The scarcity of in-situ ocean observations poses a challenge for real-time information acquisition in the ocean.Among the crucial hydroacoustic environmental parameters,ocean sound velocity exhibits significant spatia...The scarcity of in-situ ocean observations poses a challenge for real-time information acquisition in the ocean.Among the crucial hydroacoustic environmental parameters,ocean sound velocity exhibits significant spatial and temporal variability and it is highly relevant to oceanic research.In this study,we propose a new data-driven approach,leveraging deep learning techniques,for the prediction of sound velocity fields(SVFs).Our novel spatiotemporal prediction model,STLSTM-SA,combines Spatiotemporal Long Short-Term Memory(ST-LSTM) with a self-attention mechanism to enable accurate and real-time prediction of SVFs.To circumvent the limited amount of observational data,we employ transfer learning by first training the model using reanalysis datasets,followed by fine-tuning it using in-situ analysis data to obtain the final prediction model.By utilizing the historical 12-month SVFs as input,our model predicts the SVFs for the subsequent three months.We compare the performance of five models:Artificial Neural Networks(ANN),Long ShortTerm Memory(LSTM),Convolutional LSTM(ConvLSTM),ST-LSTM,and our proposed ST-LSTM-SA model in a test experiment spanning 2019 to 2022.Our results demonstrate that the ST-LSTM-SA model significantly improves the prediction accuracy and stability of sound velocity in both temporal and spatial dimensions.The ST-LSTM-SA model not only accurately predicts the ocean sound velocity field(SVF),but also provides valuable insights for spatiotemporal prediction of other oceanic environmental variables.展开更多
Segregated incompressible large eddy simulation and acoustic perturbation equations were used to obtain the flow field and sound field of 1:25 scale trains with three,six and eight coaches in a long tunnel,and the aer...Segregated incompressible large eddy simulation and acoustic perturbation equations were used to obtain the flow field and sound field of 1:25 scale trains with three,six and eight coaches in a long tunnel,and the aerodynamic results were verified by wind tunnel test with the same scale two-coach train model.Time-averaged drag coefficients of the head coach of three trains are similar,but at the tail coach of the multi-group trains it is much larger than that of the three-coach train.The eight-coach train presents the largest increment from the head coach to the tail coach in the standard deviation(STD)of aerodynamic force coefficients:0.0110 for drag coefficient(Cd),0.0198 for lift coefficient(Cl)and 0.0371 for side coef-ficient(Cs).Total sound pressure level at the bottom of multi-group trains presents a significant streamwise increase,which is different from the three-coach train.Tunnel walls affect the acoustic distribution at the bottom,only after the coach number reaches a certain value,and the streamwise increase in the sound pressure fluctuation of multi-group trains is strengthened by coach number.Fourier transform of the turbulent and sound pressures presents that coach number has little influence on the peak frequencies,but increases the sound pressure level values at the tail bogie cavities.Furthermore,different from the turbulent pressure,the first two sound pressure proper orthogonal decomposition(POD)modes in the bogie cavities contain 90%of the total energy,and the spatial distributions indicate that the acoustic distributions in the head and tail bogies are not related to coach number.展开更多
Understanding the physical features of the diffracted sound field on the surface of an axisymmetric body is important for predicting the self-noise of a sonar mounted on an underwater platform. The diffracted sound fi...Understanding the physical features of the diffracted sound field on the surface of an axisymmetric body is important for predicting the self-noise of a sonar mounted on an underwater platform. The diffracted sound field from the transition region of an axisymmetric body was calculated by the geometrical theory of diffraction. The diffraction ray between the source point and the receiving point on the surface of an axisymmetric body was calculated by using the dynamic programming method. Based on the diffracted sound field, a simulation scheme for the noise correlation of the conformal array was presented. It was shown that the normalized pressure of the diffracted sound field from the transition region reduced with the increases of the frequency and the curvature of the ray. The flow noises of two models were compared and a rather optimum fore-body geometric shape was given. Furthermore, it was shown that the correlation of the flow noise in the low frequencies was stronger than that in the high frequencies. And the flow noise received by the acoustic array on the curved surface had a stronger correlation than that on the head plane at the designed center frequency, which is important for sonar system design.展开更多
We show a method to separate the sound field radiated by a signal source from the sound field radiated by noise sources and to reconstruct the sound field radiated by the signal source. The proposed method is based on...We show a method to separate the sound field radiated by a signal source from the sound field radiated by noise sources and to reconstruct the sound field radiated by the signal source. The proposed method is based on reciprocity theorem and the Fourier transform. Both the sound field and its gradient on a measurement surface are needed in the method. Evanescent waves are considered in the method, which ensures a high resolution reconstruction in the near field region of the signal source when evanescent waves can be measured. A simulation is given to verify the method and the influence of measurement noise on the method is discussed.展开更多
