Atherosclerosis(AS)is a chronic inflammatory disease of large and medium-sized arteries that leads to ischemic heart disease,stroke,and peripheral vascular disease.Despite the current treatments,mortality and disabili...Atherosclerosis(AS)is a chronic inflammatory disease of large and medium-sized arteries that leads to ischemic heart disease,stroke,and peripheral vascular disease.Despite the current treatments,mortality and disability still remain high.Sonodynamic therapy(SDT),a non-invasive and localized methodology,has been developed as a promising new treatment for inhibiting atherosclerotic progression and stabilizing plaques.Promising progress has been made through cell and animal assays,as well as clinical trials.For example,the effect of SDT on apoptosis and autophagy of cells in AS,especially macrophages,and the concept of non-lethal SDT has also been proposed.In this review,we summarize the ultrasonic parameters and known sonosensitizers utilized in SDT for AS;we elaborate on SDT's therapeutic effects and mechanisms in terms of macrophages,T lymphocytes,neovascularization,smooth muscle cells,lipid,extracellular matrix and efferocytosis within plaques;additionally,we discuss the safety of SDT.A comprehensive summary of the confirmed effects of SDT on AS is conducted to establish a framework for future researchers.展开更多
Glioblastoma multiforme(GBM) is the most common primary malignant brain tumor, and it is associated with poor prognosis. Its characteristics of being highly invasive and undergoing heterogeneous genetic mutation, as w...Glioblastoma multiforme(GBM) is the most common primary malignant brain tumor, and it is associated with poor prognosis. Its characteristics of being highly invasive and undergoing heterogeneous genetic mutation, as well as the presence of the blood–brain barrier(BBB), have reduced the efficacy of GBM treatment. The emergence of a novel therapeutic method, namely, sonodynamic therapy(SDT), provides a promising strategy for eradicating tumors via activated sonosensitizers coupled with low-intensity ultrasound. SDT can provide tumor killing effects for deep-seated tumors, such as brain tumors. However, conventional sonosensitizers cannot effectively reach the tumor region and kill additional tumor cells, especially brain tumor cells. Efforts should be made to develop a method to help therapeutic agents pass through the BBB and accumulate in brain tumors. With the development of novel multifunctional nanosensitizers and newly emerging combination strategies, the killing ability and selectivity of SDT have greatly improved and are accompanied with fewer side effects. In this review, we systematically summarize the findings of previous studies on SDT for GBM, with a focus on recent developments and promising directions for future research.展开更多
In recent years,because of the growing desire to improve the noninvasiveness and safety of tumor treatments,sonodynamic therapy has gradually become a popular research topic.However,due to the complexity of the therap...In recent years,because of the growing desire to improve the noninvasiveness and safety of tumor treatments,sonodynamic therapy has gradually become a popular research topic.However,due to the complexity of the therapeutic process,the relevant mechanisms have not yet been fully elucidated.One of the widely accepted possibilities involves the effect of reactive oxygen species.In this review,the mechanism of reactive oxygen species production by sonodynamic therapy(SDT)and ways to enhance the sonodynamic production of reactive oxygen species are reviewed.Then,the clinical application and limitations of SDT are discussed.In conclusion,current research on sonodynamic therapy should focus on the development of sonosensitizers that efficiently produce active oxygen,exhibit biological safety,and promote the clinical transformation of sonodynamic therapy.展开更多
Sonodynamic therapy(SDT) is an emerging approach that involves a combination of low-intensity ultrasound and specialized chemical agents known as sonosensitizers. Ultrasound can penetrate deeply into tissues and can b...Sonodynamic therapy(SDT) is an emerging approach that involves a combination of low-intensity ultrasound and specialized chemical agents known as sonosensitizers. Ultrasound can penetrate deeply into tissues and can be focused into a small region of a tumor to activate a sonosensitizer which offers the possibility of non-invasively eradicating solid tumors in a site-directed manner.In this article, we critically reviewed the currently accepted mechanisms of sonodynamic action and summarized the classification of sonosensitizers. At the same time, the breath of evidence from SDT-based studies suggests that SDT is promising for cancer treatment.展开更多
Ultrasound can be used not only in examination, but also in therapy, especially in the therapy of cancer. Sonodynamic therapy is an experimental cancer therapy method which uses ultrasound to enhance the cytotoxic eff...Ultrasound can be used not only in examination, but also in therapy, especially in the therapy of cancer. Sonodynamic therapy is an experimental cancer therapy method which uses ultrasound to enhance the cytotoxic effects of agents known as sonosensitizers. It has been tested in vitro and in vivo. The ultrasound could penetrate the tissue and cell under some of conditions which directly changes cell membrane permeability, thereby allowing the delivery of exogenous molecules into the cells in some degree. Ultrasound could inhibit the proliferation or induce the apoptosis of cancer cells in vitro or in vivo. Recent researches indicated low-frequency and low-intensity ultrasound could induce cell apoptosis, which could be strengthened by sonodynamic sensitivity, microbubbles, chemotherapeutic drugs and so on. Most kinds of ultrasound suppressed the proliferation of cancer cells through inducing the apoptosis of cancer cells. The mechanism of apoptosis is not clear. In this review, we will focus on and discuss the mechanisms of the induction of cancer cell apoptosis by ultrasound.展开更多
