的样品依然保持了完整的核壳结构。此外,C-TiO_(2)复合材料的比表面积高达85.69 m 2·g^(-1),平均孔径为16.4 nm以及孔体积为0.423 m 3·g^(-1)。在UV-Vis光照射下,C-TiO_(2)复合材料分别对罗丹明B(RhB)、亚甲基蓝(MB)和刚果红(CR)3种染料显示出增强的光催化降解活性。展开更多
In order to explore the effect mechanism of solvent on the synthesis of the metal organic framework materials, the microscopic interaction between solvent and framework and the effects of N,N-dimethyl-formamide(DMF) o...In order to explore the effect mechanism of solvent on the synthesis of the metal organic framework materials, the microscopic interaction between solvent and framework and the effects of N,N-dimethyl-formamide(DMF) or N-methyl- 2-pyrrolidone(NMP) on solvothermal synthesis of [Zn4O(BDC)3]8 were investigated through a combined DFT and experimental study. XRD and SEM showed that the absorbability of NMP in the pore of [Zn4O(BDC)3]8 was weaker than that of DMF. The thermal decomposition temperature of [Zn4O(BDC)3]8 synthesized in DMF was higher than that in NMP according to TG and FT-IR. In addition, the nitrogen sorption isotherms indicated that NMP improved gas sorption property of [Zn4O(BDC)3]8. The COSMO optimized calculations indicated that the total energy of Zn4O(BDC)3 in NMP was higher than that in DMF, and compared with non-solvent system, the charge of zinc atoms decreased and the charge value was the smallest in NMP. Furthermore, the interaction of DMF, NMP or DEF in [Zn4O(BDC)3]8 crystal model was calculated by DFT method. The results suggested that NMP should be easier to be removed from pore of materials than DMF from the point of view of energy state. It can be concluded that NMP was a favorable solvent to synthesize [Zn4O(BDC)3]8 and the microscopic mechanism was that the binding force between Zn4O(BDC)3 and NMP molecule was weaker than DMF.展开更多
In this work,p⁃phenylenediamine and L⁃cysteine were used as raw materials,and water⁃soluble N,S co⁃doped carbon dots(N,S⁃CDs)with excellent performance were prepared through a one⁃step solvothermal method.The morpholo...In this work,p⁃phenylenediamine and L⁃cysteine were used as raw materials,and water⁃soluble N,S co⁃doped carbon dots(N,S⁃CDs)with excellent performance were prepared through a one⁃step solvothermal method.The morphology and structure of N,S⁃CDs were characterized by transmission electron microscope,X⁃ray diffrac⁃tion,Fourier transform infrared spectroscopy,and X⁃ray photoelectron spectroscopy,and the basic photophysical properties were investigated via UV⁃Vis absorption spectra and fluorescence spectra.Meanwhile,the N,S⁃CDs have excellent luminescence stability with pH,ionic strength,radiation time,and storage time.Experimental results illus⁃trated the present sensor platform exhibited high sensitivity and selectivity in response to baicalein with a detection limit of 85 nmol·L-1.The quenching mechanism is proved to be the inner filter effect.In addition,this sensor can also detect baicalein in biofluids(serum and urine)with good accuracy and reproducibility.展开更多
以尼龙66(PA66)和植酸(IP6)为前驱体、乙酸为溶剂,采用溶剂热法制备了PA66基碳点(66CDs)。利用TEM、FTIR、XPS、荧光光谱对其进行了表征,对其光学性能、离子稳定性和时间稳定性进行了测试,探究了其指纹识别、荧光防伪、光线阻挡的应用...以尼龙66(PA66)和植酸(IP6)为前驱体、乙酸为溶剂,采用溶剂热法制备了PA66基碳点(66CDs)。利用TEM、FTIR、XPS、荧光光谱对其进行了表征,对其光学性能、离子稳定性和时间稳定性进行了测试,探究了其指纹识别、荧光防伪、光线阻挡的应用。结果表明,将1.6 g PA66、1.1 g IP6加入20 mL乙酸中,于260℃下反应36h,制备的66CDs具有最大荧光强度。66CDs为球形结构,平均粒径4.00nm,表面含有羧基、羟基、氨基等官能团;66CDs的荧光为非激发波长依赖型,最佳激发波长和发射波长分别为360和490 nm,荧光量子产率可达11.69%,其荧光强度不受常见金属阳离子影响,30 d内具有稳定性。由66CDs与水溶性淀粉制备的荧光粉末可用于指纹识别,不仅可将66CDs制成油墨用于荧光防伪,还可将其制成防蓝光膜,用于蓝光防护。展开更多
基金supported by the National Natural Science Foundation of China(52174277,52204309 and 52374300).