Nearfield acoustic holography(NAH)is a powerful tool for realizing source identification and sound field reconstruction.The wave superposition(WS)-based NAH is appropriate for the spatially extended sources and does n...Nearfield acoustic holography(NAH)is a powerful tool for realizing source identification and sound field reconstruction.The wave superposition(WS)-based NAH is appropriate for the spatially extended sources and does not require the complex numerical integrals.Equivalent source method(ESM),as a classical WS approach,is widely used due to its simplicity and efficiency.In the ESM,a virtual source surface is introduced,on which the virtual point sources are taken as the assumed sources,and an optimal retreat distance needs to be considered.A newly proposed WS-based approach,the element radiation superposition method(ERSM),uses piston surface source as the assumed source with no need to choose a virtual source surface.To satisfy the application conditions of piston pressure formula,the sizes of pistons are assumed to be as small as possible,which results in a large number of pistons and sampling points.In this paper,transfer matrix modes(TMMs),which are composed of the singular vectors of the vibro-acoustic transfer matrix,are used as the sparse basis of piston normal velocities.Then,the compressive ERSM based on TMMs is proposed.Compared with the conventional ERSM,the proposed method maintains a good pressure reconstruction when the number of sampling points and pistons are both reduced.Besides,the proposed method is compared with the compressive ESM in a mathematical sense.Both simulations and experiments for a rectangular plate demonstrate the advantage of the proposed method over the existing methods.展开更多
It′s generally believed that the appropriate stimuli for sound field tests are warble tones and narrow band noise, while pure tone can only be a signal used in the free field and earphone listening conditions. In thi...It′s generally believed that the appropriate stimuli for sound field tests are warble tones and narrow band noise, while pure tone can only be a signal used in the free field and earphone listening conditions. In this study, we take a measurement of sound pressure distribution, sound field variability, and effects of frequency shifting on sound pressure levels (SPLs) at reference points of pure tone in an audiometric test room. It was found that the pure tone SPLs were also distributed uniformly at some sound field areas although it was not so well as warble tones. This indicated that the test results were relatively stable to head movement and/or frequency shifting in those regions, which was confirmed by the clinical measurements on 20 subjects with severe sensorineural hearing loss. Our study concluded that pure tones could also be suitable for sound field audiometry if subjects were seated at a proper location on the basis of the sound field calibrations.展开更多
A simple algorithm using an impulse response for a rectangular piston element is discussed. The impulse response of linear phased array is obtained hv stumming the impulse responses of rectangular piston elements with...A simple algorithm using an impulse response for a rectangular piston element is discussed. The impulse response of linear phased array is obtained hv stumming the impulse responses of rectangular piston elements with different delay times. The output response of the linear wide-band array is equal to the convolution of impulse response functions with wide-band pulse exeiting signal. Sound field distributions and impulse responses of three kinds of transducers are compared. The results can be used to optimize the parameters of the linear phased array transducers used in uhrasonie imaging in nondestructive testing (NDT).展开更多
In order to overcome the obstacle of singular integral in boundary element method (BEM), we presented an efficient sound field reconstruction technique based on the wave superposition method (WSM). Its principle i...In order to overcome the obstacle of singular integral in boundary element method (BEM), we presented an efficient sound field reconstruction technique based on the wave superposition method (WSM). Its principle includes three steps: first, the sound pressure field of an arbitrary shaped radiator is measured with a microphone array; then, the exterior sound field of the radiator is computed backward and forward using the WSM; at last, the final results are visualized in terms of sound pressure contours or animations. With these visualized contours or animations, noise sources can be easily located and quantified; also noise transmission path can be found out. By numerical simulation and experimental results, we proved that the technique are suitable and accurate for sound field reconstruction. In addition, we presented a sound field reconstruction systern prototype on the basis of this technique. It makes a foundation for the application of wave superposition in the sound field reconstruction in industry situations.展开更多
An approach based on the finite element analysis was introduced to improve low-frequency sound field. The optimized scatters on the wall redistribute the modes of the room and provide effective diffusion of sound fiel...An approach based on the finite element analysis was introduced to improve low-frequency sound field. The optimized scatters on the wall redistribute the modes of the room and provide effective diffusion of sound field. The obtained through a 1:5 scaled set up. The results show that the optimized treatment has a positive effect on sound field and the improvement is obvious.展开更多
An alternative extension to the Gaussian-beam expansion technique is provided to simplify the computation of the ~esnel field integral for rectangular symmetric sources. From a known result that the circle or rectangl...An alternative extension to the Gaussian-beam expansion technique is provided to simplify the computation of the ~esnel field integral for rectangular symmetric sources. From a known result that the circle or rectangle function is approximately decomposed into a sum of Gaussian functions, the cosine function is similarly expanded by the Bessel Fourier transform. Two expansions are together inserted in this field integral, it is then expressible in terms of the simple algebraic functions. As examples, the numerical results for the sound pressure field are presented for the uniform rectangular piston transducer, in a good agreement with those directly evaluated from the Fresnel integral. A wide applicability of this approach is discussed in treatment of the ultrasonic field radiation problem for a large and important group of piston sources in acoustics.展开更多
