期刊文献+
共找到61篇文章
< 1 2 4 >
每页显示 20 50 100
Accelerating Large-Scale Sorting through Parallel Algorithms
1
作者 Yahya Alhabboub Fares Almutairi +3 位作者 Mohammed Safhi Yazan Alqahtani Adam Almeedani Yasir Alguwaifli 《Journal of Computer and Communications》 2024年第1期131-138,共8页
This study explores the application of parallel algorithms to enhance large-scale sorting, focusing on the QuickSort method. Implemented in both sequential and parallel forms, the paper provides a detailed comparison ... This study explores the application of parallel algorithms to enhance large-scale sorting, focusing on the QuickSort method. Implemented in both sequential and parallel forms, the paper provides a detailed comparison of their performance. This study investigates the efficacy of both techniques through the lens of array generation and pivot selection to manage datasets of varying sizes. This study meticulously documents the performance metrics, recording 16,499.2 milliseconds for the serial implementation and 16,339 milliseconds for the parallel implementation when sorting an array by using C++ chrono library. These results suggest that while the performance gains of the parallel approach over its serial counterpart are not immediately pronounced for smaller datasets, the benefits are expected to be more substantial as the dataset size increases. 展开更多
关键词 sorting Algorithm Quick Sort QuickSort Parallel Parallel algorithms
下载PDF
Improving path planning efficiency for underwater gravity-aided navigation based on a new depth sorting fast search algorithm
2
作者 Xiaocong Zhou Wei Zheng +2 位作者 Zhaowei Li Panlong Wu Yongjin Sun 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第2期285-296,共12页
This study focuses on the improvement of path planning efficiency for underwater gravity-aided navigation.Firstly,a Depth Sorting Fast Search(DSFS)algorithm was proposed to improve the planning speed of the Quick Rapi... This study focuses on the improvement of path planning efficiency for underwater gravity-aided navigation.Firstly,a Depth Sorting Fast Search(DSFS)algorithm was proposed to improve the planning speed of the Quick Rapidly-exploring Random Trees*(Q-RRT*)algorithm.A cost inequality relationship between an ancestor and its descendants was derived,and the ancestors were filtered accordingly.Secondly,the underwater gravity-aided navigation path planning system was designed based on the DSFS algorithm,taking into account the fitness,safety,and asymptotic optimality of the routes,according to the gravity suitability distribution of the navigation space.Finally,experimental comparisons of the computing performance of the ChooseParent procedure,the Rewire procedure,and the combination of the two procedures for Q-RRT*and DSFS were conducted under the same planning environment and parameter conditions,respectively.The results showed that the computational efficiency of the DSFS algorithm was improved by about 1.2 times compared with the Q-RRT*algorithm while ensuring correct computational results. 展开更多
关键词 Depth sorting Fast Search algorithm Underwater gravity-aided navigation Path planning efficiency Quick Rapidly-exploring Random Trees*(QRRT*)
下载PDF
Improvement of Counting Sorting Algorithm
3
作者 Chenglong Song Haiming Li 《Journal of Computer and Communications》 2023年第10期12-22,共11页
By analyzing the internal features of counting sorting algorithm. Two improvements of counting sorting algorithms are proposed, which have a wide range of applications and better efficiency than the original counting ... By analyzing the internal features of counting sorting algorithm. Two improvements of counting sorting algorithms are proposed, which have a wide range of applications and better efficiency than the original counting sort while maintaining the original stability. Compared with the original counting sort, it has a wider scope of application and better time and space efficiency. In addition, the accuracy of the above conclusions can be proved by a large amount of experimental data. 展开更多
关键词 Sort Algorithm Counting sorting algorithms COMPLEXITY Internal Features
下载PDF
A Multi-Objective Optimization for Locating Maintenance Stations and Operator Dispatching of Corrective Maintenance
4
作者 Chao-Lung Yang Melkamu Mengistnew Teshome +1 位作者 Yu-Zhen Yeh Tamrat Yifter Meles 《Computers, Materials & Continua》 SCIE EI 2024年第6期3519-3547,共29页
