Purpose – The vibration of the rails is a significant source of railway rolling noise, often forming the dominantcomponent of noise in the important frequency region between 400 and 2000 Hz. The purpose of the paper ...Purpose – The vibration of the rails is a significant source of railway rolling noise, often forming the dominantcomponent of noise in the important frequency region between 400 and 2000 Hz. The purpose of the paper is toinvestigate the influence of the ground profile and the presence of the train body on the sound radiation fromthe rail.Design/methodology/approach – Two-dimensional boundary element calculations are used, in which therail vibration is the source. The ground profile and various different shapes of train body are introduced in themodel, and results are observed in terms of sound power and sound pressure. Comparisons are also made withvibro-acoustic measurements performed with and without a train present.Findings – The sound radiated by the rail in the absence of the train body is strongly attenuated by shieldingdue to the ballast shoulder. When the train body is present, the sound from the vertical rail motion is reflectedback down toward the track where it is partly absorbed by the ballast. Nevertheless, the sound pressure at thetrackside is increased by typically 0–5 dB. For the lateral vibration of the rail, the effects are much smaller. Oncethe sound power is known, the sound pressure with the train present can be approximated reasonably well withsimple line source directivities.Originality/value – Numerical models used to predict the sound radiation from railway rails have generallyneglected the influence of the ground profile and reflections from the underside of the train body on the soundpower and directivity of the rail. These effects are studied in a systematic way including comparisons with measurements.展开更多
To reduce the vibration and sound radiation of underwater cylindrical shells,a skin composed of micro floating raft arrays and a compliant wall is proposed in this paper.A vibroacoustic coupling model of a finite cyli...To reduce the vibration and sound radiation of underwater cylindrical shells,a skin composed of micro floating raft arrays and a compliant wall is proposed in this paper.A vibroacoustic coupling model of a finite cylindrical shell covered with this skin for the case of turbulence excitation is established based on the shell theories of Donnell.The model is solved with the modal superposition method to investigate the effects of the structural parameters of micro floating raft elements on the performance of reducing vibration and sound radiation of the cylindrical shell of this skin.The results indicate that increasing the stiffness ratio,damping ratio,mass ratio,or decreasing the interval betweenmicro floating raft elements can improve the vibration and sound radiation reduction performance of this skin over the frequency range 0∼2000 Hz.Moreover,the mean quadratic velocity level and sound radiation power level of the finite cylindrical shell with this skin can be reduced by 12.00 dB and 9.65 dB respectively compared to the finite cylindrical shell with homogeneous viscoelastic coating in the frequency range from0∼2000Hz,implying a favorable performance of this skin for reducing the vibration and sound radiation of cylindrical shells.展开更多
The current researches of wheel vibration and sound radiation mainly focus on the low noise damped wheel. Compared with the traditional research, the relationship between the sound and wheel/rail contact is difficulty...The current researches of wheel vibration and sound radiation mainly focus on the low noise damped wheel. Compared with the traditional research, the relationship between the sound and wheel/rail contact is difficulty and worth studying. However, there are few studies on the effect of wheel load on wheel vibration and sound radiation. In this paper, laboratory test carried out in a semi-anechoic room investigates the effect of wheel load on wheel natural frequencies, damping ratios, wheel vibration and its sound radiation, The laboratory test results show that the vibration of the wheel and total sound radiation decrease significantly with the increase of the wheel load from 0 t to 1 t. The sound energy level of the wheel decreases by 3.7 dB. When the wheel load exceeds 1 t. the attenuation trend of the vibration and sound radiation of the wheel becomes slow. And the increase of the wheel load causes the growth of the wheel natural frequencies and the mode damping ratios. Based on the finite element method (FEM) and boundary element method (BEM), a rolling noise prediction model is developed to calculate the influence of wheel load on the wheel vibration and sound radiation. In the calculation, the used wheel/rail excitation is the measured wheel/rail roughness. The calculated results show that the sound power level of the wheel decreases by about 0.4 dB when the wheel load increases by 0.5 t. The sound radiation of the wheel decreases slowly with wheel load increase, and this conclusion is verified by the field test. This research systematically studies the cffcct of wheel load on wheel vibration and sound radiation, gives the relationship between the sound and wheel/rail contact and analyzes the reasons, therefore, it provides a reference for further research.展开更多
The Donnell theory of shell is applied to describe shell motion and layer motion is described by means of three-dimensional Navier equations.Using deformation harmonious condi- tions of the interface,the effects of st...The Donnell theory of shell is applied to describe shell motion and layer motion is described by means of three-dimensional Navier equations.Using deformation harmonious condi- tions of the interface,the effects of stiffeners and layer are treated as reverse forces and moments acting on the cylindrical shell.In studying the acoustic field produced by vibration of the sub- merged ring-stiffened cylindrical coated shell,the structure dynamic equation,Helmholtz equation in the fluid field and the continuous conditions of the fluid-structure interface compose the cou- pling vibration equation of the sound-fluid-structure.The extract of sound pressure comes down to the extract of coupling vibration equation.By use of the solution of the equation,the influ- ences of hydrostatic pressure,physical characters and geometric parameters of the layer on sound radiation are discussed.展开更多
