In this paper,a hybrid model based on sooty tern optimization algo-rithm(STOA)is proposed to optimize the parameters of the support vector machine(SVM)and identify the best feature sets simultaneously.Feature selec-ti...In this paper,a hybrid model based on sooty tern optimization algo-rithm(STOA)is proposed to optimize the parameters of the support vector machine(SVM)and identify the best feature sets simultaneously.Feature selec-tion is an essential process of data preprocessing,and it aims to find the most rele-vant subset of features.In recent years,it has been applied in many practical domains of intelligent systems.The application of SVM in many fields has proved its effectiveness in classification tasks of various types.Its performance is mainly determined by the kernel type and its parameters.One of the most challenging process in machine learning is feature selection,intending to select effective and representative features.The main disadvantages of feature selection processes included in classical optimization algorithm are local optimal stagnation and slow convergence.Therefore,the hybrid model proposed in this paper merges the STOA and differential evolution(DE)to improve the search efficiency and con-vergence rate.A series of experiments are conducted on 12 datasets from the UCI repository to comprehensively and objectively evaluate the performance of the proposed method.The superiority of the proposed method is illustrated from dif-ferent aspects,such as the classification accuracy,convergence performance,reduced feature dimensionality,standard deviation(STD),and computation time.展开更多
基金Sanming University introduces high-level talents to start scientific research funding support project(20YG14,20YG01)Guiding science and technology projects in Sanming City(2020-G-61,2020-S-39)+1 种基金Educational research projects of young and middle-aged teachers in Fujian Province(JAT200618,JAT200638)Scientific research and development fund of Sanming University(B202009,B202029).
文摘In this paper,a hybrid model based on sooty tern optimization algo-rithm(STOA)is proposed to optimize the parameters of the support vector machine(SVM)and identify the best feature sets simultaneously.Feature selec-tion is an essential process of data preprocessing,and it aims to find the most rele-vant subset of features.In recent years,it has been applied in many practical domains of intelligent systems.The application of SVM in many fields has proved its effectiveness in classification tasks of various types.Its performance is mainly determined by the kernel type and its parameters.One of the most challenging process in machine learning is feature selection,intending to select effective and representative features.The main disadvantages of feature selection processes included in classical optimization algorithm are local optimal stagnation and slow convergence.Therefore,the hybrid model proposed in this paper merges the STOA and differential evolution(DE)to improve the search efficiency and con-vergence rate.A series of experiments are conducted on 12 datasets from the UCI repository to comprehensively and objectively evaluate the performance of the proposed method.The superiority of the proposed method is illustrated from dif-ferent aspects,such as the classification accuracy,convergence performance,reduced feature dimensionality,standard deviation(STD),and computation time.