In this study,we introduce a novel multi-objective optimization model tailored for modern manufacturing,aiming to mitigate the cost impacts of operational disruptions through optimized corrective maintenance.Central t... In this study,we introduce a novel multi-objective optimization model tailored for modern manufacturing,aiming to mitigate the cost impacts of operational disruptions through optimized corrective maintenance.Central to our approach is the strategic placement of maintenance stations and the efficient allocation of personnel,addressing a crucial gap in the integration of maintenance personnel dispatching and station selection.Our model uniquely combines the spatial distribution of machinery with the expertise of operators to achieve a harmonious balance between maintenance efficiency and cost-effectiveness.The core of our methodology is the NSGA Ⅲ+Dispatch,an advanced adaptation of the Non-Dominated Sorting Genetic Algorithm Ⅲ(NSGA-Ⅲ),meticulously designed for the selection of maintenance stations and effective operator dispatching.This method integrates a comprehensive coding process,crossover operator,and mutation operator to efficiently manage multiple objectives.Rigorous empirical testing,including a detailed analysis from a taiwan region electronic equipment manufacturer,validated the effectiveness of our approach across various scenarios of machine failure frequencies and operator configurations.The findings reveal that the proposed model significantly outperforms current practices by reducing response times by up to 23%in low-frequency and 28.23%in high-frequency machine failure scenarios,leading to notable improvements in efficiency and cost reduction.Additionally,it demonstrates significant improvements in oper-ational efficiency,particularly in selective high-frequency failure contexts,while ensuring substantial manpower cost savings without compromising on operational effectiveness.This research significantly advances maintenance strategies in production environments,providing the manufacturing industry with practical,optimized solutions for diverse machine malfunction situations.Furthermore,the methodologies and principles developed in this study have potential applications in various other sectors,including healthcare,transportation,and energy,where maintenance efficiency and resource optimization are equally critical. 展开更多
关键词 Corrective maintenance multi-objective optimization non-dominated sorting genetic algorithmⅢ operator allocation maintenance station location
下载PDF
Strengthened Dominance Relation NSGA-Ⅲ Algorithm Based on Differential Evolution to Solve Job Shop Scheduling Problem
5
作者 Liang Zeng Junyang Shi +2 位作者 Yanyan Li Shanshan Wang Weigang Li 《Computers, Materials & Continua》 SCIE EI 2024年第1期375-392,共18页
The job shop scheduling problem is a classical combinatorial optimization challenge frequently encountered in manufacturing systems.It involves determining the optimal execution sequences for a set of jobs on various ... The job shop scheduling problem is a classical combinatorial optimization challenge frequently encountered in manufacturing systems.It involves determining the optimal execution sequences for a set of jobs on various machines to maximize production efficiency and meet multiple objectives.The Non-dominated Sorting Genetic Algorithm Ⅲ(NSGA-Ⅲ)is an effective approach for solving the multi-objective job shop scheduling problem.Nevertheless,it has some limitations in solving scheduling problems,including inadequate global search capability,susceptibility to premature convergence,and challenges in balancing convergence and diversity.To enhance its performance,this paper introduces a strengthened dominance relation NSGA-Ⅲ algorithm based on differential evolution(NSGA-Ⅲ-SD).By incorporating constrained differential evolution and simulated binary crossover genetic operators,this algorithm effectively improves NSGA-Ⅲ’s global search capability while mitigating pre-mature convergence issues.Furthermore,it introduces a reinforced dominance relation to address the trade-off between convergence and diversity in NSGA-Ⅲ.Additionally,effective encoding and decoding methods for discrete job shop scheduling are proposed,which can improve the overall performance of the algorithm without complex computation.To validate the algorithm’s effectiveness,NSGA-Ⅲ-SD is extensively compared with other advanced multi-objective optimization algorithms using 20 job shop scheduling test instances.The experimental results demonstrate that NSGA-Ⅲ-SD achieves better solution quality and diversity,proving its effectiveness in solving the multi-objective job shop scheduling problem. 展开更多