In safety dominant industries, nondestructive evaluation (NDE) is crucial in quality assurance and assessment. Phased array ultrasonic testing (PAUT) as one of the NDE methods is more promising compared with conventio...In safety dominant industries, nondestructive evaluation (NDE) is crucial in quality assurance and assessment. Phased array ultrasonic testing (PAUT) as one of the NDE methods is more promising compared with conventional ultrasonic testing (UT) method in terms of inspection speed and flexibility. To incorporate PAUT, the techniques should be qualified, which traditionally is performed by extensive physical experiments. However, with the development of numerical models simulating UT method, it is expected to complement or partly replace the experiments with the intention to reduce costs and operational uncertainties. The models should be validated to ensure its consistency to reality. This validation work can be done by comparing the model with other validated models or corresponding experiments. The purpose of current work focuses on the experimental validation of a numerical model, simSUNDT, developed by the Chalmers University of Technology. Validation is conducted by comparing different data presentations (A-, B- and C-scan) from experimental and simulated results with some well-defined artificial defects. Satisfactory correlations can be observed from the comparisons. After the validation, sound field optimization work aiming at retrieving maximized echo amplitude on a certain defect can be started using the model. This also reveals the flexibility of parametric studies using simulation models.展开更多
We designed a new downhole electrokinetic logging tool based on numericalsimulations and petrophysical experiments. Acoustic and electric receivers cannot be arrangedat the same depth, and the proposed composite elect...We designed a new downhole electrokinetic logging tool based on numericalsimulations and petrophysical experiments. Acoustic and electric receivers cannot be arrangedat the same depth, and the proposed composite electrokinetic logging tool offers a solutionto this problem. The sound field characteristics of the detectors were tested in a water tank inthe laboratory. Then, we calculated the sound pressure of the radiated acoustic field and thetransmitting voltage response of the transmitting transducers; in addition, we analyzed thedirectivity and application of the acoustic transmitting probe based on linear phased array.The results suggest that the sound pressure generated at 1500 mm spacing reaches up to 47.2k Pa and decreases with increasing acoustic source frequency. When the excitation signalsdelay time of adjacent acoustic transmitting subarrays increases, the radiation beam of themain lobe is deflected and its energy gradually increases, which presumably enhances theacoustoelectric conversion efficiency.展开更多
Beam focusing is one of the unique characteristics of ultrasonic phased array compared with conventional ultrasound.On the basis of two-dimensional radiated sound field of phased array,the three-dimensional radiated s...Beam focusing is one of the unique characteristics of ultrasonic phased array compared with conventional ultrasound.On the basis of two-dimensional radiated sound field of phased array,the three-dimensional radiated sound field was simulated in the paper,and then the effect of different frequencies,different number of array elements and different element spacings on focal spot,the depth of focus and the effect on horizontal and vertical resolution were analyzed.The optimal results of transducer parameters have certain reference value for the design of phased array probe.展开更多
The noise induced by the fluctuant saturated steam flow under 250 °C in a stop-valve was numerically studied.The simulation was carried out using computational fluid dynamics(CFD) and ACTRAN.The acoustic field ...The noise induced by the fluctuant saturated steam flow under 250 °C in a stop-valve was numerically studied.The simulation was carried out using computational fluid dynamics(CFD) and ACTRAN.The acoustic field was investigated with Lighthill's acoustic analogy based on the properties of the flow field obtained using a large-eddy simulation that employs the LES-WALE dynamic model as the sub-grid-scale model.Firstly,the validation of mesh was well conducted,illustrating that two million elements were sufficient in this situation.Secondly,the treatment of the steam was deliberated,and conclusions indicate that when predicting the flow-induced noise of the stop-valve,the steam can be treated as incompressible gas at a low inlet velocity.Thirdly,the flow-induced noises under different inlet velocities were compared.The findings reveal it has remarkable influence on the flow-induced noises.Lastly,whether or not the heat preservation of the wall has influence on the noise was taken into account.The results show that heat preservation of the wall had little influence.展开更多
The calculation of wing shielding effect starts from solving Ffowcs Williams and Hawkings equation without quadrupole source in time domain. The sound scattering of the wing and fuselage which are surrounded by a mult...The calculation of wing shielding effect starts from solving Ffowcs Williams and Hawkings equation without quadrupole source in time domain. The sound scattering of the wing and fuselage which are surrounded by a multi propeller sound field is modeled as a second sound source. A program is developed to calculate the acoustical effects of the rigid fuselage as well as wings with arbitrary shape in motion at low Mach number. As an example, the numerical calculation of the wing shielding of Y12 aircraft with an approximate shape is presented. The result manifests clearly the shielding effect of the wing on the fuselage and the approach is more efficient than that published before.展开更多