The fluid-structure coupling finite element model and the boundary element model of a complex gearbox's housing are built based on the theory of fluid-structure coupling finite element method and boundary element met...The fluid-structure coupling finite element model and the boundary element model of a complex gearbox's housing are built based on the theory of fluid-structure coupling finite element method and boundary element method. At the same time, the exciting forces of the housing are analyzed and applied to the finite element models. Firstly, vibration of the housing is calculated by the fluid-structure coupling finite element model; secondly, the calculated result is verified by the experiment; finally, sound radiation of the housing is calculated by the boundary element. According to the calculated results, the housing adds some ribs not only to increase the strength, but also to reduce the sound radiation of the housing. At last, the sound radiation of the modified housing is calculated, which shows that the sound radiation of the modified housing with ribs is lower.展开更多
This paper presents an acoustic design sensitivity(ADS)analysis on sound radiation of structures by using the boundary element method(BEM).We calculated the velocity distribution of the thin plate by analytical method...This paper presents an acoustic design sensitivity(ADS)analysis on sound radiation of structures by using the boundary element method(BEM).We calculated the velocity distribution of the thin plate by analytical method and the surface sound pressure by Rayleigh integral,and expressed the sound radiation power of the structure in a positive definite quadratic form of the Hermitian with an impedance matrix.The ADS analysis of the plate was thus translated into the analysis of structure dynamic sensitivity and ...展开更多
Based on the fundamental dynamic equations of functionally graded material (FGM) cylindrical shell, this paper investigates the sound radiation of vibrational FGM shell in water by mobility method. This model takes in...Based on the fundamental dynamic equations of functionally graded material (FGM) cylindrical shell, this paper investigates the sound radiation of vibrational FGM shell in water by mobility method. This model takes into account the exterior fluid loading due to the sound press radiated by the FGM shell. The FGM cylindrical shell was excited by a harmonic line radial force uniformly distributing along the generator. The FGM shell equations of motion, the Helmholtz equation in the exterior fluid medium and the continuity equation at fluid-shell interface are used in this vibroacoustic problem. The expressions of sound radiation efficiency and sound field of the FGM shell have been derived by mobility method. Radiation efficiency, modal mobility and the directivity pattern of the sound field are solved numerically. In particular, radiation efficiency and directivity pattern with various power law index are analyzed.展开更多
A numerical and experimental study was presented on active control of structurally radiated sound from an elastic cylindrical shell.An analytical model was developed for the active structural acoustic control (ASAC) o...A numerical and experimental study was presented on active control of structurally radiated sound from an elastic cylindrical shell.An analytical model was developed for the active structural acoustic control (ASAC) of the cylindrical shell.Both global and local control strategies were considered.The optimal control forces corresponding to each control strategy were obtained by using the linear quadratic optimal control theory.Numerical simulations were performed to examine and analyze the control performance under different control strategies.The results show that global sound attenuation of the cylindrical shell at resonance frequencies can be achieved by using point force as the control input of the ASAC system.Better control performance can be obtained under the control strategy of minimization of the radiated sound power.However,control spillover may occur at off-resonance frequencies with the control strategy of structural kinetic energy minimization in terms of the radiated sound power.Considerable levels of global sound attenuation can also be achieved in the on-resonance cases with the local control strategy,i.e.,minimization of the mean-square velocity of finite discrete locations.An ASAC experiment using an FXLMS algorithm was implemented,agreement was observed between the numerical and experimental results,and successful attenuation of structural vibration and radiated sound was achieved.展开更多
A general method was proposed to study the sound and vibration of a finite cylindrical shell with elastic theory. This method was developed through comprehensive analysis of the uncoupled Helmholtz equation obtained b...A general method was proposed to study the sound and vibration of a finite cylindrical shell with elastic theory. This method was developed through comprehensive analysis of the uncoupled Helmholtz equation obtained by the decomposition of elastic equations and the structure of the solution of a finite cylindrical shell analyzed by thin shell theory. The proposed method is theoretically suitable for arbitrary thickness of the shell and any frequency. Also, the results obtained through the method can be used to determine the range of application of the thin shell theory. Furthermore, the proposed method can deal with the problems limited by the thin shell theory. Additionally, the method can be suitable for several types of complex cylindrical shell such as the ring-stiffened cylindrical shell, damped cylindrical shell, and double cylindrical shell.展开更多