关键词 Multi-objective job shop scheduling non-dominated sorting genetic algorithm differential evolution simulated binary crossover
下载PDF
Improved non-dominated sorting genetic algorithm (NSGA)-II in multi-objective optimization studies of wind turbine blades 被引量:27
6
作者 王珑 王同光 罗源 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2011年第6期739-748,共10页
The non-dominated sorting genetic algorithm (NSGA) is improved with the controlled elitism and dynamic crowding distance. A novel multi-objective optimization algorithm is obtained for wind turbine blades. As an exa... The non-dominated sorting genetic algorithm (NSGA) is improved with the controlled elitism and dynamic crowding distance. A novel multi-objective optimization algorithm is obtained for wind turbine blades. As an example, a 5 MW wind turbine blade design is presented by taking the maximum power coefficient and the minimum blade mass as the optimization objectives. The optimal results show that this algorithm has good performance in handling the multi-objective optimization of wind turbines, and it gives a Pareto-optimal solution set rather than the optimum solutions to the conventional multi objective optimization problems. The wind turbine blade optimization method presented in this paper provides a new and general algorithm for the multi-objective optimization of wind turbines. 展开更多
关键词 wind turbine multi-objective optimization Pareto-optimal solution non-dominated sorting genetic algorithm (NSGA)-II
下载PDF
Multi-objective Evolutionary Algorithms for MILP and MINLP in Process Synthesis 被引量:7
7
作者 石磊 姚平经 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2001年第2期173-178,共6页
Steady-state non-dominated sorting genetic algorithm (SNSGA), a new form of multi-objective genetic algorithm, is implemented by combining the steady-state idea in steady-state genetic algorithms (SSGA) and the fitnes... Steady-state non-dominated sorting genetic algorithm (SNSGA), a new form of multi-objective genetic algorithm, is implemented by combining the steady-state idea in steady-state genetic algorithms (SSGA) and the fitness assignment strategy of non-dominated sorting genetic algorithm (NSGA). The fitness assignment strategy is improved and a new self-adjustment scheme of is proposed. This algorithm is proved to be very efficient both computationally and in terms of the quality of the Pareto fronts produced with five test problems including GA difficult problem and GA deceptive one. Finally, SNSGA is introduced to solve multi-objective mixed integer linear programming (MILP) and mixed integer non-linear programming (MINLP) problems in process synthesis. 展开更多
关键词 multi-objective programming multi-objective evolutionary algorithm steady-state non-dominated sorting genetic algorithm process synthesis
下载PDF
Multi-objective optimization of water supply network rehabilitation with non-dominated sorting Genetic Algorithm-II 被引量:3
8
作者 Xi JIN Jie ZHANG +1 位作者 Jin-liang GAO Wen-yan WU 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2008年第3期391-400,共10页
Through the transformation of hydraulic constraints into the objective functions associated with a water supply network rehabilitation problem, a non-dominated sorting Genetic Algorithm-II (NSGA-II) can be used to sol... Through the transformation of hydraulic constraints into the objective functions associated with a water supply network rehabilitation problem, a non-dominated sorting Genetic Algorithm-II (NSGA-II) can be used to solve the altered multi-objective optimization model. The introduction of NSGA-II into water supply network optimal rehabilitation problem solves the conflict between one fitness value of standard genetic algorithm (SGA) and multi-objectives of rehabilitation problem. And the uncertainties brought by using weight coefficients or punish functions in conventional methods are controlled. And also by in-troduction of artificial inducement mutation (AIM) operation, the convergence speed of population is accelerated;this operation not only improves the convergence speed, but also improves the rationality and feasibility of solutions. 展开更多
关键词 Water supply system Water supply network Optimal rehabilitation MULTI-OBJECTIVE Non-dominated sorting Ge-netic Algorithm (NSGA)
下载PDF
PMS-Sorting:A New Sorting Algorithm Based on Similarity
9
作者 Hongbin Wang Lianke Zhou +4 位作者 Guodong Zhao Nianbin Wang Jianguo Sun Yue Zheng Lei Chen 《Computers, Materials & Continua》 SCIE EI 2019年第4期229-237,共9页