Rapid evolution and propagation of multidrug resistance among bacterial pathogens are outpacing the development of new antibiotics,but antimicrobial photodynamic therapy(aPDT)provides an excellent alternative.This tre...Rapid evolution and propagation of multidrug resistance among bacterial pathogens are outpacing the development of new antibiotics,but antimicrobial photodynamic therapy(aPDT)provides an excellent alternative.This treatment depends on the interaction between light and photoactivated sensitizer to generate reactive oxygen species(ROS),which are highly cytotoxic to induce apoptosis in virtually all microorganisms without resistance concern.When replacing light with low-frequency ultrasonic wave to activate sensitizer,a novel ultrasounddriven treatment emerges as antimicrobial sonodynamic therapy(aSDT).Recent advances in aPDT and aSDT reveal golden opportunities for the management of multidrug resistant bacterial infections,especially in the theranostic application where imaging diagnosis can be accomplished facilely with the inherent optical characteristics of sensitizers,and the generated ROS by aPDT/SDT cause broad-spectrum oxidative damage for sterilization.In this review,we systemically outline the mechanisms,targets,and current progress of aPDT/SDT for bacterial theranostic application.Furthermore,potential limitations and future perspectives are also highlighted.展开更多
Drug resistance is considered the most important reason for the clinical failure of cancer chemotherapy.Circumventing drug resistance and improving the efficacy of anticancer agents remains a major challenge.Over the ...Drug resistance is considered the most important reason for the clinical failure of cancer chemotherapy.Circumventing drug resistance and improving the efficacy of anticancer agents remains a major challenge.Over the past several decades,photodynamic therapy(PDT)and sonodynamic therapy(SDT)have attracted substantial attention for their efficacy in cancer treatment,and have been combined with chemotherapy to overcome drug resistance.However,simultaneously delivering sensitizers and chemotherapy drugs to same tumor cell remains challenging,thus greatly limiting this combinational therapy.The rapid development of nanotechnology provides a new approach to solve this problem.Nano-based drug delivery systems can not only improve the targeted delivery of agents but also co-deliver multiple drug components in single nanoparticles to achieve optimal synergistic effects.In this review,we briefly summarize the mechanisms of drug resistance,discuss the advantages and disadvantages of PDT and SDT in reversing drug resistance,and describe state-of-the-art research using nano-mediated PDT and SDT to solve these refractory problems.This review also highlights the clinical translational potential for this combinational therapy.展开更多
OBJECTIVE To investigate the killing effect of the combined treatment of ultrasound and hypocrellin B,an active component isolated from a natural product Hypocrella bambuase,on Candida albicans.METHODS At first,Candid...OBJECTIVE To investigate the killing effect of the combined treatment of ultrasound and hypocrellin B,an active component isolated from a natural product Hypocrella bambuase,on Candida albicans.METHODS At first,Candida albicans are incubated with hypcrellin B and the uptake of hypocrellin B in Candida albicans was determined using fluorescence intensity analysis.And then the sensitized Candida albicans were exposed to low-intensity of ultrasound.After the combined treatment of ultrasound and hypocellin B,the growth of Candida albicans was evaluated using the colony counting method,and membrane integrity of Candida albicans was also analyzed by a flow cytometry with propidium iodide staining.RESULTS Hypocrellin B was fast absorbed by candida albicans.The growth of candida albicans was more significantly inhibited by the combined treatment of ultrasound and hypocrellin B than the controls(P<0.05).The more marked damages to membrane integrity were found in the combined treatment than the controls(P<0.05).CONCLUSION The combined treatment of ultrasound and hypocrellin B had significant killing effect on Candida albicans,indicating sonodynamic therapy with hypocrellin B from natural product might be a potential approach for combating fungal infections.展开更多
OBJECTIVE To investigate the effect of sonodynamic action on biofilm-producing Enterococcus faecalis using hypocrellin B from a natural product Hypocrella bambuase as a sensitizer.METHODS The uptake of hypocrellin B i...OBJECTIVE To investigate the effect of sonodynamic action on biofilm-producing Enterococcus faecalis using hypocrellin B from a natural product Hypocrella bambuase as a sensitizer.METHODS The uptake of hypocrellin B in biofilm-producing Enterococcus faecalis was measured using the fluorescent analysis method.After the combined treatment of hypocrellin B and ultrasound,the growth of biofilm-producing Enterococcus faecalis was measured using the colony counting method,the membrane integrity was detected using a flow cytometric analysis with propidium iodide staining.Chromosomal DNA of bacteria was analysed using apulsed-field gel electrophoresis(PFGE).RESULTS The uptake of hypocrellin B in biofilm-producing Enterocuccus faecalis reached a high peak at the 20 min incubation.After the combined treatment of hypocrellin B,the growth of biofilm-producing Enterocuccus faecalis significantly descreased and membrane integrity was remarkably damaged.However,no remarkable change in bacterial DNA was found.CONCLUSION Sonodynamic action of hypocrellin B had significant killing activity on Enterocuccus faecalis.展开更多
We investigated the feasibility of sonodynamic therapy for glioma by low frequency ultrasoundwith5-aminolevulinic acid (5-ALA), a precursor of protoporphyrin IX (PpIX) in heme synthetic process. In vivo tumor model wa...We investigated the feasibility of sonodynamic therapy for glioma by low frequency ultrasoundwith5-aminolevulinic acid (5-ALA), a precursor of protoporphyrin IX (PpIX) in heme synthetic process. In vivo tumor model was made by inoculating human glioma cell line U87-MG subcutaneously in nude mice. The tumor was sonicated by 25-kHz ultrasound 4 hours following administration of 5-ALA. The tumor size decreased in 5-ALA administered (ALA(+)US(+)) mice, while increased in non-5-ALA administrated (ALA(-)US(+)) mice and non-sonicated mice (ALA(+)US(-)). The immunohistochemical analysis revealed an apoptotic change in tumor tissue of ALA(+)US(+) mice. The results showed the therapeutic effect of 25 kHz ultrasound for the glioma in 5-ALA administered tumor-bearing mice by inducing apoptotic change of tumor cells. This is a first report to elucidate the feasibility of therapeutic use of 25 kHz, relatively low frequency, ultrasound in sonodynamic therapy using 5-ALA as a sonosensitizer precursor. The utilization of this frequency will contribute to the development of sonodynamic therapy for gliomas and the spread of this technique in many hospitals that possess ultrasonic aspirators.展开更多