The methods of modifying dimension and shape of structure, or covering damping material are effective to reduce structure-borne noise, while these methods are based on the knowledge of qualitative and quantitative rel...The methods of modifying dimension and shape of structure, or covering damping material are effective to reduce structure-borne noise, while these methods are based on the knowledge of qualitative and quantitative relationship between sound radiation and design parameters. In order to decrease the complexity of the problem, response surface method(RSM) was utilized to analyze and optimize the vibro-acoustic properties of the damping structure. A simple case was illustrated to demonstrate the capabilities of the developed procedure. A structure-born noise problem was approximated by a series of polynomials using RSM. Three main performances were considered, i.e. sound radiation power, first order modal frequency and total mass. Consequently, the response surface model not only gives the direction of design modification, it also leads to an optimal design of complex systems.展开更多
A general theoretical model is developed to investigate the sound radiation from an infinite orthogonally stiffened plate under point excitation force. The plate can be metallic or composite, and fluid loading is also...A general theoretical model is developed to investigate the sound radiation from an infinite orthogonally stiffened plate under point excitation force. The plate can be metallic or composite, and fluid loading is also considered in the research. The first order shear deformation theory is used to account for the transverse shear deformation. The motion of the equally spaced stiffeners is examined by considering their bending vibrations and torsional movements. Based on the periodic structure theory and the concepts of the equivalent dynamic flexibility of the plate, the generalized vibro-acoustic equation of the model is obtained by applying the Fourier transform method. The generalized model that can be solved numerically is validated by comparing model predictions with the existing results. Numerical calculations are performed to investigate the effects of the location of the excitation, the spacing of the stiffeners, the plate thickness, the strengthening form and the fiber orientation on the sound radiation characteristic of the orthogonaUy stiffened plate, and some practical conclusions are drawn from these parameter studies.展开更多
The vibration and noise produced by the powertrain and waves inside ship cabins limit working efficiency and crew and passengers’accommodation quality.This paper simplifies ship cabins as cavities and explores active...The vibration and noise produced by the powertrain and waves inside ship cabins limit working efficiency and crew and passengers’accommodation quality.This paper simplifies ship cabins as cavities and explores active control techniques to attenuate sound transmission via multiple parallel-supported flexible subplates.The theoretical formulations of the interaction between multiple subplates and cavities were performed and the coupling relationships between them were analyzed.Based on the multiple subplates and the cavity coupling models,numerical simulations were performed using the derived optimal controller to minimize the transmission of sound into the cavities through two and nine parallel-supported subplates.The various control strategies were explored to minimize the coupling system’s acoustic potential energy,and the control performances were compared and discussed.The mechanism of reducing sound transmission through multiple supported subplates into a cavity is revealed.The simulation results showed that the vibration pattern of the controlled subplate is changed after it is regulated,which increases its radiation to subdue the other subplates’radiation,while increasing vibration of the controlled subplate.The more subplates a cavity has,the more kinetic energy the controlled subplate possess.Furthermore,the noise reduction performance of a cavity with fewer subplates is better than that with more subplates.展开更多
The research on structural vibration and sound radiation of underwater ring-ribbed cylindrical shell, which is coated with a kind of deadening and decoupling materials, becomes a focus in recent years. This paper anal...The research on structural vibration and sound radiation of underwater ring-ribbed cylindrical shell, which is coated with a kind of deadening and decoupling materials, becomes a focus in recent years. This paper analyzes the problem on two aspects: model experiment and numerical calculation. The model experiment is carried out including three cases firstly, in which the structural vibration response and radiating acoustic field are measured respectively, and the results gained in these three cases are analyzed to discuss the effect of reducing structural vibration and radiating noise of the deadening and decoupling materials. The coupling FEM/BEM and the SEA methods are both used in numerical calculation, i.e. the arithmetic of the coupling FEM/BEM method is adopted to calculate the low frequency characteristics and the SEA method is adopted to calculate the medium-high frequencies characteristics of the model. By comparing experimental results with numerical calculation results, it is proved that the algorithm adopted in this paper is reasonable.展开更多
In this paper, analytical formularions of radiated sound pressure of ring-stiffenedcylindrical shells in fluid medium are derived by means of Hamilton's principleHuygens principle and Green function . These formul...In this paper, analytical formularions of radiated sound pressure of ring-stiffenedcylindrical shells in fluid medium are derived by means of Hamilton's principleHuygens principle and Green function . These formulations Can be used to compute the sound pressure of the shell's surface nearfield and farfield.展开更多
A theoretical model is developed to predict the sound radiation ability of a cylindrical thin elastic shell of finite length, covered with a damp layer and terminated with infinite cylindrical rigid baffles. This shel...A theoretical model is developed to predict the sound radiation ability of a cylindrical thin elastic shell of finite length, covered with a damp layer and terminated with infinite cylindrical rigid baffles. This shell is immersed in a heavy fluid extending up to infinity, and excited by a constant point load continuously traveling along the circumferential direction. A frequency-domain representation of the rotating load and three equations of the vibroacoustic coupling problem are given. The equations are solved by means of modal analysis method and asymptotic expansion method. Also, a mathematical expression of modal amplitude of shell radial displacement is obtained. The sound radiation ability of this kind of shell is evaluated and the corresponding numerical results are given.展开更多