Borda sorting algorithm is a kind of improvement algorithm based on weighted position sorting algorithm,it is mainly suitable for the high duplication of search results,for the independent search results,the effect is... Borda sorting algorithm is a kind of improvement algorithm based on weighted position sorting algorithm,it is mainly suitable for the high duplication of search results,for the independent search results,the effect is not very good and the computing method of relative score in Borda sorting algorithm is according to the rule of the linear regressive,but position relationship cannot fully represent the correlation changes.aimed at this drawback,the new sorting algorithm is proposed in this paper,named PMS-Sorting algorithm,firstly the position score of the returned results is standardized processing,and the similarity retrieval word string with the query results is combined into the algorithm,the similarity calculation method is also improved,through the experiment,the improved algorithm is superior to traditional sorting algorithm. 展开更多
关键词 Meta search engine result sorting query similarity Borda sorting algorithm position relationship
下载PDF
An Only-Once-Sorting Algorithm
10
作者 Xu Xusong Zhou Jianqin Guo Feng (School of Management,Wuhan University, Wuhan 430072,China) 《Wuhan University Journal of Natural Sciences》 CAS 1996年第1期38-41,共4页
This paper provides a new sorting algorithm called 'Only-Once-Sorting' algorithm a mathemati cal formula,this algorithm can put elements in the positions they should be stored only once,then compacts them.The ... This paper provides a new sorting algorithm called 'Only-Once-Sorting' algorithm a mathemati cal formula,this algorithm can put elements in the positions they should be stored only once,then compacts them.The algorithm completes sorting a sequence of n elements in a calculation time of O(n ). 展开更多
关键词 mathematical formula onlv-once-sorting sorting algorithm
下载PDF
Robust Optimization Method of Cylindrical Roller Bearing by Maximizing Dynamic Capacity Using Evolutionary Algorithms
11
作者 Kumar Gaurav Rajiv Tiwari Twinkle Mandawat 《Journal of Harbin Institute of Technology(New Series)》 CAS 2022年第5期20-40,共21页
Optimization of cylindrical roller bearings(CRBs)has been performed using a robust design.It ensures that the changes in the objective function,even in the case of variations in design variables during manufacturing,h... Optimization of cylindrical roller bearings(CRBs)has been performed using a robust design.It ensures that the changes in the objective function,even in the case of variations in design variables during manufacturing,have a minimum possible value and do not exceed the upper limit of a desired range of percentage variation.Also,it checks the feasibility of design outcome in presence of manufacturing tolerances in design variables.For any rolling element bearing,a long life indicates a satisfactory performance.In the present study,the dynamic load carrying capacity C,which relates to fatigue life,has been optimized using the robust design.In roller bearings,boundary dimensions(i.e.,bearing outer diameter,bore diameter and width)are standard.Hence,the performance is mainly affected by the internal dimensions and not the bearing boundary dimensions mentioned formerly.In spite of this,besides internal dimensions and their tolerances,the tolerances in boundary dimensions have also been taken into consideration for the robust optimization.The problem has been solved with the elitist non-dominating sorting genetic algorithm(NSGA-II).Finally,for the visualization and to ensure manufacturability of CRB using obtained values,radial dimensions drawing of one of the optimized CRB has been made.To check the robustness of obtained design after optimization,a sensitivity analysis has also been carried out to find out how much the variation in the objective function will be in case of variation in optimized value of design variables.Optimized bearings have been found to have improved life as compared with standard ones. 展开更多
关键词 cylindrical roller bearing OPTIMIZATION robust design elitist non-dominating sorting genetic algorithm(NSGA-II) fatigue life dynamic load carrying capacity
下载PDF
考虑交货期的双资源柔性作业车间节能调度 被引量:2
12
作者 张洪亮 徐静茹 +1 位作者 谈波 徐公杰 《系统仿真学报》 CAS CSCD 北大核心 2023年第4期734-746,共13页