We present a theoretical model for acoustic nonlinearity measurement of dispersive specimens at high frequency. The nonlinear Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation governs the nonlinear propagation in the S...We present a theoretical model for acoustic nonlinearity measurement of dispersive specimens at high frequency. The nonlinear Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation governs the nonlinear propagation in the SiO2/specimen/SiO2 multi-layer medium. The dispersion effect is considered in a special manner by introducing the frequency-dependant sound velocity in the KZK equation. Simple analytic solutions are derived by applying the superposition technique of Gaussian beams. The solutions are used to correct the diffraction and dispersion effects in the measurement of acoustic nonlinearity of cottonseed oil in the frequency range of 33-96 MHz. Re- garding two different ultrasonic devices, the accuracies of the measurements are improved to ±2.0% and ±1.3% in comparison with ±9.8% and ±2.9% obtained from the previous plane wave model.展开更多
The automatic identification of underwater noncooperative targets without label records remains an arduous task considering the marine noise interference and the shortage of labeled samples.In particular,the data-driv...The automatic identification of underwater noncooperative targets without label records remains an arduous task considering the marine noise interference and the shortage of labeled samples.In particular,the data-driven mechanism of deep learning cannot identify false samples,aggravating the difficulty in noncooperative underwater target recognition.A semi-supervised ensemble framework based on vertical line array fusion and the sparse adversarial co-training algorithm is proposed to identify noncooperative targets effectively.The sound field cross-correlation compression(SCC)feature is developed to reduce noise and computational redundancy.Starting from an incomplete dataset,a joint adversarial autoencoder is constructed to extract the sparse features with source depth sensitivity,aiming to discover the unknown underwater targets.The adversarial prediction label is converted to initialize the joint co-forest,whose evaluation function is optimized by introducing adaptive confidence.The experiments prove the strong denoising performance,low mean square error,and high separability of SCC features.Compared with several state-of-the-art approaches,the numerical results illustrate the superiorities of the proposed method due to feature compression,secondary recognition,and decision fusion.展开更多
Focused underwater plasma sound sources are being applied in more and more fields. Focusing performance is one of the most important factors determining transmission distance and peak values of the pulsed sound waves....Focused underwater plasma sound sources are being applied in more and more fields. Focusing performance is one of the most important factors determining transmission distance and peak values of the pulsed sound waves. The sound source’s components and focusing mechanism were all analyzed. A model was built in 3D Max and wave strength was measured on the simulation platform. Error analysis was fully integrated into the model so that effects on sound focusing performance of processing-errors and installation-errors could be studied. Based on what was practical, ways to limit the errors were proposed. The results of the error analysis should guide the design, machining, placement, debugging and application of underwater plasma sound sources.展开更多
Traditional ultrasonic TOFD ( time of flight diffraction) has the major shortcoming of low amplitude of diffractive wave which brings about lack of sensitivity for weld defect detection. Aimed at the technological l...Traditional ultrasonic TOFD ( time of flight diffraction) has the major shortcoming of low amplitude of diffractive wave which brings about lack of sensitivity for weld defect detection. Aimed at the technological limitation, a novel TOFD method is proposed by developing a focusing probe. Through the analyses and calculation of sound field distribution based on geometric acoustics, a cylindrical surface wedge is designed and produced. Artificial defect containing testing piece is made and tested using both traditional and focusing TOFD, and the received signal and image are compared. The result shows that the proposed focusing method can converge the emitted sound energy effectively and improve testing sensitivity greatly. Compared with traditional TOFD tested data, focusing TOFD tested defect wave in A-scan line and defect diffractive stripe in D-scan image can be identified easily.展开更多
In order to study the correlation between the internal flow noise of the centrifugal pump and the turbulent pressure pulsation,a single-stage single-suction centrifugal pump was used as the research object by the comb...In order to study the correlation between the internal flow noise of the centrifugal pump and the turbulent pressure pulsation,a single-stage single-suction centrifugal pump was used as the research object by the combination of numerical calculation and experiment.Based on the RNG k-?model and the N-S equation,the model pump was simulated numerically by CFD.A dipole sound source was extracted by the turbulent pulse action of the volute wall surface according to the FW-H equation.The acoustic field of the model pump was solved on the basis of the boundary element method,and the sound pressure distribution of the internal flow field under the action of the dipole sound source of the volute wall and the frequency response of the inlet and outlet fields were obtained.The results show that the distribution of hydrodynamic noise inside the centrifugal pump is related to the pressure pulsation,presenting obvious dipole distribution and disturbance at the tongue.The sound pressure value of the field is mainly concentrated in the blade passing frequency and double frequency,in which the blade passing frequency is the strongest,and the sound pressure value decreases obviously under other double frequency.The main frequency of hydrodynamic noise is the blade passing frequency.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.42004030)Basic Scientific Fund for National Public Research Institutes of China(Grant No.2022S03)+1 种基金Science and Technology Innovation Project(LSKJ202205102)funded by Laoshan Laboratory,and the National Key Research and Development Program of China(2020YFB0505805).