Sonodynamic therapy is a new cancer treatment based on the synergetic effect of ultrasound and a drug. In this study, ultrasonically induced antitumor effects of benzoporphyrin derivative monoacid ring A (BPD-MA) on K...Sonodynamic therapy is a new cancer treatment based on the synergetic effect of ultrasound and a drug. In this study, ultrasonically induced antitumor effects of benzoporphyrin derivative monoacid ring A (BPD-MA) on KLN205 cells were investigated. KLN205 cells were irradiated at an ultrasonic frequency of 3 MHz with 10 μg/ml BPD-MA. The ultrasonically induced cell damage significantly increased as an ultrasonic intensity and ultrasound exposure time increased. Confocal microscopic examination revealed that the irradiated cells were induced chromatin condensation and phosphatidylserine exposure. The synergistic effect of the ultrasound exposure and BPD-MA on the tumor cell adhesion rate was significant.展开更多
Cancer remains one of the diseases with the highest incidence and mortality globally.Conventional treatment modalities have demonstrated threatening drawbacks including invasiveness,noncontrollability,and development ...Cancer remains one of the diseases with the highest incidence and mortality globally.Conventional treatment modalities have demonstrated threatening drawbacks including invasiveness,noncontrollability,and development of resistance for some,including chemotherapy,radiation,and surgery.Sono-photodynamic combinatorial therapy(SPDT)has been developed as an alternative treatment modality which offers a non-invasive and controllable therapeutic approach.SPDT combines the mechanism of action of sonodynamic therapy(SDT),which uses ultrasound,and photodynamic therapy(PDT),which uses light,to activate a sensitizer and initiate cancer eradication.The use of phthalocyanines(Pcs)as sensitizers for SPDT is gaining interest owing to their ability to induce intracellular oxidative stress and initiate toxicity under SDT and PDT.This review discusses some of the structural prerequisites of Pcs which may influence their overall SPDT activities in cancer therapy.展开更多
Adavosertib(ADA)is a WEE1 inhibitor that exhibits a synthetic lethal effect on p53-mutated gallbladder cancer(GBC).However,drug resistance due to DNA damage response compensation pathways and high toxicity limits furt...Adavosertib(ADA)is a WEE1 inhibitor that exhibits a synthetic lethal effect on p53-mutated gallbladder cancer(GBC).However,drug resistance due to DNA damage response compensation pathways and high toxicity limits further applications.Herein,estrone-targeted ADA-encapsulated metal–organic frameworks(ADA@MOF-EPL)for GBC synthetic lethal treatment by inducing conditional factors are developed.The high expression of estrogen receptors in GBC enables ADA@MOF-EPL to quickly enter and accumulate near the cell nucleus through estrone-mediated endocytosis and release ADA to inhibit WEE1 upon entering the acidic tumor microenvironment.Ultrasound irradiation induces ADA@MOF-EPL to generate reactive oxygen species(ROS),which leads to a further increase in DNA damage,resulting in a higher sensitivity of p53-mutated cancer cells to WEE1 inhibitor and promoting cell death via conditional synthetic lethality.The conditional factor induced by ADA@MOF-EPL further enhances the antitumor efficacy while significantly reducing systemic toxicity.Moreover,ADA@MOF-EPL demonstrates similar antitumor abilities in other p53-mutated solid tumors,revealing its potential as a broad-spectrum antitumor drug.展开更多
Carbon monoxide(CO) is an endogenous therapeutic gas with an anti-tumor effect. The precise delivery and controlled release of CO in tumor tissues play crucial roles in anti-cancer treatment. However, efficient in sit...Carbon monoxide(CO) is an endogenous therapeutic gas with an anti-tumor effect. The precise delivery and controlled release of CO in tumor tissues play crucial roles in anti-cancer treatment. However, efficient in situ generation of CO from metal-free COreleasing molecules(CORMs) remains a formidable challenge. Herein, we develop ultrasound(US)-driven self-decomposition porphyrin as organic and metal-free US-CORMs, which can spatiotemporally control the CO release(347 mmol CO/mol porphyrin) efficiently under physiologically harmless US conditions(1.0 MHz, 1.5 W/cm^(2), 50% duty cycle, 50 min). Moreover,porphyrin as a sonosensitizer can also generate reactive oxygen species(ROS) under US treatment to achieve sonodynamic therapy(SDT). Advanced functions of such porphyrin-based CORMs in CO gas-sonodynamic synergistic treatment have been demonstrated by evaluating the in vitro and in vivo anti-tumor effects.展开更多
With the fast development of technology for the treatment of tumor and bacteria,photo-therapeutic strate-gies emerge as a kind of highly effective and common treatment,but the low tissue penetration depth of light lim...With the fast development of technology for the treatment of tumor and bacteria,photo-therapeutic strate-gies emerge as a kind of highly effective and common treatment,but the low tissue penetration depth of light limits their development.Sonodynamic therapy(SDT),as an efficient and non-invasive treatment,attracts more people's attention due to the inherent property of high tissue penetration.The soft tissue penetration depth of ultrasound(US)can even reach more than 10 cm,which has great advantage over that of light.Therefore,many sonosensitizers are studied and applied to SDT-based therapy.Metal-based inorganic nanocrystals are able to generate more reactive oxygen species(ROS)due to the special composition and band structure.The representative achievements and the specific functions of the nanocrystals sonosensitizers are summarized in this work,and the relationship of structure/composition-SDT performance and the internally regulated composite is revealed.Syner-gistic effects of SDT in combination with other therapeutic modalities are mainly highlighted.At the same time,the critical and potential issues and future perspectives are addressed.展开更多
In this review,we delve into the intricate regulation of the tumor microenvironment(TME)under malignant conditions and explore the transformative potential of nanoscale metal-organic frameworks(nMOFs)in the realm of s...In this review,we delve into the intricate regulation of the tumor microenvironment(TME)under malignant conditions and explore the transformative potential of nanoscale metal-organic frameworks(nMOFs)in the realm of sonodynamic therapy(SDT).The TME serves as a dynamic milieu influencing tumor progression and therapeutic response,presenting formidable challenges,such as hypoxia,acidity,excess hydrogen peroxide,high expression of glutathione,and immunosuppression.Utilizing the exceptional attributes of nMOFs,including their tunable structures and biocompatibility,holds immense promise for enhancing SDT efficacy and reshaping the TME landscape.By integrating nMOFs with SDT,researchers aim to assemble multiple functionalities in a single platform that enhance tumor cell eradication while counteracting unfavorable TME conditions and immune resistance.The potential of nMOFs to revolutionize tumor therapies by precisely targeting TME and overcoming therapeutic barriers is underscored by an in-depth analysis of recent breakthroughs in the use of nMOFs-based sonosensitizers to remodulate TME to amplify the efficacy of SDT.展开更多
