The existence of strong interference is the main constraint factor, which influences the detection performance of a signal extraction system. For a sonar with large array the problem of anti-interferences in all-direc...The existence of strong interference is the main constraint factor, which influences the detection performance of a signal extraction system. For a sonar with large array the problem of anti-interferences in all-direction has not been solved yet because of the requirements of over-long time delay line and the over high input- output rate. A method proposed in this paper can be used in the design of adaptive signal processing system with large array for suppressing the strong interference in all-direction. This is a combined architecture of adaptive noise canceller (ANC)and a programmable DICANNE system.When the incident angle between signal θS and interference θI is small, the ANC system is used. When θs-θI is large, a programmable DICANNE system, with rising sampling rate, is used, so that an all-directional anti-interferences system can be obtained. The structure described in this paper is easy to implement in hardware by using DSP chips.The design diagram and implementable method in hardware is presented.展开更多
Underwater direction of arrival(DOA)estimation has always been a very challenging theoretical and practical problem.Due to the serious non-stationary,non-linear,and non-Gaussian characteristics,machine learning based ...Underwater direction of arrival(DOA)estimation has always been a very challenging theoretical and practical problem.Due to the serious non-stationary,non-linear,and non-Gaussian characteristics,machine learning based DOA estimation methods trained on simulated Gaussian noised array data cannot be directly applied to actual underwater DOA estimation tasks.In order to deal with this problem,environmental data with no target echoes can be employed to analyze the non-Gaussian components.Then,the obtained information about non-Gaussian components can be used to whiten the array data.Based on these considerations,a novel practical sonar array whitening method was proposed.Specifically,based on a weak assumption that the non-Gaussian components in adjacent patches with and without target echoes are almost the same,canonical cor-relation analysis(CCA)and non-negative matrix factorization(NMF)techniques are employed for whitening the array data.With the whitened array data,machine learning based DOA estimation models trained on simulated Gaussian noised datasets can be used to perform underwater DOA estimation tasks.Experimental results illustrated that,using actual underwater datasets for testing with known machine learning based DOA estimation models,accurate and robust DOA estimation performance can be achieved by using the proposed whitening method in different underwater con-ditions.展开更多
The spatial matrix filter was designed and used for solving the problem to detect a weak target who was influenced by the strong nearby platform noise interference of the towed line array sonar. The MFP technology and...The spatial matrix filter was designed and used for solving the problem to detect a weak target who was influenced by the strong nearby platform noise interference of the towed line array sonar. The MFP technology and the DOA estimation technology were combined together by using the sound propagation characteristics of both target and interference. The spatial matrix filter with platform noise zero response constraint was designed by the near-field platform noise normal modes copy vectors and the far-field plane wave bearing vectors together. The optimal solution of the optimization problem for designing the spatial matrix filter was deduced directly, and it was simplified by the generalized singular value decomposition. The total response error to the plane wave bearing vectors and the total response to the platform noise copy vectors were given. The phenomena that strong interferences existed in the bearing course and blind areas existed after filtering were analyzed by the correlation between the plat- form noise copy vectors and the plane wave bearing vectors. It could be found from simulations that it has less blind area and higher detection ability by using the spatial matrix filtering technology.展开更多
To improve the ability of detecting underwater targets under strong wideband interference environment,an efficient method of line spectrum extraction is proposed,which fully utilizes the feature of the target spectrum...To improve the ability of detecting underwater targets under strong wideband interference environment,an efficient method of line spectrum extraction is proposed,which fully utilizes the feature of the target spectrum that the high intense and stable line spectrum is superimposed on the wide continuous spectrum.This method modifies the traditional beam forming algorithm by calculating and fusing the beam forming results at multi-frequency band and multi-azimuth interval,showing an excellent way to extract the line spectrum when the interference and the target are not in the same azimuth interval simultaneously.Statistical efficiency of the estimated azimuth variance and corresponding power of the line spectrum band depends on the line spectra ratio(LSR)of the line spectrum.The change laws of the output signal to noise ratio(SNR)with the LSR,the input SNR,the integration time and the filtering bandwidth of different algorithms bring the selection principle of the critical LSR.As the basis,the detection gain of wideband energy integration and the narrowband line spectrum algorithm are theoretically analyzed.The simulation detection gain demonstrates a good match with the theoretical model.The application conditions of all methods are verified by the receiver operating characteristic(ROC)curve and experimental data from Qiandao Lake.In fact,combining the two methods for target detection reduces the missed detection rate.The proposed post-processing method in2-dimension with the Kalman filter in the time dimension and the background equalization algorithm in the azimuth dimension makes use of the strong correlation between adjacent frames,could further remove background fluctuation and improve the display effect.展开更多
文摘The existence of strong interference is the main constraint factor, which influences the detection performance of a signal extraction system. For a sonar with large array the problem of anti-interferences in all-direction has not been solved yet because of the requirements of over-long time delay line and the over high input- output rate. A method proposed in this paper can be used in the design of adaptive signal processing system with large array for suppressing the strong interference in all-direction. This is a combined architecture of adaptive noise canceller (ANC)and a programmable DICANNE system.When the incident angle between signal θS and interference θI is small, the ANC system is used. When θs-θI is large, a programmable DICANNE system, with rising sampling rate, is used, so that an all-directional anti-interferences system can be obtained. The structure described in this paper is easy to implement in hardware by using DSP chips.The design diagram and implementable method in hardware is presented.