文摘The scarcity of in-situ ocean observations poses a challenge for real-time information acquisition in the ocean.Among the crucial hydroacoustic environmental parameters,ocean sound velocity exhibits significant spatial and temporal variability and it is highly relevant to oceanic research.In this study,we propose a new data-driven approach,leveraging deep learning techniques,for the prediction of sound velocity fields(SVFs).Our novel spatiotemporal prediction model,STLSTM-SA,combines Spatiotemporal Long Short-Term Memory(ST-LSTM) with a self-attention mechanism to enable accurate and real-time prediction of SVFs.To circumvent the limited amount of observational data,we employ transfer learning by first training the model using reanalysis datasets,followed by fine-tuning it using in-situ analysis data to obtain the final prediction model.By utilizing the historical 12-month SVFs as input,our model predicts the SVFs for the subsequent three months.We compare the performance of five models:Artificial Neural Networks(ANN),Long ShortTerm Memory(LSTM),Convolutional LSTM(ConvLSTM),ST-LSTM,and our proposed ST-LSTM-SA model in a test experiment spanning 2019 to 2022.Our results demonstrate that the ST-LSTM-SA model significantly improves the prediction accuracy and stability of sound velocity in both temporal and spatial dimensions.The ST-LSTM-SA model not only accurately predicts the ocean sound velocity field(SVF),but also provides valuable insights for spatiotemporal prediction of other oceanic environmental variables.
基金supported by the National Natural Science Foundation of China (Grant No. 52072267)Shanghai Key Lab of Vehicle Aerodynamics and Vehicle Thermal Management Systems (Grant No. 23DZ2229029)
文摘Segregated incompressible large eddy simulation and acoustic perturbation equations were used to obtain the flow field and sound field of 1:25 scale trains with three,six and eight coaches in a long tunnel,and the aerodynamic results were verified by wind tunnel test with the same scale two-coach train model.Time-averaged drag coefficients of the head coach of three trains are similar,but at the tail coach of the multi-group trains it is much larger than that of the three-coach train.The eight-coach train presents the largest increment from the head coach to the tail coach in the standard deviation(STD)of aerodynamic force coefficients:0.0110 for drag coefficient(Cd),0.0198 for lift coefficient(Cl)and 0.0371 for side coef-ficient(Cs).Total sound pressure level at the bottom of multi-group trains presents a significant streamwise increase,which is different from the three-coach train.Tunnel walls affect the acoustic distribution at the bottom,only after the coach number reaches a certain value,and the streamwise increase in the sound pressure fluctuation of multi-group trains is strengthened by coach number.Fourier transform of the turbulent and sound pressures presents that coach number has little influence on the peak frequencies,but increases the sound pressure level values at the tail bogie cavities.Furthermore,different from the turbulent pressure,the first two sound pressure proper orthogonal decomposition(POD)modes in the bogie cavities contain 90%of the total energy,and the spatial distributions indicate that the acoustic distributions in the head and tail bogies are not related to coach number.
基金Project supported by the National Natural Science Foundational of China (Grant No.10774119)the Program for New Century Excellent Talents in University of Ministry of Education of China (Grant No.NCET-08-0455)+2 种基金the Natural Science Foundation of Shaanxi Province of China (Grant No.SJ08F07)the Foundation of National Laboratory of Acoustics of Chinathe Foundation for Fundamental Research of Northwestern Polytechnical University of China (Grant No.2007004)
文摘Understanding the physical features of the diffracted sound field on the surface of an axisymmetric body is important for predicting the self-noise of a sonar mounted on an underwater platform. The diffracted sound field from the transition region of an axisymmetric body was calculated by the geometrical theory of diffraction. The diffraction ray between the source point and the receiving point on the surface of an axisymmetric body was calculated by using the dynamic programming method. Based on the diffracted sound field, a simulation scheme for the noise correlation of the conformal array was presented. It was shown that the normalized pressure of the diffracted sound field from the transition region reduced with the increases of the frequency and the curvature of the ray. The flow noises of two models were compared and a rather optimum fore-body geometric shape was given. Furthermore, it was shown that the correlation of the flow noise in the low frequencies was stronger than that in the high frequencies. And the flow noise received by the acoustic array on the curved surface had a stronger correlation than that on the head plane at the designed center frequency, which is important for sonar system design.
