The image's least significant bit(LSB) covers lots of the details that have been commonly used in image encryption analysis. The newly proposed fractal sorting vector(FSV) and FSV-based LSB chaotic permutation(FSV...The image's least significant bit(LSB) covers lots of the details that have been commonly used in image encryption analysis. The newly proposed fractal sorting vector(FSV) and FSV-based LSB chaotic permutation(FSV-LSBCP) is a novel chaotic image encryption cryptosystem introduced in this article. The FSV-LSBCP effectively strengthens the security of the cryptographic scheme concerning the properties of the FSV. Key analysis, statistical analysis, resistance differential attack analysis, and resistance to cropping attacks and noise attacks are the focus of the suggested image encryption cryptosystem. The security experiment shows that the cryptosystem is adequate to achieve the desired degree of security.展开更多
This paper reports the experimental realization of efficiently sorting vector beams by polarization topological charge (PTC). The PTC of a vector beam can be defined as the repetition number of polarization state ch...This paper reports the experimental realization of efficiently sorting vector beams by polarization topological charge (PTC). The PTC of a vector beam can be defined as the repetition number of polarization state change along the azimuthal axis, while its sign stands for the rotating direction of the polarization. Here, a couple of liquid crystal Pancharatnam-Berry optical dements (PBOEs) have been used to introduce conjugated spatial phase modulations for two orthogonal circular polarization states. Applying these PBOEs in a 4-foptical system, our experiments show the setup can work for PTC sorting with a separation efficiency of more than 58%. This work provides an effective way to decode information from different PTCs, which may be interesting in many fields, especially in optical communication.展开更多
基金supported by the National Natural Science Foundation of China (Grant No. 61672124)the Password Theory Project of the 13th Five-Year Plan National Cryptography Development Fund,China (Grant No. MMJJ20170203)+2 种基金the Liaoning Provincial Science and Technology Innovation Leading Talents Program Project,China (Grant No. XLYC1802013)the Key Research and Development Projects of Liaoning Province,China (Grant No. 2019020105-JH2/103)the Jinan City 20-University Funding Projects for Introducing Innovation Team Program,China (Grant No. 2019GXRC031)。
文摘The image's least significant bit(LSB) covers lots of the details that have been commonly used in image encryption analysis. The newly proposed fractal sorting vector(FSV) and FSV-based LSB chaotic permutation(FSV-LSBCP) is a novel chaotic image encryption cryptosystem introduced in this article. The FSV-LSBCP effectively strengthens the security of the cryptographic scheme concerning the properties of the FSV. Key analysis, statistical analysis, resistance differential attack analysis, and resistance to cropping attacks and noise attacks are the focus of the suggested image encryption cryptosystem. The security experiment shows that the cryptosystem is adequate to achieve the desired degree of security.
基金National Natural Science Foundation of China(NSFC)(61490710,61705132,61775142)Science and Technology Planning Project of Guangdong Province(2016B050501005)Specialized Research Fund for the Shenzhen Strategic Emerging Industries Development(JCYJ20170412105812811)
文摘This paper reports the experimental realization of efficiently sorting vector beams by polarization topological charge (PTC). The PTC of a vector beam can be defined as the repetition number of polarization state change along the azimuthal axis, while its sign stands for the rotating direction of the polarization. Here, a couple of liquid crystal Pancharatnam-Berry optical dements (PBOEs) have been used to introduce conjugated spatial phase modulations for two orthogonal circular polarization states. Applying these PBOEs in a 4-foptical system, our experiments show the setup can work for PTC sorting with a separation efficiency of more than 58%. This work provides an effective way to decode information from different PTCs, which may be interesting in many fields, especially in optical communication.