Reactive oxygen species(ROS),involving in many biological reactions,play an important role in disease treatment.Among the various ROS-based therapeutic modalities,sonodynamic therapy(SDT)stands out with its unique adv...Reactive oxygen species(ROS),involving in many biological reactions,play an important role in disease treatment.Among the various ROS-based therapeutic modalities,sonodynamic therapy(SDT)stands out with its unique advantages.In turn,the SDT efficacy is mainly dependent on the ROS levels in the disease microenvironment.Therefore,in recent years,researchers have extensively investigated SDT with high ROS generation capacity.In this review,we focus on effective strategies to improve the therapeutic ef-ficiency of SDT by modulating ROS,overview the basic mechanisms of ROS generation by sonosensitizers,highlight the rational design of sonosensitizers,and summarize strategies to improve the SDT efficacy by modulating disease microenvironment.In addition,multiple ROS synergistic treatment modalities and the prospect of SDT are discussed.We believe that the understanding and exploration of SDT enhancement strategies will facilitate the clinical translation of SDT.展开更多
Immune therapy based on programmed death-ligand 1(PD-L1)is widely used to treat human tumors.The current strategies to improve immune checkpoint blockade therapy fail in rescuing increased expression of PD-L1 in tumor...Immune therapy based on programmed death-ligand 1(PD-L1)is widely used to treat human tumors.The current strategies to improve immune checkpoint blockade therapy fail in rescuing increased expression of PD-L1 in tumor issues.Here,we for the first time synthesized the metal-organic framework(MOF)nanocrystals of rare-earth element dysprosium(Dy)coordinated with tetrakis(4-carboxyphenyl)porphyrin(TCPP),which show well-defined two-dimensional morphologies.The MOF nanocrystals of Dy-TCPP could apparently reduce PD-L1 expression in tumor cells both in vitro and in vivo,and therefore display effective tumor treatment through immune therapy without any immune checkpoint inhibitor drugs.Considering the sensitivity of TCPP ligand toward ultrasound,the prepared Dy-TCPP can also realize sonodynamic therapy(SDT)besides immune therapy.In addition,the Dy-TCPP nanocrystals can efficiently obtain T_(2)-weight magnetic resonance imaging(MRI)of tumor sites.Our study provides the Dy-TCPP nanocrystals as promising diagnostic MRI-guided platforms for the combined treatment on tumors with SDT and immune therapy.Moreover,this strategy succeeds in reducing the elevated expression of PD-L1 in tumor cells,which might serve as a novel avenue for tumor immunotherapy in future.展开更多
The therapeutic efficiency of sonodynamic therapy(SDT)mainly depends on the presence of oxygen(O_(2))to generate harmful reactive oxygen species(ROS);thus,the hypoxic tumor microenvironment significantly limits the ef...The therapeutic efficiency of sonodynamic therapy(SDT)mainly depends on the presence of oxygen(O_(2))to generate harmful reactive oxygen species(ROS);thus,the hypoxic tumor microenvironment significantly limits the efficacy of SDT.Therefore,the development of oxygen-independent free radical generators and associated combination therapy tactics can be a promising field to facilitate the anticancer capability of SDT.In this study,a biomimetic drug delivery system(C-TiO_(2)/AIPH@PM)composed of an alkyl-radical generator(2,2′-azobis[2-(2-imidazolin-2-yl)propane]dihydrochloride,AIPH)-loaded C-TiO_(2) hollow nanoshells(HNSs)as the inner cores,and a platelet membrane(PM)as the outer shells is successfully prepared for synergistic SDT and oxygen-independent alkyl-radical therapy.The PM encapsulation can significantly prolong the blood circulation time of CTiO_(2)/AIPH@PM compared with C-TiO_(2)/AIPH while enabling C-TiO_(2)/AIPH@PM to achieve tumor targeting.C-TiO_(2)/AIPH@PM can efficiently produce ROS and alkyl radicals,which can achieve a more thorough tumor eradication regardless of the normoxic or hypoxic conditions.Furthermore,the generation of these radicals improves the efficiency of SDT.In addition,nitrogen(N_(2))produced due to the decomposition of AIPH enhances the acoustic cavitation effect and lowers the cavitation threshold,thereby enhancing the penetration of CTiO_(2)/AIPH@PM at the tumor sites.Both in vitro and in vivo experiments demonstrate that CTiO_(2)/AIPH@PM possesses good biosafety,ultrasound imaging performance,and excellent anticancer efficacy.This study provides a new strategy to achieve oxygen-independent free radical production and enhance therapeutic efficacy by combining SDT and free radical therapy.展开更多
Facilitated by reactive oxygen species(ROS)-involved therapies,tumor cells undergo immunogenic cell death(ICD)to stimulate long-term immunity response.However,it is hard to trigger abundant and large-scale ICD for sat...Facilitated by reactive oxygen species(ROS)-involved therapies,tumor cells undergo immunogenic cell death(ICD)to stimulate long-term immunity response.However,it is hard to trigger abundant and large-scale ICD for satisfactory cancer immunotherapy.Herein,a multifunctional sonosensitizer that consists of Au single atoms and clusters anchored on TiO_(2)nanosheets(named Au_(S/C)-TiO_(2))is reported for augmented sonodynamic therapy(SDT)and glucose depletion,which ultimately induce robust ICD due to the improved ROS generation and strong endoplasmic reticulum(ER)stress.The synergy effect between Au cluster/single atom with TiO_(2)nanosheets intensifies apoptosis and ICD pathways to inhibit 80%of tumor cells through in vivo analyses.Furthermore,immune cells in vivo analyses verify the effectiveness of Au_(S/C)-TiO_(2)sonosensitizer towards the induction of antitumor immunity.This study thus reveals that simultaneous presence of ROS generation and strong ER stress can efficiently evoke a strong ICD-mediated immune response.展开更多
基金support from the Natural Science Foundation of Henan,China(Grant No.:202300410446)the National Natural Science Foundation of China(Grant No.:82071950).