A method for the forced vibration and sound radiation of a rectangular plate with viscoelastic boundary supports is proposed.The method is based on damped complex modes analysis method.Using the damped complex modes o...A method for the forced vibration and sound radiation of a rectangular plate with viscoelastic boundary supports is proposed.The method is based on damped complex modes analysis method.Using the damped complex modes of the plate system,the modal equation of the plate motion becomes completely uncouped.The sound radiation pressure is obtained by numerical integration of the Rayleigh integral.Effects of the viscoelastic boundary supports on the vibration response and the radiated sound pressure of the vibrating plate are discussed by an example.展开更多
Beam focusing is one of the unique characteristics of ultrasonic phased array compared with conventional ultrasound.On the basis of two-dimensional radiated sound field of phased array,the three-dimensional radiated s...Beam focusing is one of the unique characteristics of ultrasonic phased array compared with conventional ultrasound.On the basis of two-dimensional radiated sound field of phased array,the three-dimensional radiated sound field was simulated in the paper,and then the effect of different frequencies,different number of array elements and different element spacings on focal spot,the depth of focus and the effect on horizontal and vertical resolution were analyzed.The optimal results of transducer parameters have certain reference value for the design of phased array probe.展开更多
This paper presents a semi-analytical solution for the vibration and sound radiation of a semi-infinite plate covered by a decoupling layer consisting of locally resonant acoustic metamaterial. Formulations are derive...This paper presents a semi-analytical solution for the vibration and sound radiation of a semi-infinite plate covered by a decoupling layer consisting of locally resonant acoustic metamaterial. Formulations are derived based on a combination use of effective medium theory and the theory of elasticity for the decoupling material. Theoretical results show good agree- ments between the method developed in this paper and the conventional finite element method (FEM), but the method of this paper is more efficient than FEM. Numerical results also show that system with acoustic metamaterial decoupling layer exhibits significant noise reduction performance at the local resonance frequency of the acoustic metamaterial, and such performance can be ascribed to the vibration suppression of the base plate. It is demonstrated that the effective density of acoustic metamaterial decoupling layer has a great influence on the mechanical impedance of the system. Furthermore, the resonance frequency of locally resonant structure can be effectively predicted by a simple model, and it can be significantly affected by the material properties of the locally resonant structure.展开更多
A semi-analytical method to conduct vibro-acoustic analysis of a composite laminated elliptical shell immersed in air is proposed.A variational method and multi-segment technique are used to formulate the dynamic mode...A semi-analytical method to conduct vibro-acoustic analysis of a composite laminated elliptical shell immersed in air is proposed.A variational method and multi-segment technique are used to formulate the dynamic model.The sound radiation of the exterior fluid field is calculated by a spectral Kirchhoff–Helmholtz integral formulation.The variables containing displacements and sound pressure are expanded by the combination of Fourier series and Chebyshev orthogonal polynomials.The collocation points are introduced to construct an algebraic system of acoustic integral equations,where these points are distributed on the roots of Chebyshev polynomials,and the non-uniqueness solution of system is eliminated by a combined Helmholtz integral.Numerical examples for sound radiation problems of composite laminated elliptical shells are presented and individual contributions of the circumferential modes to the acoustical results of composite laminated elliptical shells are also given.The effects of geometric and material parameters on sound radiation of composite laminated elliptical shells are also investigated.展开更多
Underwater cylindrical shell structures have been found a wide of application in many engineering fields, such as the element of marine, oil platforms, etc. The coupled vibration analysis is a hot issue for these unde...Underwater cylindrical shell structures have been found a wide of application in many engineering fields, such as the element of marine, oil platforms, etc. The coupled vibration analysis is a hot issue for these underwater structures. The vibration characteristics of underwater structures are influenced not only by hydrodynamic pressure but also by hydrostatic pressure corresponding to different water depths. In this study, an acoustic finite element method was used to evaluate the underwater structures. Taken the hydrostatic pressure into account in terms of initial stress stiffness, an acoustical fluid-structure coupled analysis of underwater cylindrical shells has been made to study the effect of hydrodynamic pressures on natural frequency and sound radiation. By comparing with the frequencies obtained by the acoustic finite element method and by the added mass method based on the Bessel function, the validity of present analysis was checked. Finally, test samples of the sound radiation of stiffened cylindrical shells were acquired by a harmonic acoustic analysis. The results showed that hydrostatic pressure plays an important role in determining a large submerged body motion, and the characteristics of sound radiation change with water depth. Furthermore, the analysis methods and the results are of significant reference value for studies of other complicated submarine structures.展开更多
基金supported by the TRANSIT project(funded by EU Horizon 2020 and the Europe’s Rail Joint Undertaking under Grant Agreement 881771).