为解决含有机器和工人双资源约束的柔性作业车间节能调度问题,在考虑交货期的基础上,建立了以总提前和拖期惩罚值及总能耗最小为目标的双资源柔性作业车间节能调度模型。提出了一种改进的非支配排序遗传算法(improved non-dominated sor... 为解决含有机器和工人双资源约束的柔性作业车间节能调度问题,在考虑交货期的基础上,建立了以总提前和拖期惩罚值及总能耗最小为目标的双资源柔性作业车间节能调度模型。提出了一种改进的非支配排序遗传算法(improved non-dominated sorting genetic algorithmⅡ,INSGA-Ⅱ)进行求解。针对所优化的目标,设计了一种三阶段解码方法以获得高质量的可行解;利用动态自适应交叉和变异算子以获得更多优良个体;改进拥挤距离以获得收敛性和分布性更优的种群。将INSGA-Ⅱ与多种多目标优化算法进行对比分析,实验结果表明所提算法可行且有效。 展开更多
关键词 双资源约束 柔性作业车间 提前/拖期惩罚 能耗 INSGA-Ⅱ(improved non-dominated sorting genetic algorithmⅡ)
下载PDF
Satellite constellation design with genetic algorithms based on system performance
13
作者 Xueying Wang Jun Li +2 位作者 Tiebing Wang Wei An Weidong Sheng 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2016年第2期379-385,共7页
Satellite constellation design for space optical systems is essentially a multiple-objective optimization problem. In this work, to tackle this challenge, we first categorize the performance metrics of the space optic... Satellite constellation design for space optical systems is essentially a multiple-objective optimization problem. In this work, to tackle this challenge, we first categorize the performance metrics of the space optical system by taking into account the system tasks(i.e., target detection and tracking). We then propose a new non-dominated sorting genetic algorithm(NSGA) to maximize the system surveillance performance. Pareto optimal sets are employed to deal with the conflicts due to the presence of multiple cost functions. Simulation results verify the validity and the improved performance of the proposed technique over benchmark methods. 展开更多
关键词 space optical system non-dominated sorting genetic algorithm(NSGA) Pareto optimal set satellite constellation design surveillance performance
下载PDF
基于混合遗传蚁群算法的多目标FJSP问题研究 被引量:1
14
作者 赵小惠 卫艳芳 +3 位作者 赵雯 胡胜 王凯峰 倪奕棋 《组合机床与自动化加工技术》 北大核心 2023年第1期188-192,共5页
针对多目标柔性作业车间调度问题求解过程中未综合考虑解集多样性与求解效率的问题,提出了一种混合遗传蚁群算法来求解。首先,通过改进的NSGA-Ⅱ(non-dominated sorting genetic algorithmⅡ)获取问题的较优解,以此来确定蚁群算法的初... 针对多目标柔性作业车间调度问题求解过程中未综合考虑解集多样性与求解效率的问题,提出了一种混合遗传蚁群算法来求解。首先,通过改进的NSGA-Ⅱ(non-dominated sorting genetic algorithmⅡ)获取问题的较优解,以此来确定蚁群算法的初始信息素分布;其次,根据提出的自适应伪随机比例规则和改进的信息素更新规则来优化蚂蚁的遍历过程;最后,通过邻域搜索,扩大蚂蚁的搜索空间,从而提高解集的多样性。通过Kacem和BRdata算例进行实验验证,证明混合遗传蚁群算法具有更高的求解效率和更好解集多样性。 展开更多
关键词 柔性作业车间调度 多目标优化 NSGA-Ⅱ(non-dominated sorting genetic algorithmⅡ) 蚁群算法
下载PDF
Improved-Equalized Cluster Head Election Routing Protocol for Wireless Sensor Networks 被引量:1
15
作者 Muhammad Shahzeb Ali Ali Alqahtani +5 位作者 Ansar Munir Shah Adel Rajab Mahmood Ul Hassan Asadullah Shaikh Khairan Rajab Basit Shahzad 《Computer Systems Science & Engineering》 SCIE EI 2023年第1期845-858,共14页
Throughout the use of the small battery-operated sensor nodes encou-rage us to develop an energy-efficient routing protocol for wireless sensor networks(WSNs).The development of an energy-efficient routing protocol is... Throughout the use of the small battery-operated sensor nodes encou-rage us to develop an energy-efficient routing protocol for wireless sensor networks(WSNs).The development of an energy-efficient routing protocol is a mainly adopted technique to enhance the lifetime of WSN.Many routing protocols are available,but the issue is still alive.Clustering is one of the most important techniques in the existing routing protocols.In the clustering-based model,the important thing is the selection of the cluster heads.In this paper,we have proposed a scheme that uses the bubble sort algorithm for cluster head selection by considering the remaining energy and the distance of the nodes in each cluster.Initially,the bubble sort algorithm chose the two nodes with the maximum remaining energy in the cluster and chose a cluster head with a small distance.The proposed scheme performs hierarchal routing and direct routing with some energy thresholds.The simulation will be performed in MATLAB to justify its performance and results and compared with the ECHERP model to justify its performance.Moreover,the simulations will be performed in two scenarios,gate-way-based and without gateway to achieve more energy-efficient results. 展开更多
关键词 Bubble sort algorithm GATEWAY energy thresholds wireless sensor networks
下载PDF
An Optimization Approach for Convolutional Neural Network Using Non-Dominated Sorted Genetic Algorithm-Ⅱ
16
作者 Afia Zafar Muhammad Aamir +6 位作者 Nazri Mohd Nawi Ali Arshad Saman Riaz Abdulrahman Alruban Ashit Kumar Dutta Badr Almutairi Sultan Almotairi 《Computers, Materials & Continua》 SCIE EI 2023年第3期5641-5661,共21页