文摘Atherosclerosis(AS)is a chronic inflammatory disease of large and medium-sized arteries that leads to ischemic heart disease,stroke,and peripheral vascular disease.Despite the current treatments,mortality and disability still remain high.Sonodynamic therapy(SDT),a non-invasive and localized methodology,has been developed as a promising new treatment for inhibiting atherosclerotic progression and stabilizing plaques.Promising progress has been made through cell and animal assays,as well as clinical trials.For example,the effect of SDT on apoptosis and autophagy of cells in AS,especially macrophages,and the concept of non-lethal SDT has also been proposed.In this review,we summarize the ultrasonic parameters and known sonosensitizers utilized in SDT for AS;we elaborate on SDT's therapeutic effects and mechanisms in terms of macrophages,T lymphocytes,neovascularization,smooth muscle cells,lipid,extracellular matrix and efferocytosis within plaques;additionally,we discuss the safety of SDT.A comprehensive summary of the confirmed effects of SDT on AS is conducted to establish a framework for future researchers.
基金partially supported by the National Natural Science Foundation of China(81702457)the Clinical Medical University and Hospital Joint Construction of Disciplinary Projects 2021(2021lcxk017)+4 种基金the Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Cancer(2020B121201004)the Outstanding Youths Development Scheme of Nanfang Hospital,Southern Medical University(2021J008)the Basic and Clinical Cooperative Research and Promotion Program of Anhui Medical University(2021xkjT028)the Open Fund of Key Laboratory of Antiinflammatory and Immune Medicine(KFJJ-2021-11)Grants for Scientific Research of BSKY from Anhui Medical University(1406012201)。
文摘Glioblastoma multiforme(GBM) is the most common primary malignant brain tumor, and it is associated with poor prognosis. Its characteristics of being highly invasive and undergoing heterogeneous genetic mutation, as well as the presence of the blood–brain barrier(BBB), have reduced the efficacy of GBM treatment. The emergence of a novel therapeutic method, namely, sonodynamic therapy(SDT), provides a promising strategy for eradicating tumors via activated sonosensitizers coupled with low-intensity ultrasound. SDT can provide tumor killing effects for deep-seated tumors, such as brain tumors. However, conventional sonosensitizers cannot effectively reach the tumor region and kill additional tumor cells, especially brain tumor cells. Efforts should be made to develop a method to help therapeutic agents pass through the BBB and accumulate in brain tumors. With the development of novel multifunctional nanosensitizers and newly emerging combination strategies, the killing ability and selectivity of SDT have greatly improved and are accompanied with fewer side effects. In this review, we systematically summarize the findings of previous studies on SDT for GBM, with a focus on recent developments and promising directions for future research.
基金the National Natural Science Foundation of China,No.82272004 and No.81974470the Nature Science Foundation of Zhejiang Province,No.LZ22H180001.
文摘In recent years,because of the growing desire to improve the noninvasiveness and safety of tumor treatments,sonodynamic therapy has gradually become a popular research topic.However,due to the complexity of the therapeutic process,the relevant mechanisms have not yet been fully elucidated.One of the widely accepted possibilities involves the effect of reactive oxygen species.In this review,the mechanism of reactive oxygen species production by sonodynamic therapy(SDT)and ways to enhance the sonodynamic production of reactive oxygen species are reviewed.Then,the clinical application and limitations of SDT are discussed.In conclusion,current research on sonodynamic therapy should focus on the development of sonosensitizers that efficiently produce active oxygen,exhibit biological safety,and promote the clinical transformation of sonodynamic therapy.
基金supported by the National Natural Science Foundation of China(Grant No.81573005 and 81371671)
文摘Sonodynamic therapy(SDT) is an emerging approach that involves a combination of low-intensity ultrasound and specialized chemical agents known as sonosensitizers. Ultrasound can penetrate deeply into tissues and can be focused into a small region of a tumor to activate a sonosensitizer which offers the possibility of non-invasively eradicating solid tumors in a site-directed manner.In this article, we critically reviewed the currently accepted mechanisms of sonodynamic action and summarized the classification of sonosensitizers. At the same time, the breath of evidence from SDT-based studies suggests that SDT is promising for cancer treatment.
基金supported by the Major Infrastructure Projects of Shanghai Science and Technology (No. 10JC1412600)
文摘Ultrasound can be used not only in examination, but also in therapy, especially in the therapy of cancer. Sonodynamic therapy is an experimental cancer therapy method which uses ultrasound to enhance the cytotoxic effects of agents known as sonosensitizers. It has been tested in vitro and in vivo. The ultrasound could penetrate the tissue and cell under some of conditions which directly changes cell membrane permeability, thereby allowing the delivery of exogenous molecules into the cells in some degree. Ultrasound could inhibit the proliferation or induce the apoptosis of cancer cells in vitro or in vivo. Recent researches indicated low-frequency and low-intensity ultrasound could induce cell apoptosis, which could be strengthened by sonodynamic sensitivity, microbubbles, chemotherapeutic drugs and so on. Most kinds of ultrasound suppressed the proliferation of cancer cells through inducing the apoptosis of cancer cells. The mechanism of apoptosis is not clear. In this review, we will focus on and discuss the mechanisms of the induction of cancer cell apoptosis by ultrasound.
基金supported by the National Key Research and Development Program of China(2017YFA0205201 and 2016YFC0106900)the National Natural Science Foundation of China(81925019,81422023,81701752,81901808,and U1705281)+2 种基金the Fundamental Research Funds for the Central Universities(20720200019 and 20720190088)the Program for New Century Excellent Talents in University,China(No.NCET-13-0502)the China Postdoctoral Science Foundation(2019M662545)。
文摘Rapid evolution and propagation of multidrug resistance among bacterial pathogens are outpacing the development of new antibiotics,but antimicrobial photodynamic therapy(aPDT)provides an excellent alternative.This treatment depends on the interaction between light and photoactivated sensitizer to generate reactive oxygen species(ROS),which are highly cytotoxic to induce apoptosis in virtually all microorganisms without resistance concern.When replacing light with low-frequency ultrasonic wave to activate sensitizer,a novel ultrasounddriven treatment emerges as antimicrobial sonodynamic therapy(aSDT).Recent advances in aPDT and aSDT reveal golden opportunities for the management of multidrug resistant bacterial infections,especially in the theranostic application where imaging diagnosis can be accomplished facilely with the inherent optical characteristics of sensitizers,and the generated ROS by aPDT/SDT cause broad-spectrum oxidative damage for sterilization.In this review,we systemically outline the mechanisms,targets,and current progress of aPDT/SDT for bacterial theranostic application.Furthermore,potential limitations and future perspectives are also highlighted.