文摘High alumina fly ash(FAHAl)is a kind of bulk solid waste unique to China,whose availability of high-value aluminum and the threat to the environment makes its high-value utilization urgent.In this work,the alumina containing leaching solution obtained from Na_(2)CO_(3) roasting and HCl leaching of FAHAl was used as the mother liquor to prepare layered boehmite in situ.The preparation process with AlCl_(3) as the raw material was also compared.The formation process and mechanism of boehmite,the choice of solvent,along with the adsorption capability of Congo red were analyzed by X-ray diffraction,scanning electron microscopy,Fourier transform infrared spectroscopy,Brunauer-Emmett-Teller method and adsorption experiments.Results showed that during the preparation of layered boehmite,the precursor Al(OH)_(3) from the reaction of Al^(3+) and OH-is transformed into boehmiteγ-AlOOH.The existence of ethanol is beneficial to regulate and promote the growth of boehmite crystal effectively.When water and ethanol are mixed with a volume ratio of 2:1 and used as the solvent,the maximum specific surface area of the boehmite is obtained at 135.7 m^(2)·g^(-1),and 99.16%of Congo red can be absorbed after 10 min when AlCl3 is used as a raw material.As purified leaching solution is used as the mother liquid,the crystallinity of boehmite decreases slightly when the pH value decreases from 12.5 to 11.When pH is 11,the removal efficiency of Congo red reaches a maximum of 72.25%.This process not only achieves the extraction of aluminum and high-value utilization of FAHAl but also provides a thought to prepare layered boehmite with adsorption properties.
基金Funded by the National Natural Science Foundation of China(No.52072180)the Graduate Research and Innovation Projects of Jiangsu Province(No.KYCX21_3461)。
文摘We used the surface-pretreated graphite paper(Gp)as a carrier and loaded BiOCl with high selectivity to Cl^(-)on its surface by solvothermal method to form BiOCl@Gp electrode.The morphology,structure,and composition of the materials were characterized by scanning electron microscopy and nitrogen adsorption/desorption,and the results showed that the spherical BiOCl particles were uniformly dispersed on the surface of the Gp,forming a mesoporous BiOCl@Gp composite with a specific surface area of 22.82 m^(2)/g and a pore volume of 0.043 cm3/g.Furthermore,cyclic voltammetry and electrochemical impedance spectroscopy were used to test the electrochemical properties of the composites,and the stability of BiOCl and the high conductivity of Gp were synergistic,the BiOCl@Gp exhibited a specific capacitance of 30.2 F·g^(-1) at a current density of 0.5 A·g^(-1),and the selectivity of the BiOCl@Gp materials for Cl^(-)was significantly higher than that of SO_(4)^(2-),NO_(2)^(-),and HCO_(3)^(-).Therefore,BiOCl@Gp composite electrode materials can be used for the selective adsorption of Cl^(-)in wastewater,in order to achieve efficient wastewater recycling.