基金Supported by the National Natural Science Foundation of China under Grant Nos 11374270 and 11674294
文摘We show a method to separate the sound field radiated by a signal source from the sound field radiated by noise sources and to reconstruct the sound field radiated by the signal source. The proposed method is based on reciprocity theorem and the Fourier transform. Both the sound field and its gradient on a measurement surface are needed in the method. Evanescent waves are considered in the method, which ensures a high resolution reconstruction in the near field region of the signal source when evanescent waves can be measured. A simulation is given to verify the method and the influence of measurement noise on the method is discussed.
基金Project supported by the National Natural Science Foundation of China(Grant No.61701133)。
文摘Nearfield acoustic holography(NAH)is a powerful tool for realizing source identification and sound field reconstruction.The wave superposition(WS)-based NAH is appropriate for the spatially extended sources and does not require the complex numerical integrals.Equivalent source method(ESM),as a classical WS approach,is widely used due to its simplicity and efficiency.In the ESM,a virtual source surface is introduced,on which the virtual point sources are taken as the assumed sources,and an optimal retreat distance needs to be considered.A newly proposed WS-based approach,the element radiation superposition method(ERSM),uses piston surface source as the assumed source with no need to choose a virtual source surface.To satisfy the application conditions of piston pressure formula,the sizes of pistons are assumed to be as small as possible,which results in a large number of pistons and sampling points.In this paper,transfer matrix modes(TMMs),which are composed of the singular vectors of the vibro-acoustic transfer matrix,are used as the sparse basis of piston normal velocities.Then,the compressive ERSM based on TMMs is proposed.Compared with the conventional ERSM,the proposed method maintains a good pressure reconstruction when the number of sampling points and pistons are both reduced.Besides,the proposed method is compared with the compressive ESM in a mathematical sense.Both simulations and experiments for a rectangular plate demonstrate the advantage of the proposed method over the existing methods.
文摘It′s generally believed that the appropriate stimuli for sound field tests are warble tones and narrow band noise, while pure tone can only be a signal used in the free field and earphone listening conditions. In this study, we take a measurement of sound pressure distribution, sound field variability, and effects of frequency shifting on sound pressure levels (SPLs) at reference points of pure tone in an audiometric test room. It was found that the pure tone SPLs were also distributed uniformly at some sound field areas although it was not so well as warble tones. This indicated that the test results were relatively stable to head movement and/or frequency shifting in those regions, which was confirmed by the clinical measurements on 20 subjects with severe sensorineural hearing loss. Our study concluded that pure tones could also be suitable for sound field audiometry if subjects were seated at a proper location on the basis of the sound field calibrations.
基金Sponsored by the Foundation of High Technology Research and Development Program of China (Grant No. 2001AA616170).
文摘A simple algorithm using an impulse response for a rectangular piston element is discussed. The impulse response of linear phased array is obtained hv stumming the impulse responses of rectangular piston elements with different delay times. The output response of the linear wide-band array is equal to the convolution of impulse response functions with wide-band pulse exeiting signal. Sound field distributions and impulse responses of three kinds of transducers are compared. The results can be used to optimize the parameters of the linear phased array transducers used in uhrasonie imaging in nondestructive testing (NDT).
基金the National High Technology Re-search and Development Program (863) of China(2006AA04Z175)
文摘In order to overcome the obstacle of singular integral in boundary element method (BEM), we presented an efficient sound field reconstruction technique based on the wave superposition method (WSM). Its principle includes three steps: first, the sound pressure field of an arbitrary shaped radiator is measured with a microphone array; then, the exterior sound field of the radiator is computed backward and forward using the WSM; at last, the final results are visualized in terms of sound pressure contours or animations. With these visualized contours or animations, noise sources can be easily located and quantified; also noise transmission path can be found out. By numerical simulation and experimental results, we proved that the technique are suitable and accurate for sound field reconstruction. In addition, we presented a sound field reconstruction systern prototype on the basis of this technique. It makes a foundation for the application of wave superposition in the sound field reconstruction in industry situations.
基金Project 10474046 supported by National Natural Science Foundation of China
文摘An approach based on the finite element analysis was introduced to improve low-frequency sound field. The optimized scatters on the wall redistribute the modes of the room and provide effective diffusion of sound field. The obtained through a 1:5 scaled set up. The results show that the optimized treatment has a positive effect on sound field and the improvement is obvious.