基金supported by grants from the National Key Research and Development Program of China(Grant No.2016YFA0201400)State Key Program of National Natural Science of China(Grant No.81930047)+4 种基金Projects of International Cooperation and Exchanges NSFC-PSF(Grant No.31961143003)National Project for Research and Development of Major Scientific Instruments(Grant No.81727803)Beijing Natural Science Foundation,Haidian,Original Innovation Joint Fund(Grant No.17 L20170)Foundation for Innovative Research Groups of the National Natural Science Foundation of China(Grant Nos.81421004 and 52003161)Shenzhen Science and Technology Project(Grant No.JCYJ20180507183842516)。
文摘Drug resistance is considered the most important reason for the clinical failure of cancer chemotherapy.Circumventing drug resistance and improving the efficacy of anticancer agents remains a major challenge.Over the past several decades,photodynamic therapy(PDT)and sonodynamic therapy(SDT)have attracted substantial attention for their efficacy in cancer treatment,and have been combined with chemotherapy to overcome drug resistance.However,simultaneously delivering sensitizers and chemotherapy drugs to same tumor cell remains challenging,thus greatly limiting this combinational therapy.The rapid development of nanotechnology provides a new approach to solve this problem.Nano-based drug delivery systems can not only improve the targeted delivery of agents but also co-deliver multiple drug components in single nanoparticles to achieve optimal synergistic effects.In this review,we briefly summarize the mechanisms of drug resistance,discuss the advantages and disadvantages of PDT and SDT in reversing drug resistance,and describe state-of-the-art research using nano-mediated PDT and SDT to solve these refractory problems.This review also highlights the clinical translational potential for this combinational therapy.
基金The project supported by Health and Medical Research Fund(13120442)the General Research Fund(GRF)Grant from Hong Kong Research Grant Committee(476912)
文摘OBJECTIVE To investigate the killing effect of the combined treatment of ultrasound and hypocrellin B,an active component isolated from a natural product Hypocrella bambuase,on Candida albicans.METHODS At first,Candida albicans are incubated with hypcrellin B and the uptake of hypocrellin B in Candida albicans was determined using fluorescence intensity analysis.And then the sensitized Candida albicans were exposed to low-intensity of ultrasound.After the combined treatment of ultrasound and hypocellin B,the growth of Candida albicans was evaluated using the colony counting method,and membrane integrity of Candida albicans was also analyzed by a flow cytometry with propidium iodide staining.RESULTS Hypocrellin B was fast absorbed by candida albicans.The growth of candida albicans was more significantly inhibited by the combined treatment of ultrasound and hypocrellin B than the controls(P<0.05).The more marked damages to membrane integrity were found in the combined treatment than the controls(P<0.05).CONCLUSION The combined treatment of ultrasound and hypocrellin B had significant killing effect on Candida albicans,indicating sonodynamic therapy with hypocrellin B from natural product might be a potential approach for combating fungal infections.
基金The project supported by the General Research Fund Grant from Hong Kong Research Grant Committee(476912)Health and Medical Research Fund(13120442)
文摘OBJECTIVE To investigate the effect of sonodynamic action on biofilm-producing Enterococcus faecalis using hypocrellin B from a natural product Hypocrella bambuase as a sensitizer.METHODS The uptake of hypocrellin B in biofilm-producing Enterococcus faecalis was measured using the fluorescent analysis method.After the combined treatment of hypocrellin B and ultrasound,the growth of biofilm-producing Enterococcus faecalis was measured using the colony counting method,the membrane integrity was detected using a flow cytometric analysis with propidium iodide staining.Chromosomal DNA of bacteria was analysed using apulsed-field gel electrophoresis(PFGE).RESULTS The uptake of hypocrellin B in biofilm-producing Enterocuccus faecalis reached a high peak at the 20 min incubation.After the combined treatment of hypocrellin B,the growth of biofilm-producing Enterocuccus faecalis significantly descreased and membrane integrity was remarkably damaged.However,no remarkable change in bacterial DNA was found.CONCLUSION Sonodynamic action of hypocrellin B had significant killing activity on Enterocuccus faecalis.
文摘We investigated the feasibility of sonodynamic therapy for glioma by low frequency ultrasoundwith5-aminolevulinic acid (5-ALA), a precursor of protoporphyrin IX (PpIX) in heme synthetic process. In vivo tumor model was made by inoculating human glioma cell line U87-MG subcutaneously in nude mice. The tumor was sonicated by 25-kHz ultrasound 4 hours following administration of 5-ALA. The tumor size decreased in 5-ALA administered (ALA(+)US(+)) mice, while increased in non-5-ALA administrated (ALA(-)US(+)) mice and non-sonicated mice (ALA(+)US(-)). The immunohistochemical analysis revealed an apoptotic change in tumor tissue of ALA(+)US(+) mice. The results showed the therapeutic effect of 25 kHz ultrasound for the glioma in 5-ALA administered tumor-bearing mice by inducing apoptotic change of tumor cells. This is a first report to elucidate the feasibility of therapeutic use of 25 kHz, relatively low frequency, ultrasound in sonodynamic therapy using 5-ALA as a sonosensitizer precursor. The utilization of this frequency will contribute to the development of sonodynamic therapy for gliomas and the spread of this technique in many hospitals that possess ultrasonic aspirators.
文摘Sonodynamic therapy is a new cancer treatment based on the synergetic effect of ultrasound and a drug. In this study, ultrasonically induced antitumor effects of benzoporphyrin derivative monoacid ring A (BPD-MA) on KLN205 cells were investigated. KLN205 cells were irradiated at an ultrasonic frequency of 3 MHz with 10 μg/ml BPD-MA. The ultrasonically induced cell damage significantly increased as an ultrasonic intensity and ultrasound exposure time increased. Confocal microscopic examination revealed that the irradiated cells were induced chromatin condensation and phosphatidylserine exposure. The synergistic effect of the ultrasound exposure and BPD-MA on the tumor cell adhesion rate was significant.
