期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Diffusion and sound absorption properties of the quadratic residue diffuser structure with perforated panel 被引量:3
1
作者 CAI Jun BAO Fei +1 位作者 WANG Yachen WANG Yanqin 《Chinese Journal of Acoustics》 CSCD 2016年第3期255-264,共10页
Acoustic structure study always is the academic research interest. Diffusion ab?sorbing structure(DiflFsorber) has good research value because it has both diflFusion property and sound absorption property. Quadrati... Acoustic structure study always is the academic research interest. Diffusion ab?sorbing structure(DiflFsorber) has good research value because it has both diflFusion property and sound absorption property. Quadratic residue diffusers(QRD) structure which had good diffusion property was combined with the perforated panel which had good sound absorption property in this study. According to standard AES-4id-2001, the diffusion experiments were carried out to study QRD structure and ones composited with perforated-panels which had1 mm-thickness and perforated percentage of 3%, 5%, 8% respectively. The polar coordinate diagrams of different structure were analyzed to derive the diffusion coefficients. Results showed that the composite structure still had good diffusion performance in the frequency range from100 Hz to 800 Hz. The reflection sound energy of composite structure reduced obviously in the perforated panel resonance frequency range where there was about 2 dB reduction averagely.The study result can provide the reference for the design and development of diifsorber. 展开更多
关键词 RATE Diffusion and sound absorption properties of the quadratic residue diffuser structure with perforated panel
原文传递
Theoretical relationship between sound velocity and the physical properties of submarine sediment 被引量:4
2
作者 LONG Jianjun LI Ganxian 《Chinese Journal of Acoustics》 CSCD 2015年第4期401-412,共12页
Density and elastic modulus change ratios are introduced to describe the sound velocity of submarine sediment. The density change ratio is a composite parameter describing the sound velocity. It is expressed by three ... Density and elastic modulus change ratios are introduced to describe the sound velocity of submarine sediment. The density change ratio is a composite parameter describing the sound velocity. It is expressed by three physical parameters: porosity, solid phase density and seawater density. The elastic modulus change ratio is also a composite parameter of sound velocity. It is expressed by three physical parameters, including porosity, solid phase modulus and seawater bulk modulus. The sound velocity formula can be developed into a Taylor polyno- mial formula of these two composite parameters. The change in the two composite parameters constitutes the sound velocity surface, which contains the complete information regarding ve- locity properties and sediment characteristics. The one-parameter velocity formula is a curve on the velocity surface. Each porosity-velocity empirical formula, which represents various sea locations and conditions, is transformed to a standard form. This result is the product of a reference velocity and a modulation function. Comparisons of the numerical calculation and measurements show that the derived modulation functions yield similar results. The difference between the velocity formula derived in this paper and the Wood velocity formula is due to the elastic modulus models. 展开更多
关键词 Theoretical relationship between sound velocity and the physical properties of submarine sediment
原文传递
Elastic properties of double layered manganites R_(1.2)Sr_(1.8)Mn_2O_7(R=La, Pr, Nd, Sm) 被引量:2
3
作者 Yanala Srinivasa Reddy Puram Kistaiah Cholleti Vishnuvardhan Reddy 《Rare Metals》 SCIE EI CAS CSCD 2014年第2期166-170,共5页
The polycrystalline colossal magnetoresistive double-layered manganite samples R1.2Sr1.8Mn2O7(R = La Pr, Nd, Sm) were prepared by the sol–gel method and their room temperature elastic behavior was investigated by u... The polycrystalline colossal magnetoresistive double-layered manganite samples R1.2Sr1.8Mn2O7(R = La Pr, Nd, Sm) were prepared by the sol–gel method and their room temperature elastic behavior was investigated by ultrasonic pulse transmission technique at 1 MHz. The values of elastic constants were calculated from longitudinal and shear velocities and they were corrected to zero porosity using Hasselman and Fulrath's formulae. The elastic constants of the samples were also estimated by Modi's heterogeneous metal-mixture rule which is based on the metal ions present in the samples. The measured,corrected, and estimated values of elastic moduli are found to increase with decreasing rare earth ion size. The variation of elastic moduli with the size of the rare earth ion is interpreted in terms of strength of interatomic bonding. 展开更多
关键词 Elastic properties Porosity sound velocity Magnetoresistance Manganites
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部