In computer vision,convolutional neural networks have a wide range of uses.Images representmost of today’s data,so it’s important to know how to handle these large amounts of data efficiently.Convolutional neural ne... In computer vision,convolutional neural networks have a wide range of uses.Images representmost of today’s data,so it’s important to know how to handle these large amounts of data efficiently.Convolutional neural networks have been shown to solve image processing problems effectively.However,when designing the network structure for a particular problem,you need to adjust the hyperparameters for higher accuracy.This technique is time consuming and requires a lot of work and domain knowledge.Designing a convolutional neural network architecture is a classic NP-hard optimization challenge.On the other hand,different datasets require different combinations of models or hyperparameters,which can be time consuming and inconvenient.Various approaches have been proposed to overcome this problem,such as grid search limited to low-dimensional space and queuing by random selection.To address this issue,we propose an evolutionary algorithm-based approach that dynamically enhances the structure of Convolution Neural Networks(CNNs)using optimized hyperparameters.This study proposes a method using Non-dominated sorted genetic algorithms(NSGA)to improve the hyperparameters of the CNN model.In addition,different types and parameter ranges of existing genetic algorithms are used.Acomparative study was conducted with various state-of-the-art methodologies and algorithms.Experiments have shown that our proposed approach is superior to previous methods in terms of classification accuracy,and the results are published in modern computing literature. 展开更多
关键词 Non-dominated sorted genetic algorithm convolutional neural network hyper-parameter OPTIMIZATION
下载PDF
Multi-objective optimization of the cathode catalyst layer micro-composition of polymer electrolyte membrane fuel cells using a multi-scale,two-phase fuel cell model and data-driven surrogates
17
作者 Neil Vaz Jaeyoo Choi +3 位作者 Yohan Cha Jihoon Kong Yooseong Park Hyunchul Ju 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第6期28-41,I0003,共15页
Polymer electrolyte membrane fuel cells(PEMFCs)are considered a promising alternative to internal combustion engines in the automotive sector.Their commercialization is mainly hindered due to the cost and effectivenes... Polymer electrolyte membrane fuel cells(PEMFCs)are considered a promising alternative to internal combustion engines in the automotive sector.Their commercialization is mainly hindered due to the cost and effectiveness of using platinum(Pt)in them.The cathode catalyst layer(CL)is considered a core component in PEMFCs,and its composition often considerably affects the cell performance(V_(cell))also PEMFC fabrication and production(C_(stack))costs.In this study,a data-driven multi-objective optimization analysis is conducted to effectively evaluate the effects of various cathode CL compositions on Vcelland Cstack.Four essential cathode CL parameters,i.e.,platinum loading(L_(Pt)),weight ratio of ionomer to carbon(wt_(I/C)),weight ratio of Pt to carbon(wt_(Pt/c)),and porosity of cathode CL(ε_(cCL)),are considered as the design variables.The simulation results of a three-dimensional,multi-scale,two-phase comprehensive PEMFC model are used to train and test two famous surrogates:multi-layer perceptron(MLP)and response surface analysis(RSA).Their accuracies are verified using root mean square error and adjusted R^(2).MLP which outperforms RSA in terms of prediction capability is then linked to a multi-objective non-dominated sorting genetic algorithmⅡ.Compared to a typical PEMFC stack,the results of the optimal study show that the single-cell voltage,Vcellis improved by 28 m V for the same stack price and the stack cost evaluated through the U.S department of energy cost model is reduced by$5.86/k W for the same stack performance. 展开更多
关键词 Polymer electrolyte membrane fuel cell Surrogate modeling Multi-layer perceptron(MLP) Response surface analysis(RSA) Non-dominated sorting genetic algorithmⅡ(NSGAⅡ)
下载PDF
Multi-objective optimization of process parameters for ultra-narrow gap welding based on Universal Kriging and NSGA Ⅱ
18
作者 马生明 张爱华 +3 位作者 顾建军 漆宇晟 马晶 王平 《China Welding》 CAS 2023年第3期28-35,共8页