基金supported by the National Research Foundation of South Africabased on the research supported by the South African Research Chairs Initiative of the Department of Science and Technology and National Research Foundation of South Africa(Grant No.98337)+2 种基金the University of Johannesburgthe National Laser Centrethe National Research Foundation-South African Research Chairs Initiative(NRF-SARChI)for their financial grant support。
文摘Cancer remains one of the diseases with the highest incidence and mortality globally.Conventional treatment modalities have demonstrated threatening drawbacks including invasiveness,noncontrollability,and development of resistance for some,including chemotherapy,radiation,and surgery.Sono-photodynamic combinatorial therapy(SPDT)has been developed as an alternative treatment modality which offers a non-invasive and controllable therapeutic approach.SPDT combines the mechanism of action of sonodynamic therapy(SDT),which uses ultrasound,and photodynamic therapy(PDT),which uses light,to activate a sensitizer and initiate cancer eradication.The use of phthalocyanines(Pcs)as sensitizers for SPDT is gaining interest owing to their ability to induce intracellular oxidative stress and initiate toxicity under SDT and PDT.This review discusses some of the structural prerequisites of Pcs which may influence their overall SPDT activities in cancer therapy.
基金supported by the National Natural Science Foundation of China(82202873,32200566)the Natural Science Foundation of Zhejiang Province(LQ22H160003)the Fundamental Research Funds for the Central Universities(2262022-00141)。
文摘Adavosertib(ADA)is a WEE1 inhibitor that exhibits a synthetic lethal effect on p53-mutated gallbladder cancer(GBC).However,drug resistance due to DNA damage response compensation pathways and high toxicity limits further applications.Herein,estrone-targeted ADA-encapsulated metal–organic frameworks(ADA@MOF-EPL)for GBC synthetic lethal treatment by inducing conditional factors are developed.The high expression of estrogen receptors in GBC enables ADA@MOF-EPL to quickly enter and accumulate near the cell nucleus through estrone-mediated endocytosis and release ADA to inhibit WEE1 upon entering the acidic tumor microenvironment.Ultrasound irradiation induces ADA@MOF-EPL to generate reactive oxygen species(ROS),which leads to a further increase in DNA damage,resulting in a higher sensitivity of p53-mutated cancer cells to WEE1 inhibitor and promoting cell death via conditional synthetic lethality.The conditional factor induced by ADA@MOF-EPL further enhances the antitumor efficacy while significantly reducing systemic toxicity.Moreover,ADA@MOF-EPL demonstrates similar antitumor abilities in other p53-mutated solid tumors,revealing its potential as a broad-spectrum antitumor drug.
基金supported by the National Natural Science Foundation of China (51703018, 22375027)the Natural Science Foundation of Jiangsu Province (BK20221265, BK20211100)+1 种基金the Fundamental Research Funds for the Central Universities (DUT21YG133, DUT22YG224)the Research Funds from Liaoning Cancer Hospital(2024ZLKF-35)。
文摘Carbon monoxide(CO) is an endogenous therapeutic gas with an anti-tumor effect. The precise delivery and controlled release of CO in tumor tissues play crucial roles in anti-cancer treatment. However, efficient in situ generation of CO from metal-free COreleasing molecules(CORMs) remains a formidable challenge. Herein, we develop ultrasound(US)-driven self-decomposition porphyrin as organic and metal-free US-CORMs, which can spatiotemporally control the CO release(347 mmol CO/mol porphyrin) efficiently under physiologically harmless US conditions(1.0 MHz, 1.5 W/cm^(2), 50% duty cycle, 50 min). Moreover,porphyrin as a sonosensitizer can also generate reactive oxygen species(ROS) under US treatment to achieve sonodynamic therapy(SDT). Advanced functions of such porphyrin-based CORMs in CO gas-sonodynamic synergistic treatment have been demonstrated by evaluating the in vitro and in vivo anti-tumor effects.
基金This study was financially supported by the National Natural Science Foundation of China(Nos.22105116,51872030,51631001,51702016,51902023 and 21801015)Joint R&D Plan of Hongkong,Macao,Taiwan and Beijing(No.Z191100001619002)+1 种基金the Fundamental Research Funds for the Central Universities(No.2017CX01003)Beijing Institute of Technology Research Fund Program for Young Scholars.
文摘With the fast development of technology for the treatment of tumor and bacteria,photo-therapeutic strate-gies emerge as a kind of highly effective and common treatment,but the low tissue penetration depth of light limits their development.Sonodynamic therapy(SDT),as an efficient and non-invasive treatment,attracts more people's attention due to the inherent property of high tissue penetration.The soft tissue penetration depth of ultrasound(US)can even reach more than 10 cm,which has great advantage over that of light.Therefore,many sonosensitizers are studied and applied to SDT-based therapy.Metal-based inorganic nanocrystals are able to generate more reactive oxygen species(ROS)due to the special composition and band structure.The representative achievements and the specific functions of the nanocrystals sonosensitizers are summarized in this work,and the relationship of structure/composition-SDT performance and the internally regulated composite is revealed.Syner-gistic effects of SDT in combination with other therapeutic modalities are mainly highlighted.At the same time,the critical and potential issues and future perspectives are addressed.
基金supported by the National Natural Science Foundation of China(Nos.22271114,82170154)the Fund of‘111 Center’,China(No.B17020)the Program for JLU(China)Science and Technology Innovative Research Team(JLUSTIRT).
文摘In this review,we delve into the intricate regulation of the tumor microenvironment(TME)under malignant conditions and explore the transformative potential of nanoscale metal-organic frameworks(nMOFs)in the realm of sonodynamic therapy(SDT).The TME serves as a dynamic milieu influencing tumor progression and therapeutic response,presenting formidable challenges,such as hypoxia,acidity,excess hydrogen peroxide,high expression of glutathione,and immunosuppression.Utilizing the exceptional attributes of nMOFs,including their tunable structures and biocompatibility,holds immense promise for enhancing SDT efficacy and reshaping the TME landscape.By integrating nMOFs with SDT,researchers aim to assemble multiple functionalities in a single platform that enhance tumor cell eradication while counteracting unfavorable TME conditions and immune resistance.The potential of nMOFs to revolutionize tumor therapies by precisely targeting TME and overcoming therapeutic barriers is underscored by an in-depth analysis of recent breakthroughs in the use of nMOFs-based sonosensitizers to remodulate TME to amplify the efficacy of SDT.