基金Supported by the National Natural Science Foundation of China under Grant Nos 11074038 and 11374051
文摘An alternative extension to the Gaussian-beam expansion technique is provided to simplify the computation of the ~esnel field integral for rectangular symmetric sources. From a known result that the circle or rectangle function is approximately decomposed into a sum of Gaussian functions, the cosine function is similarly expanded by the Bessel Fourier transform. Two expansions are together inserted in this field integral, it is then expressible in terms of the simple algebraic functions. As examples, the numerical results for the sound pressure field are presented for the uniform rectangular piston transducer, in a good agreement with those directly evaluated from the Fresnel integral. A wide applicability of this approach is discussed in treatment of the ultrasonic field radiation problem for a large and important group of piston sources in acoustics.
文摘In safety dominant industries, nondestructive evaluation (NDE) is crucial in quality assurance and assessment. Phased array ultrasonic testing (PAUT) as one of the NDE methods is more promising compared with conventional ultrasonic testing (UT) method in terms of inspection speed and flexibility. To incorporate PAUT, the techniques should be qualified, which traditionally is performed by extensive physical experiments. However, with the development of numerical models simulating UT method, it is expected to complement or partly replace the experiments with the intention to reduce costs and operational uncertainties. The models should be validated to ensure its consistency to reality. This validation work can be done by comparing the model with other validated models or corresponding experiments. The purpose of current work focuses on the experimental validation of a numerical model, simSUNDT, developed by the Chalmers University of Technology. Validation is conducted by comparing different data presentations (A-, B- and C-scan) from experimental and simulated results with some well-defined artificial defects. Satisfactory correlations can be observed from the comparisons. After the validation, sound field optimization work aiming at retrieving maximized echo amplitude on a certain defect can be started using the model. This also reveals the flexibility of parametric studies using simulation models.
基金supported by the National Science Foundation of China(No.61102102,11134011,11204380 and 11374371)Major National Science and Technology Projects(No.2011ZX05020-009)+1 种基金Science and Technology Project of CNPC(No.2014A-3912 and 2011B-4001)Petro China Innovation Foundation(No.2014D-5006-0307)
文摘We designed a new downhole electrokinetic logging tool based on numericalsimulations and petrophysical experiments. Acoustic and electric receivers cannot be arrangedat the same depth, and the proposed composite electrokinetic logging tool offers a solutionto this problem. The sound field characteristics of the detectors were tested in a water tank inthe laboratory. Then, we calculated the sound pressure of the radiated acoustic field and thetransmitting voltage response of the transmitting transducers; in addition, we analyzed thedirectivity and application of the acoustic transmitting probe based on linear phased array.The results suggest that the sound pressure generated at 1500 mm spacing reaches up to 47.2k Pa and decreases with increasing acoustic source frequency. When the excitation signalsdelay time of adjacent acoustic transmitting subarrays increases, the radiation beam of themain lobe is deflected and its energy gradually increases, which presumably enhances theacoustoelectric conversion efficiency.
基金National Natural Science Foundation of China(No.61201412)Shanxi Province Fundation for Science and Technology Research(No.2012021011-5)Program for Top Young Academic Leaders of Higher Learning Institution in Shanxi Province
文摘Beam focusing is one of the unique characteristics of ultrasonic phased array compared with conventional ultrasound.On the basis of two-dimensional radiated sound field of phased array,the three-dimensional radiated sound field was simulated in the paper,and then the effect of different frequencies,different number of array elements and different element spacings on focal spot,the depth of focus and the effect on horizontal and vertical resolution were analyzed.The optimal results of transducer parameters have certain reference value for the design of phased array probe.
文摘The noise induced by the fluctuant saturated steam flow under 250 °C in a stop-valve was numerically studied.The simulation was carried out using computational fluid dynamics(CFD) and ACTRAN.The acoustic field was investigated with Lighthill's acoustic analogy based on the properties of the flow field obtained using a large-eddy simulation that employs the LES-WALE dynamic model as the sub-grid-scale model.Firstly,the validation of mesh was well conducted,illustrating that two million elements were sufficient in this situation.Secondly,the treatment of the steam was deliberated,and conclusions indicate that when predicting the flow-induced noise of the stop-valve,the steam can be treated as incompressible gas at a low inlet velocity.Thirdly,the flow-induced noises under different inlet velocities were compared.The findings reveal it has remarkable influence on the flow-induced noises.Lastly,whether or not the heat preservation of the wall has influence on the noise was taken into account.The results show that heat preservation of the wall had little influence.
文摘The calculation of wing shielding effect starts from solving Ffowcs Williams and Hawkings equation without quadrupole source in time domain. The sound scattering of the wing and fuselage which are surrounded by a multi propeller sound field is modeled as a second sound source. A program is developed to calculate the acoustical effects of the rigid fuselage as well as wings with arbitrary shape in motion at low Mach number. As an example, the numerical calculation of the wing shielding of Y12 aircraft with an approximate shape is presented. The result manifests clearly the shielding effect of the wing on the fuselage and the approach is more efficient than that published before.