The successful confinement of the arc by the flux band depends on the welding process parameters for achieving single-pass,multi-layer, and ultra-narrow gap welding. The sidewall fusion depth, the width of the heat-af... The successful confinement of the arc by the flux band depends on the welding process parameters for achieving single-pass,multi-layer, and ultra-narrow gap welding. The sidewall fusion depth, the width of the heat-affected zone, and the line energy are utilized as comprehensive indications of the quality of the welded joint. In order to achieve well fusion and reduce the heat input to the base metal.Three welding process characteristics were chosen as the primary determinants, including welding voltage, welding speed, and wire feeding speed. The metamodel of the welding quality index was built by the orthogonal experiments. The metamodel and NSGA-Ⅱ(Non-dominated sorting genetic algorithm Ⅱ) were combined to develop a multi-objective optimization model of ultra-narrow gap welding process parameters. The results showed that the optimized welding process parameters can increase the sidewall fusion depth, reduce the width of the heataffected zone and the line energy, and to some extent improve the overall quality of the ultra-narrow gap welding process. 展开更多
关键词 ultra-narrow gap optimization of process parameters non-dominated sorting genetic algorithm II the sidewall fusion depth
下载PDF
Dynamic Allocation of Manufacturing Tasks and Resources in Shared Manufacturing
19
作者 Caiyun Liu Peng Liu 《Intelligent Automation & Soft Computing》 SCIE 2023年第6期3221-3242,共22页
Shared manufacturing is recognized as a new point-to-point manufac-turing mode in the digital era.Shared manufacturing is referred to as a new man-ufacturing mode to realize the dynamic allocation of manufacturing tas... Shared manufacturing is recognized as a new point-to-point manufac-turing mode in the digital era.Shared manufacturing is referred to as a new man-ufacturing mode to realize the dynamic allocation of manufacturing tasks and resources.Compared with the traditional mode,shared manufacturing offers more abundant manufacturing resources and flexible configuration options.This paper proposes a model based on the description of the dynamic allocation of tasks and resources in the shared manufacturing environment,and the characteristics of shared manufacturing resource allocation.The execution of manufacturing tasks,in which candidate manufacturing resources enter or exit at various time nodes,enables the dynamic allocation of manufacturing tasks and resources.Then non-dominated sorting genetic algorithm(NSGA-II)and multi-objective particle swarm optimization(MOPSO)algorithms are designed to solve the model.The optimal parameter settings for the NSGA-II and MOPSO algorithms have been obtained according to the experiments with various population sizes and iteration numbers.In addition,the proposed model’s efficiency,which considers the entries and exits of manufacturing resources in the shared manufacturing environment,is further demonstrated by the overlap between the outputs of the NSGA-II and MOPSO algorithms for optimal resource allocation. 展开更多
关键词 Shared manufacturing dynamic allocation variation of resources non-dominated sorting genetic algorithm(NSGA-II) multi-objective particle swarm optimization(MOPSO)algorithm
下载PDF
Multi-Objective Cold Chain Path Optimization Based on Customer Satisfaction
20
作者 Jing Zhang Baocheng Ding 《Journal of Applied Mathematics and Physics》 2023年第6期1806-1815,共10页
To improve customer satisfaction of cold chain logistics of fresh agricultural goods enterprises and reduce the comprehensive distribution cost composed of fixed cost, transportation cost, cargo damage cost, refrigera... To improve customer satisfaction of cold chain logistics of fresh agricultural goods enterprises and reduce the comprehensive distribution cost composed of fixed cost, transportation cost, cargo damage cost, refrigeration cost, and time penalty cost, a multi-objective path optimization model of fresh agricultural products distribution considering client satisfaction is constructed. The model is solved using an enhanced Elitist Non-dominated Sorting Genetic Algorithm (NSGA-II), and differential evolution is incorporated to the evolution operator. The algorithm produced by the revised algorithm produces a better Pareto optimum solution set, efficiently balances the relationship between customer pleasure and cost, and serves as a reference for the long-term growth of organizations. . 展开更多
关键词 Cold Chain Logistics Customer Satisfaction Elitist Non-Dominated sorting Genetic Algorithm Multi-Objective Optimization
下载PDF
上一页 1 2 4 下一页 到第
使用帮助 返回顶部