基金supported by the National Key Research and Development Program of China(No.2021YFC2102900)the National Natural Science Foundation of China(Nos.U21A2085,22061130205)+1 种基金the Joint Project of BRC-BC(Biomedical Translational Engineering Research Center of BUCT-CJFH)(No.XK2022-O8)the Open Foundation of State Key Laboratory of Organic-Inorganic Composites,Beijing University of Chemical Technology(No.OIC-202201010).
文摘Reactive oxygen species(ROS),involving in many biological reactions,play an important role in disease treatment.Among the various ROS-based therapeutic modalities,sonodynamic therapy(SDT)stands out with its unique advantages.In turn,the SDT efficacy is mainly dependent on the ROS levels in the disease microenvironment.Therefore,in recent years,researchers have extensively investigated SDT with high ROS generation capacity.In this review,we focus on effective strategies to improve the therapeutic ef-ficiency of SDT by modulating ROS,overview the basic mechanisms of ROS generation by sonosensitizers,highlight the rational design of sonosensitizers,and summarize strategies to improve the SDT efficacy by modulating disease microenvironment.In addition,multiple ROS synergistic treatment modalities and the prospect of SDT are discussed.We believe that the understanding and exploration of SDT enhancement strategies will facilitate the clinical translation of SDT.
基金This work was financially supported by the National Natural Science Foundation of China(No.52172096)the Foundation of CNU(No.0092255073).
文摘Immune therapy based on programmed death-ligand 1(PD-L1)is widely used to treat human tumors.The current strategies to improve immune checkpoint blockade therapy fail in rescuing increased expression of PD-L1 in tumor issues.Here,we for the first time synthesized the metal-organic framework(MOF)nanocrystals of rare-earth element dysprosium(Dy)coordinated with tetrakis(4-carboxyphenyl)porphyrin(TCPP),which show well-defined two-dimensional morphologies.The MOF nanocrystals of Dy-TCPP could apparently reduce PD-L1 expression in tumor cells both in vitro and in vivo,and therefore display effective tumor treatment through immune therapy without any immune checkpoint inhibitor drugs.Considering the sensitivity of TCPP ligand toward ultrasound,the prepared Dy-TCPP can also realize sonodynamic therapy(SDT)besides immune therapy.In addition,the Dy-TCPP nanocrystals can efficiently obtain T_(2)-weight magnetic resonance imaging(MRI)of tumor sites.Our study provides the Dy-TCPP nanocrystals as promising diagnostic MRI-guided platforms for the combined treatment on tumors with SDT and immune therapy.Moreover,this strategy succeeds in reducing the elevated expression of PD-L1 in tumor cells,which might serve as a novel avenue for tumor immunotherapy in future.
基金This work was supported by the Research fund of Anhui Institute of Translation Medicine(No.2021zhyx-C49)the Foundation of Anhui Medical University(No.2021xkj030)+2 种基金the Anhui Provincial Natural Science Foundation(No.2208085QC81)the Basic and Clinical Cooperative Research and Promotion Program of Anhui Medical University(No.2021xkjT028)Grants for Scientific Research of BSKY from Anhui Medical University(No.1406012201).
文摘The therapeutic efficiency of sonodynamic therapy(SDT)mainly depends on the presence of oxygen(O_(2))to generate harmful reactive oxygen species(ROS);thus,the hypoxic tumor microenvironment significantly limits the efficacy of SDT.Therefore,the development of oxygen-independent free radical generators and associated combination therapy tactics can be a promising field to facilitate the anticancer capability of SDT.In this study,a biomimetic drug delivery system(C-TiO_(2)/AIPH@PM)composed of an alkyl-radical generator(2,2′-azobis[2-(2-imidazolin-2-yl)propane]dihydrochloride,AIPH)-loaded C-TiO_(2) hollow nanoshells(HNSs)as the inner cores,and a platelet membrane(PM)as the outer shells is successfully prepared for synergistic SDT and oxygen-independent alkyl-radical therapy.The PM encapsulation can significantly prolong the blood circulation time of CTiO_(2)/AIPH@PM compared with C-TiO_(2)/AIPH while enabling C-TiO_(2)/AIPH@PM to achieve tumor targeting.C-TiO_(2)/AIPH@PM can efficiently produce ROS and alkyl radicals,which can achieve a more thorough tumor eradication regardless of the normoxic or hypoxic conditions.Furthermore,the generation of these radicals improves the efficiency of SDT.In addition,nitrogen(N_(2))produced due to the decomposition of AIPH enhances the acoustic cavitation effect and lowers the cavitation threshold,thereby enhancing the penetration of CTiO_(2)/AIPH@PM at the tumor sites.Both in vitro and in vivo experiments demonstrate that CTiO_(2)/AIPH@PM possesses good biosafety,ultrasound imaging performance,and excellent anticancer efficacy.This study provides a new strategy to achieve oxygen-independent free radical production and enhance therapeutic efficacy by combining SDT and free radical therapy.
基金The authors gratefully acknowledge the financial supports provided by the National Natural Science Foundation of China(No.21902119)Guangxi Provincial Natural Science Foundation(No.GUIKEAD22035044)Advanced Innovation Teams and Xinghu Scholars Program of Guangxi Medical University,and start-up funding for high-level talents from Guangxi Medical University Cancer Hospital。
文摘Facilitated by reactive oxygen species(ROS)-involved therapies,tumor cells undergo immunogenic cell death(ICD)to stimulate long-term immunity response.However,it is hard to trigger abundant and large-scale ICD for satisfactory cancer immunotherapy.Herein,a multifunctional sonosensitizer that consists of Au single atoms and clusters anchored on TiO_(2)nanosheets(named Au_(S/C)-TiO_(2))is reported for augmented sonodynamic therapy(SDT)and glucose depletion,which ultimately induce robust ICD due to the improved ROS generation and strong endoplasmic reticulum(ER)stress.The synergy effect between Au cluster/single atom with TiO_(2)nanosheets intensifies apoptosis and ICD pathways to inhibit 80%of tumor cells through in vivo analyses.Furthermore,immune cells in vivo analyses verify the effectiveness of Au_(S/C)-TiO_(2)sonosensitizer towards the induction of antitumor immunity.This study thus reveals that simultaneous presence of ROS generation and strong ER stress can efficiently evoke a strong ICD-mediated immune response.