基金Supported by the National Natural Science Foundation of China under Grant No 10474044.
文摘We present a theoretical model for acoustic nonlinearity measurement of dispersive specimens at high frequency. The nonlinear Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation governs the nonlinear propagation in the SiO2/specimen/SiO2 multi-layer medium. The dispersion effect is considered in a special manner by introducing the frequency-dependant sound velocity in the KZK equation. Simple analytic solutions are derived by applying the superposition technique of Gaussian beams. The solutions are used to correct the diffraction and dispersion effects in the measurement of acoustic nonlinearity of cottonseed oil in the frequency range of 33-96 MHz. Re- garding two different ultrasonic devices, the accuracies of the measurements are improved to ±2.0% and ±1.3% in comparison with ±9.8% and ±2.9% obtained from the previous plane wave model.
基金the National Natural Science Foundation of China(No.6210011631)in part by the China Postdoctoral Science Foundation(No.2021M692628)。
文摘The automatic identification of underwater noncooperative targets without label records remains an arduous task considering the marine noise interference and the shortage of labeled samples.In particular,the data-driven mechanism of deep learning cannot identify false samples,aggravating the difficulty in noncooperative underwater target recognition.A semi-supervised ensemble framework based on vertical line array fusion and the sparse adversarial co-training algorithm is proposed to identify noncooperative targets effectively.The sound field cross-correlation compression(SCC)feature is developed to reduce noise and computational redundancy.Starting from an incomplete dataset,a joint adversarial autoencoder is constructed to extract the sparse features with source depth sensitivity,aiming to discover the unknown underwater targets.The adversarial prediction label is converted to initialize the joint co-forest,whose evaluation function is optimized by introducing adaptive confidence.The experiments prove the strong denoising performance,low mean square error,and high separability of SCC features.Compared with several state-of-the-art approaches,the numerical results illustrate the superiorities of the proposed method due to feature compression,secondary recognition,and decision fusion.
基金Supported by the National Natural Science Foundation under Grant No.60572098
文摘Focused underwater plasma sound sources are being applied in more and more fields. Focusing performance is one of the most important factors determining transmission distance and peak values of the pulsed sound waves. The sound source’s components and focusing mechanism were all analyzed. A model was built in 3D Max and wave strength was measured on the simulation platform. Error analysis was fully integrated into the model so that effects on sound focusing performance of processing-errors and installation-errors could be studied. Based on what was practical, ways to limit the errors were proposed. The results of the error analysis should guide the design, machining, placement, debugging and application of underwater plasma sound sources.
基金Supported by the International Cooperation Project (2007DFR70070), the National Natural Science Foundation of China (51005056, 50775054) and the Research Fund for the Doctoral Program of Higher Education (20102302120045 ).
文摘Traditional ultrasonic TOFD ( time of flight diffraction) has the major shortcoming of low amplitude of diffractive wave which brings about lack of sensitivity for weld defect detection. Aimed at the technological limitation, a novel TOFD method is proposed by developing a focusing probe. Through the analyses and calculation of sound field distribution based on geometric acoustics, a cylindrical surface wedge is designed and produced. Artificial defect containing testing piece is made and tested using both traditional and focusing TOFD, and the received signal and image are compared. The result shows that the proposed focusing method can converge the emitted sound energy effectively and improve testing sensitivity greatly. Compared with traditional TOFD tested data, focusing TOFD tested defect wave in A-scan line and defect diffractive stripe in D-scan image can be identified easily.
基金supported by the National Natural Science Foundation of China(No.51469013)。
文摘In order to study the correlation between the internal flow noise of the centrifugal pump and the turbulent pressure pulsation,a single-stage single-suction centrifugal pump was used as the research object by the combination of numerical calculation and experiment.Based on the RNG k-?model and the N-S equation,the model pump was simulated numerically by CFD.A dipole sound source was extracted by the turbulent pulse action of the volute wall surface according to the FW-H equation.The acoustic field of the model pump was solved on the basis of the boundary element method,and the sound pressure distribution of the internal flow field under the action of the dipole sound source of the volute wall and the frequency response of the inlet and outlet fields were obtained.The results show that the distribution of hydrodynamic noise inside the centrifugal pump is related to the pressure pulsation,presenting obvious dipole distribution and disturbance at the tongue.The sound pressure value of the field is mainly concentrated in the blade passing frequency and double frequency,in which the blade passing frequency is the strongest,and the sound pressure value decreases obviously under other double frequency.The main frequency of hydrodynamic noise is the blade passing frequency.