基金supported by the National Natural Science Foundation of China(No.51279033).
文摘Underwater direction of arrival(DOA)estimation has always been a very challenging theoretical and practical problem.Due to the serious non-stationary,non-linear,and non-Gaussian characteristics,machine learning based DOA estimation methods trained on simulated Gaussian noised array data cannot be directly applied to actual underwater DOA estimation tasks.In order to deal with this problem,environmental data with no target echoes can be employed to analyze the non-Gaussian components.Then,the obtained information about non-Gaussian components can be used to whiten the array data.Based on these considerations,a novel practical sonar array whitening method was proposed.Specifically,based on a weak assumption that the non-Gaussian components in adjacent patches with and without target echoes are almost the same,canonical cor-relation analysis(CCA)and non-negative matrix factorization(NMF)techniques are employed for whitening the array data.With the whitened array data,machine learning based DOA estimation models trained on simulated Gaussian noised datasets can be used to perform underwater DOA estimation tasks.Experimental results illustrated that,using actual underwater datasets for testing with known machine learning based DOA estimation models,accurate and robust DOA estimation performance can be achieved by using the proposed whitening method in different underwater con-ditions.
基金supported by the National Natural Science Foundation of China(60532040,11374001)
文摘The spatial matrix filter was designed and used for solving the problem to detect a weak target who was influenced by the strong nearby platform noise interference of the towed line array sonar. The MFP technology and the DOA estimation technology were combined together by using the sound propagation characteristics of both target and interference. The spatial matrix filter with platform noise zero response constraint was designed by the near-field platform noise normal modes copy vectors and the far-field plane wave bearing vectors together. The optimal solution of the optimization problem for designing the spatial matrix filter was deduced directly, and it was simplified by the generalized singular value decomposition. The total response error to the plane wave bearing vectors and the total response to the platform noise copy vectors were given. The phenomena that strong interferences existed in the bearing course and blind areas existed after filtering were analyzed by the correlation between the plat- form noise copy vectors and the plane wave bearing vectors. It could be found from simulations that it has less blind area and higher detection ability by using the spatial matrix filtering technology.
基金supported by the National Natural Science Foundation of China(51875535)the Natural Science Foundation for Young Scientists of Shanxi Province(201701D221017,201901D211242)。
文摘To improve the ability of detecting underwater targets under strong wideband interference environment,an efficient method of line spectrum extraction is proposed,which fully utilizes the feature of the target spectrum that the high intense and stable line spectrum is superimposed on the wide continuous spectrum.This method modifies the traditional beam forming algorithm by calculating and fusing the beam forming results at multi-frequency band and multi-azimuth interval,showing an excellent way to extract the line spectrum when the interference and the target are not in the same azimuth interval simultaneously.Statistical efficiency of the estimated azimuth variance and corresponding power of the line spectrum band depends on the line spectra ratio(LSR)of the line spectrum.The change laws of the output signal to noise ratio(SNR)with the LSR,the input SNR,the integration time and the filtering bandwidth of different algorithms bring the selection principle of the critical LSR.As the basis,the detection gain of wideband energy integration and the narrowband line spectrum algorithm are theoretically analyzed.The simulation detection gain demonstrates a good match with the theoretical model.The application conditions of all methods are verified by the receiver operating characteristic(ROC)curve and experimental data from Qiandao Lake.In fact,combining the two methods for target detection reduces the missed detection rate.The proposed post-processing method in2-dimension with the Kalman filter in the time dimension and the background equalization algorithm in the azimuth dimension makes use of the strong correlation between adjacent frames,could further remove background fluctuation and improve the display effect.