文摘Purpose – The vibration of the rails is a significant source of railway rolling noise, often forming the dominantcomponent of noise in the important frequency region between 400 and 2000 Hz. The purpose of the paper is toinvestigate the influence of the ground profile and the presence of the train body on the sound radiation fromthe rail.Design/methodology/approach – Two-dimensional boundary element calculations are used, in which therail vibration is the source. The ground profile and various different shapes of train body are introduced in themodel, and results are observed in terms of sound power and sound pressure. Comparisons are also made withvibro-acoustic measurements performed with and without a train present.Findings – The sound radiated by the rail in the absence of the train body is strongly attenuated by shieldingdue to the ballast shoulder. When the train body is present, the sound from the vertical rail motion is reflectedback down toward the track where it is partly absorbed by the ballast. Nevertheless, the sound pressure at thetrackside is increased by typically 0–5 dB. For the lateral vibration of the rail, the effects are much smaller. Oncethe sound power is known, the sound pressure with the train present can be approximated reasonably well withsimple line source directivities.Originality/value – Numerical models used to predict the sound radiation from railway rails have generallyneglected the influence of the ground profile and reflections from the underside of the train body on the soundpower and directivity of the rail. These effects are studied in a systematic way including comparisons with measurements.
基金supported by the National Natural Science Foundation of China(Grant Nos.51775123,52075111)the Fundamental Research Funds for the Central Universities(Grant No.3072021CF0702).
文摘To reduce the vibration and sound radiation of underwater cylindrical shells,a skin composed of micro floating raft arrays and a compliant wall is proposed in this paper.A vibroacoustic coupling model of a finite cylindrical shell covered with this skin for the case of turbulence excitation is established based on the shell theories of Donnell.The model is solved with the modal superposition method to investigate the effects of the structural parameters of micro floating raft elements on the performance of reducing vibration and sound radiation of the cylindrical shell of this skin.The results indicate that increasing the stiffness ratio,damping ratio,mass ratio,or decreasing the interval betweenmicro floating raft elements can improve the vibration and sound radiation reduction performance of this skin over the frequency range 0∼2000 Hz.Moreover,the mean quadratic velocity level and sound radiation power level of the finite cylindrical shell with this skin can be reduced by 12.00 dB and 9.65 dB respectively compared to the finite cylindrical shell with homogeneous viscoelastic coating in the frequency range from0∼2000Hz,implying a favorable performance of this skin for reducing the vibration and sound radiation of cylindrical shells.
基金Supported by National Science and Technology Support Program of China(Grant No.2009BAG12A01-B06)National Hi-tech Research and Development Program of China(863 Program,Grant No.2011AA11A103-2-2)+3 种基金Funds for Innovation Research Team of Ministry of Education of China(Grant Nos.IRT1178,SWJTU12ZT01)Fundamental Research Funds for the Central Universities and the Science of China(Grant No.SWJTU12ZT01)2015 Doctoral Innovation Funds of Southwest Jiaotong University of ChinaProject of State Key Laboratory of Traction Power of China(Grant No.2011TPL_T05)
文摘The current researches of wheel vibration and sound radiation mainly focus on the low noise damped wheel. Compared with the traditional research, the relationship between the sound and wheel/rail contact is difficulty and worth studying. However, there are few studies on the effect of wheel load on wheel vibration and sound radiation. In this paper, laboratory test carried out in a semi-anechoic room investigates the effect of wheel load on wheel natural frequencies, damping ratios, wheel vibration and its sound radiation, The laboratory test results show that the vibration of the wheel and total sound radiation decrease significantly with the increase of the wheel load from 0 t to 1 t. The sound energy level of the wheel decreases by 3.7 dB. When the wheel load exceeds 1 t. the attenuation trend of the vibration and sound radiation of the wheel becomes slow. And the increase of the wheel load causes the growth of the wheel natural frequencies and the mode damping ratios. Based on the finite element method (FEM) and boundary element method (BEM), a rolling noise prediction model is developed to calculate the influence of wheel load on the wheel vibration and sound radiation. In the calculation, the used wheel/rail excitation is the measured wheel/rail roughness. The calculated results show that the sound power level of the wheel decreases by about 0.4 dB when the wheel load increases by 0.5 t. The sound radiation of the wheel decreases slowly with wheel load increase, and this conclusion is verified by the field test. This research systematically studies the cffcct of wheel load on wheel vibration and sound radiation, gives the relationship between the sound and wheel/rail contact and analyzes the reasons, therefore, it provides a reference for further research.
