Nonlinear acoustic propagation generated by a piston in a finite horn is numerically studied. A quasi-one-dimensional nonlinear model with varying cross-section uses high-order low-dispersion numerical schemes to solv...Nonlinear acoustic propagation generated by a piston in a finite horn is numerically studied. A quasi-one-dimensional nonlinear model with varying cross-section uses high-order low-dispersion numerical schemes to solve the governing equation. Because of the nonlinear wave distortion and reflected sound waves at the mouth, broadband time-domain impedance boundary conditions are employed. The impedance approximation can be optimized to identify the complex-conjugate pole-residue pairs of the impedance functions, which can be calculated by fast and efficient recursive convolution. The numerical results agree very well with experi- mental data in the situations of weak nonlinear wave propagation in an exponential horn, it is shown that the model can describe the broadband characteristics caused by nonlinear distortion. Moreover, finite-amplitude acoustic propagation in types of horns is simulated, including hyperbolic, conical, exponential and sinusoidal horns. It is found that sound pressure levels at the horn mouth are strongly affected by the horn profiles, the driving velocity and frequency of the piston. The paper also discusses the influence of the horn geometry on nonlinear waveform distortion.展开更多
基金supported by the National Natural Science Foundation of China(51076005)
文摘Nonlinear acoustic propagation generated by a piston in a finite horn is numerically studied. A quasi-one-dimensional nonlinear model with varying cross-section uses high-order low-dispersion numerical schemes to solve the governing equation. Because of the nonlinear wave distortion and reflected sound waves at the mouth, broadband time-domain impedance boundary conditions are employed. The impedance approximation can be optimized to identify the complex-conjugate pole-residue pairs of the impedance functions, which can be calculated by fast and efficient recursive convolution. The numerical results agree very well with experi- mental data in the situations of weak nonlinear wave propagation in an exponential horn, it is shown that the model can describe the broadband characteristics caused by nonlinear distortion. Moreover, finite-amplitude acoustic propagation in types of horns is simulated, including hyperbolic, conical, exponential and sinusoidal horns. It is found that sound pressure levels at the horn mouth are strongly affected by the horn profiles, the driving velocity and frequency of the piston. The paper also discusses the influence of the horn geometry on nonlinear waveform distortion.