Using the three-dimensional reticular nickel foam as experimental material, the sound absorption performance was investigated for several various multilayer structures in the frequency range of 2000-4000 Hz, which is ...Using the three-dimensional reticular nickel foam as experimental material, the sound absorption performance was investigated for several various multilayer structures in the frequency range of 2000-4000 Hz, which is aurally sensitive for human ears. The results showed that the 7.5 mm-thick foam sample, which was formed by piling of 5-layer foam plate(thickness: 1.5 mm; porosity: 96%; average pore-diameter: 0.65 mm) could exhibit an excellent sound absorption effect at 4000 Hz, with the absorption coefficient about 0.8. Constituting alternate air gap with the total thickness of about 18.5 mm can greatly improve the absorption performance at relatively low frequencies of 2000-3150 Hz, with the absorption coefficient up to about 0.5 or more. In addition, the research showed that alternate piling up the perforated plate inside the foam plates can also achieve a quite good effect of sound absorption at relatively low frequencies.展开更多
This paper presents an acoustic design sensitivity(ADS)analysis on sound radiation of structures by using the boundary element method(BEM).We calculated the velocity distribution of the thin plate by analytical method...This paper presents an acoustic design sensitivity(ADS)analysis on sound radiation of structures by using the boundary element method(BEM).We calculated the velocity distribution of the thin plate by analytical method and the surface sound pressure by Rayleigh integral,and expressed the sound radiation power of the structure in a positive definite quadratic form of the Hermitian with an impedance matrix.The ADS analysis of the plate was thus translated into the analysis of structure dynamic sensitivity and ...展开更多
A wearable and high-precision sensor for sound signal acquisition and recognition was fabricated from thin films of specially designed graphene woven fabrics (GWFs). Upon being stretched, a high density of random cr...A wearable and high-precision sensor for sound signal acquisition and recognition was fabricated from thin films of specially designed graphene woven fabrics (GWFs). Upon being stretched, a high density of random cracks appears in the network, which decreases the current pathways, thereby increasing the resistance. Therefore, the film could act as a strain sensor on the human throat in order to measure one's speech through muscle movement, regardless of whether or not a sound is produced. The ultra-high sensitivity allows for the realization of rapid and low-frequency speech sampling by extracting the signature characteristics of sound waves. In this study, representative signals of 26 English letters, typical Chinese characters and tones, and even phrases and sentences were tested, revealing obvious and characteristic changes in resistance. Furthermore, resistance changes of the graphene sensor responded perfectly with pre-recorded sounds. By combining artificial intelligence with digital signal processing, we expect that, in the future, this graphene sensor will be able to successfully negotiate complex acoustic systems and large quantities of audio data.展开更多
基金Project(C16) supported by the Testing Foundation of Beijing Normal University,China
文摘Using the three-dimensional reticular nickel foam as experimental material, the sound absorption performance was investigated for several various multilayer structures in the frequency range of 2000-4000 Hz, which is aurally sensitive for human ears. The results showed that the 7.5 mm-thick foam sample, which was formed by piling of 5-layer foam plate(thickness: 1.5 mm; porosity: 96%; average pore-diameter: 0.65 mm) could exhibit an excellent sound absorption effect at 4000 Hz, with the absorption coefficient about 0.8. Constituting alternate air gap with the total thickness of about 18.5 mm can greatly improve the absorption performance at relatively low frequencies of 2000-3150 Hz, with the absorption coefficient up to about 0.5 or more. In addition, the research showed that alternate piling up the perforated plate inside the foam plates can also achieve a quite good effect of sound absorption at relatively low frequencies.
基金Funded by Doctoral Program Foundation of Institutions of Higher Education of China(20070487403)Natural Science Foundation of Hubei Province of China(2006ABA71)
文摘This paper presents an acoustic design sensitivity(ADS)analysis on sound radiation of structures by using the boundary element method(BEM).We calculated the velocity distribution of the thin plate by analytical method and the surface sound pressure by Rayleigh integral,and expressed the sound radiation power of the structure in a positive definite quadratic form of the Hermitian with an impedance matrix.The ADS analysis of the plate was thus translated into the analysis of structure dynamic sensitivity and ...
基金This work was supported by Beijing Science and Technology Program (No. D141100000514001), National Natural Science Foundation of China (No. 51372133), and National Program on Key Basic Research Project (Nos. 2011CB013000 and 2014CB932401)
文摘A wearable and high-precision sensor for sound signal acquisition and recognition was fabricated from thin films of specially designed graphene woven fabrics (GWFs). Upon being stretched, a high density of random cracks appears in the network, which decreases the current pathways, thereby increasing the resistance. Therefore, the film could act as a strain sensor on the human throat in order to measure one's speech through muscle movement, regardless of whether or not a sound is produced. The ultra-high sensitivity allows for the realization of rapid and low-frequency speech sampling by extracting the signature characteristics of sound waves. In this study, representative signals of 26 English letters, typical Chinese characters and tones, and even phrases and sentences were tested, revealing obvious and characteristic changes in resistance. Furthermore, resistance changes of the graphene sensor responded perfectly with pre-recorded sounds. By combining artificial intelligence with digital signal processing, we expect that, in the future, this graphene sensor will be able to successfully negotiate complex acoustic systems and large quantities of audio data.