基金Project supported by the National Defence Science and Technology Emphases Laboratory Foundation of China(No.99JS23.2.1.JWO506).
文摘The Donnell theory of shell is applied to describe shell motion and layer motion is described by means of three-dimensional Navier equations.Using deformation harmonious condi- tions of the interface,the effects of stiffeners and layer are treated as reverse forces and moments acting on the cylindrical shell.In studying the acoustic field produced by vibration of the sub- merged ring-stiffened cylindrical coated shell,the structure dynamic equation,Helmholtz equation in the fluid field and the continuous conditions of the fluid-structure interface compose the cou- pling vibration equation of the sound-fluid-structure.The extract of sound pressure comes down to the extract of coupling vibration equation.By use of the solution of the equation,the influ- ences of hydrostatic pressure,physical characters and geometric parameters of the layer on sound radiation are discussed.
文摘The fluid-structure coupling finite element model and the boundary element model of a complex gearbox's housing are built based on the theory of fluid-structure coupling finite element method and boundary element method. At the same time, the exciting forces of the housing are analyzed and applied to the finite element models. Firstly, vibration of the housing is calculated by the fluid-structure coupling finite element model; secondly, the calculated result is verified by the experiment; finally, sound radiation of the housing is calculated by the boundary element. According to the calculated results, the housing adds some ribs not only to increase the strength, but also to reduce the sound radiation of the housing. At last, the sound radiation of the modified housing is calculated, which shows that the sound radiation of the modified housing with ribs is lower.
基金Funded by Doctoral Program Foundation of Institutions of Higher Education of China(20070487403)Natural Science Foundation of Hubei Province of China(2006ABA71)
文摘This paper presents an acoustic design sensitivity(ADS)analysis on sound radiation of structures by using the boundary element method(BEM).We calculated the velocity distribution of the thin plate by analytical method and the surface sound pressure by Rayleigh integral,and expressed the sound radiation power of the structure in a positive definite quadratic form of the Hermitian with an impedance matrix.The ADS analysis of the plate was thus translated into the analysis of structure dynamic sensitivity and ...
基金supported by the Key Project of the National Natural Science Foundation of China (10932006)Hebei Natural Science Foundation (2011210055)Hebei Key Basic Research Project (10963528D)
文摘Based on the fundamental dynamic equations of functionally graded material (FGM) cylindrical shell, this paper investigates the sound radiation of vibrational FGM shell in water by mobility method. This model takes into account the exterior fluid loading due to the sound press radiated by the FGM shell. The FGM cylindrical shell was excited by a harmonic line radial force uniformly distributing along the generator. The FGM shell equations of motion, the Helmholtz equation in the exterior fluid medium and the continuity equation at fluid-shell interface are used in this vibroacoustic problem. The expressions of sound radiation efficiency and sound field of the FGM shell have been derived by mobility method. Radiation efficiency, modal mobility and the directivity pattern of the sound field are solved numerically. In particular, radiation efficiency and directivity pattern with various power law index are analyzed.
基金Supported by the National Natural Science Foundation of China (No.10802024)Research Fund for the Doctoral Program of Higher Education of China (No. 200802171009)+2 种基金the Natural Science Foundation of Heilongjiang Province (No.E200944)Innovative Talents Fund of Harbin (No.2009RFQXG211)Fundamental Research Fund of HEU (No. HEUFT08003)
文摘A numerical and experimental study was presented on active control of structurally radiated sound from an elastic cylindrical shell.An analytical model was developed for the active structural acoustic control (ASAC) of the cylindrical shell.Both global and local control strategies were considered.The optimal control forces corresponding to each control strategy were obtained by using the linear quadratic optimal control theory.Numerical simulations were performed to examine and analyze the control performance under different control strategies.The results show that global sound attenuation of the cylindrical shell at resonance frequencies can be achieved by using point force as the control input of the ASAC system.Better control performance can be obtained under the control strategy of minimization of the radiated sound power.However,control spillover may occur at off-resonance frequencies with the control strategy of structural kinetic energy minimization in terms of the radiated sound power.Considerable levels of global sound attenuation can also be achieved in the on-resonance cases with the local control strategy,i.e.,minimization of the mean-square velocity of finite discrete locations.An ASAC experiment using an FXLMS algorithm was implemented,agreement was observed between the numerical and experimental results,and successful attenuation of structural vibration and radiated sound was achieved.