文摘化工、纺织印染与农药化肥等产业的蓬勃发展推动着人类社会的进步,但同时也给环境治理带来了巨大难题。目前,光催化降解局限于在特定波长下针对单一有机污染物进行降解,然而现实中的情况往往更复杂。因此,开发一种多功能光催化材料用于光催化降解不同有机污染物显得尤为重要。采用一步无模板溶剂热法合成了核壳结构的C-TiO_(2)复合材料前驱体,并在氩气气氛下煅烧得到高结晶度的C-TiO_(2)复合光催化材料。运用SEM、TEM、XRD和TG等表征手段对材料进行表征,结论如下:550℃煅烧时的样品为包含少量碳的高结晶度的锐钛矿相TiO 2,且550℃煅烧时的样品依然保持了完整的核壳结构。此外,C-TiO_(2)复合材料的比表面积高达85.69 m 2·g^(-1),平均孔径为16.4 nm以及孔体积为0.423 m 3·g^(-1)。在UV-Vis光照射下,C-TiO_(2)复合材料分别对罗丹明B(RhB)、亚甲基蓝(MB)和刚果红(CR)3种染料显示出增强的光催化降解活性。
基金Project(51104185)supported by the National Natural Science Foundation of ChinaProject(2010QZZD003)supported by the Key Project of Central South University of Fundamental Research Funds for the Central Universities of China
文摘In order to explore the effect mechanism of solvent on the synthesis of the metal organic framework materials, the microscopic interaction between solvent and framework and the effects of N,N-dimethyl-formamide(DMF) or N-methyl- 2-pyrrolidone(NMP) on solvothermal synthesis of [Zn4O(BDC)3]8 were investigated through a combined DFT and experimental study. XRD and SEM showed that the absorbability of NMP in the pore of [Zn4O(BDC)3]8 was weaker than that of DMF. The thermal decomposition temperature of [Zn4O(BDC)3]8 synthesized in DMF was higher than that in NMP according to TG and FT-IR. In addition, the nitrogen sorption isotherms indicated that NMP improved gas sorption property of [Zn4O(BDC)3]8. The COSMO optimized calculations indicated that the total energy of Zn4O(BDC)3 in NMP was higher than that in DMF, and compared with non-solvent system, the charge of zinc atoms decreased and the charge value was the smallest in NMP. Furthermore, the interaction of DMF, NMP or DEF in [Zn4O(BDC)3]8 crystal model was calculated by DFT method. The results suggested that NMP should be easier to be removed from pore of materials than DMF from the point of view of energy state. It can be concluded that NMP was a favorable solvent to synthesize [Zn4O(BDC)3]8 and the microscopic mechanism was that the binding force between Zn4O(BDC)3 and NMP molecule was weaker than DMF.
文摘In this work,p⁃phenylenediamine and L⁃cysteine were used as raw materials,and water⁃soluble N,S co⁃doped carbon dots(N,S⁃CDs)with excellent performance were prepared through a one⁃step solvothermal method.The morphology and structure of N,S⁃CDs were characterized by transmission electron microscope,X⁃ray diffrac⁃tion,Fourier transform infrared spectroscopy,and X⁃ray photoelectron spectroscopy,and the basic photophysical properties were investigated via UV⁃Vis absorption spectra and fluorescence spectra.Meanwhile,the N,S⁃CDs have excellent luminescence stability with pH,ionic strength,radiation time,and storage time.Experimental results illus⁃trated the present sensor platform exhibited high sensitivity and selectivity in response to baicalein with a detection limit of 85 nmol·L-1.The quenching mechanism is proved to be the inner filter effect.In addition,this sensor can also detect baicalein in biofluids(serum and urine)with good accuracy and reproducibility.
文摘以尼龙66(PA66)和植酸(IP6)为前驱体、乙酸为溶剂,采用溶剂热法制备了PA66基碳点(66CDs)。利用TEM、FTIR、XPS、荧光光谱对其进行了表征,对其光学性能、离子稳定性和时间稳定性进行了测试,探究了其指纹识别、荧光防伪、光线阻挡的应用。结果表明,将1.6 g PA66、1.1 g IP6加入20 mL乙酸中,于260℃下反应36h,制备的66CDs具有最大荧光强度。66CDs为球形结构,平均粒径4.00nm,表面含有羧基、羟基、氨基等官能团;66CDs的荧光为非激发波长依赖型,最佳激发波长和发射波长分别为360和490 nm,荧光量子产率可达11.69%,其荧光强度不受常见金属阳离子影响,30 d内具有稳定性。由66CDs与水溶性淀粉制备的荧光粉末可用于指纹识别,不仅可将66CDs制成油墨用于荧光防伪,还可将其制成防蓝光膜,用于蓝光防护。