This paper presents a supervised classification method of sonar image, which takes advantages of both multi-fractal theory and wavelet analysis. In the process of feature extraction, image transformation and wavelet d...This paper presents a supervised classification method of sonar image, which takes advantages of both multi-fractal theory and wavelet analysis. In the process of feature extraction, image transformation and wavelet decomposition are combined and a feature set based on multi-fractal dimension is obtained. In the part of classifier construction, the Learning Vector Quantization (LVQ) network is adopted as a classifier. Experiments of sonar image classification were carried out with satisfactory results, which verify the effectiveness of this method.展开更多
文摘This paper presents a supervised classification method of sonar image, which takes advantages of both multi-fractal theory and wavelet analysis. In the process of feature extraction, image transformation and wavelet decomposition are combined and a feature set based on multi-fractal dimension is obtained. In the part of classifier construction, the Learning Vector Quantization (LVQ) network is adopted as a classifier. Experiments of sonar image classification were carried out with satisfactory results, which verify the effectiveness of this method.