基金Supported by the National Natural Science Foundation of China under (Grant No. 40976058)
文摘A general method was proposed to study the sound and vibration of a finite cylindrical shell with elastic theory. This method was developed through comprehensive analysis of the uncoupled Helmholtz equation obtained by the decomposition of elastic equations and the structure of the solution of a finite cylindrical shell analyzed by thin shell theory. The proposed method is theoretically suitable for arbitrary thickness of the shell and any frequency. Also, the results obtained through the method can be used to determine the range of application of the thin shell theory. Furthermore, the proposed method can deal with the problems limited by the thin shell theory. Additionally, the method can be suitable for several types of complex cylindrical shell such as the ring-stiffened cylindrical shell, damped cylindrical shell, and double cylindrical shell.
文摘The methods of modifying dimension and shape of structure, or covering damping material are effective to reduce structure-borne noise, while these methods are based on the knowledge of qualitative and quantitative relationship between sound radiation and design parameters. In order to decrease the complexity of the problem, response surface method(RSM) was utilized to analyze and optimize the vibro-acoustic properties of the damping structure. A simple case was illustrated to demonstrate the capabilities of the developed procedure. A structure-born noise problem was approximated by a series of polynomials using RSM. Three main performances were considered, i.e. sound radiation power, first order modal frequency and total mass. Consequently, the response surface model not only gives the direction of design modification, it also leads to an optimal design of complex systems.
基金financially supported by the Science Fund for Outstanding Youth of the National Natural Science Foundation of China(Grant No.51222904)the National Security Major Basic Research Program of China(Grant No.613157)+1 种基金the Key Program of National Natural Science Foundation of China(Grant No.0939002)the National Natural Science Foundation of China(Grant No.51209052)
文摘A general theoretical model is developed to investigate the sound radiation from an infinite orthogonally stiffened plate under point excitation force. The plate can be metallic or composite, and fluid loading is also considered in the research. The first order shear deformation theory is used to account for the transverse shear deformation. The motion of the equally spaced stiffeners is examined by considering their bending vibrations and torsional movements. Based on the periodic structure theory and the concepts of the equivalent dynamic flexibility of the plate, the generalized vibro-acoustic equation of the model is obtained by applying the Fourier transform method. The generalized model that can be solved numerically is validated by comparing model predictions with the existing results. Numerical calculations are performed to investigate the effects of the location of the excitation, the spacing of the stiffeners, the plate thickness, the strengthening form and the fiber orientation on the sound radiation characteristic of the orthogonaUy stiffened plate, and some practical conclusions are drawn from these parameter studies.
文摘The vibration and noise produced by the powertrain and waves inside ship cabins limit working efficiency and crew and passengers’accommodation quality.This paper simplifies ship cabins as cavities and explores active control techniques to attenuate sound transmission via multiple parallel-supported flexible subplates.The theoretical formulations of the interaction between multiple subplates and cavities were performed and the coupling relationships between them were analyzed.Based on the multiple subplates and the cavity coupling models,numerical simulations were performed using the derived optimal controller to minimize the transmission of sound into the cavities through two and nine parallel-supported subplates.The various control strategies were explored to minimize the coupling system’s acoustic potential energy,and the control performances were compared and discussed.The mechanism of reducing sound transmission through multiple supported subplates into a cavity is revealed.The simulation results showed that the vibration pattern of the controlled subplate is changed after it is regulated,which increases its radiation to subdue the other subplates’radiation,while increasing vibration of the controlled subplate.The more subplates a cavity has,the more kinetic energy the controlled subplate possess.Furthermore,the noise reduction performance of a cavity with fewer subplates is better than that with more subplates.
文摘The research on structural vibration and sound radiation of underwater ring-ribbed cylindrical shell, which is coated with a kind of deadening and decoupling materials, becomes a focus in recent years. This paper analyzes the problem on two aspects: model experiment and numerical calculation. The model experiment is carried out including three cases firstly, in which the structural vibration response and radiating acoustic field are measured respectively, and the results gained in these three cases are analyzed to discuss the effect of reducing structural vibration and radiating noise of the deadening and decoupling materials. The coupling FEM/BEM and the SEA methods are both used in numerical calculation, i.e. the arithmetic of the coupling FEM/BEM method is adopted to calculate the low frequency characteristics and the SEA method is adopted to calculate the medium-high frequencies characteristics of the model. By comparing experimental results with numerical calculation results, it is proved that the algorithm adopted in this paper is reasonable.
文摘In this paper, analytical formularions of radiated sound pressure of ring-stiffenedcylindrical shells in fluid medium are derived by means of Hamilton's principleHuygens principle and Green function . These formulations Can be used to compute the sound pressure of the shell's surface nearfield and farfield.
文摘A theoretical model is developed to predict the sound radiation ability of a cylindrical thin elastic shell of finite length, covered with a damp layer and terminated with infinite cylindrical rigid baffles. This shell is immersed in a heavy fluid extending up to infinity, and excited by a constant point load continuously traveling along the circumferential direction. A frequency-domain representation of the rotating load and three equations of the vibroacoustic coupling problem are given. The equations are solved by means of modal analysis method and asymptotic expansion method. Also, a mathematical expression of modal amplitude of shell radial displacement is obtained. The sound radiation ability of this kind of shell is evaluated and the corresponding numerical results are given.
文摘A method for the forced vibration and sound radiation of a rectangular plate with viscoelastic boundary supports is proposed.The method is based on damped complex modes analysis method.Using the damped complex modes of the plate system,the modal equation of the plate motion becomes completely uncouped.The sound radiation pressure is obtained by numerical integration of the Rayleigh integral.Effects of the viscoelastic boundary supports on the vibration response and the radiated sound pressure of the vibrating plate are discussed by an example.
基金National Natural Science Foundation of China(No.61201412)Shanxi Province Fundation for Science and Technology Research(No.2012021011-5)Program for Top Young Academic Leaders of Higher Learning Institution in Shanxi Province
文摘Beam focusing is one of the unique characteristics of ultrasonic phased array compared with conventional ultrasound.On the basis of two-dimensional radiated sound field of phased array,the three-dimensional radiated sound field was simulated in the paper,and then the effect of different frequencies,different number of array elements and different element spacings on focal spot,the depth of focus and the effect on horizontal and vertical resolution were analyzed.The optimal results of transducer parameters have certain reference value for the design of phased array probe.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.51305448 and 51275519)
文摘This paper presents a semi-analytical solution for the vibration and sound radiation of a semi-infinite plate covered by a decoupling layer consisting of locally resonant acoustic metamaterial. Formulations are derived based on a combination use of effective medium theory and the theory of elasticity for the decoupling material. Theoretical results show good agree- ments between the method developed in this paper and the conventional finite element method (FEM), but the method of this paper is more efficient than FEM. Numerical results also show that system with acoustic metamaterial decoupling layer exhibits significant noise reduction performance at the local resonance frequency of the acoustic metamaterial, and such performance can be ascribed to the vibration suppression of the base plate. It is demonstrated that the effective density of acoustic metamaterial decoupling layer has a great influence on the mechanical impedance of the system. Furthermore, the resonance frequency of locally resonant structure can be effectively predicted by a simple model, and it can be significantly affected by the material properties of the locally resonant structure.
基金Project(51705537)supported by the National Natural Science Foundation of ChinaProject(2018JJ3661)+2 种基金supported by the Natural Science Foundation of Hunan Province of ChinaProject(ZZYJKT2018-11)supported by State Key Laboratory of High Performance Complex Manufacturing,China。
文摘A semi-analytical method to conduct vibro-acoustic analysis of a composite laminated elliptical shell immersed in air is proposed.A variational method and multi-segment technique are used to formulate the dynamic model.The sound radiation of the exterior fluid field is calculated by a spectral Kirchhoff–Helmholtz integral formulation.The variables containing displacements and sound pressure are expanded by the combination of Fourier series and Chebyshev orthogonal polynomials.The collocation points are introduced to construct an algebraic system of acoustic integral equations,where these points are distributed on the roots of Chebyshev polynomials,and the non-uniqueness solution of system is eliminated by a combined Helmholtz integral.Numerical examples for sound radiation problems of composite laminated elliptical shells are presented and individual contributions of the circumferential modes to the acoustical results of composite laminated elliptical shells are also given.The effects of geometric and material parameters on sound radiation of composite laminated elliptical shells are also investigated.
基金China National 111 Project Under Grant No. B07019.
文摘Underwater cylindrical shell structures have been found a wide of application in many engineering fields, such as the element of marine, oil platforms, etc. The coupled vibration analysis is a hot issue for these underwater structures. The vibration characteristics of underwater structures are influenced not only by hydrodynamic pressure but also by hydrostatic pressure corresponding to different water depths. In this study, an acoustic finite element method was used to evaluate the underwater structures. Taken the hydrostatic pressure into account in terms of initial stress stiffness, an acoustical fluid-structure coupled analysis of underwater cylindrical shells has been made to study the effect of hydrodynamic pressures on natural frequency and sound radiation. By comparing with the frequencies obtained by the acoustic finite element method and by the added mass method based on the Bessel function, the validity of present analysis was checked. Finally, test samples of the sound radiation of stiffened cylindrical shells were acquired by a harmonic acoustic analysis. The results showed that hydrostatic pressure plays an important role in determining a large submerged body motion, and the characteristics of sound radiation change with water depth. Furthermore, the analysis methods and the results are of significant reference value for studies of other complicated submarine structures.