During 2001-2006,PM2.5 (particle matter with aerodynamic diameter less than 2.5 microns) and PM10 (particle matter with aerodynamic diameter less than 10 microns) were collected at the Beijng Normal University (BNU) s...During 2001-2006,PM2.5 (particle matter with aerodynamic diameter less than 2.5 microns) and PM10 (particle matter with aerodynamic diameter less than 10 microns) were collected at the Beijng Normal University (BNU) site,China,and in 2006,at a background site in Duolun (DL).The long-term monitoring data of elements,ions,and black carbon showed that the major constituents of PM2.5 were black carbon (BC) crustal elements,nitrates,ammonium salts,and sulfates.These five major components accounted for 20%-80% of...展开更多
A total of 11 PM2.5 samples were collected from October 2003 to October 2004 at 8 sampling sites in Beijing city. The PM2.5 concentrations are all above the PM2.5 pollution standard (65 μg m^-3) established by Envi...A total of 11 PM2.5 samples were collected from October 2003 to October 2004 at 8 sampling sites in Beijing city. The PM2.5 concentrations are all above the PM2.5 pollution standard (65 μg m^-3) established by Environmental Protection Agency, USA (USEPA) in 1997 except for the Ming Tombs site. PM2.5 concentrations in winter are much higher than in summer. The 16 Polycyclic aromatic hydrocarbons (PAHs) listed as priority pollutants by USEPA in PM2.5 were completely identified and quantified by high performance liquid chromatography (HPLC) with variable wavelength detector (VWD) and fluorescence detector (FLD) employed. The PM2.5 concentrations indicate that the pollution situation is still serious in Beijing. The sum of 16 PAHs concentrations ranged from 22.17 to 5366 ng m^-3. The concentrations of the heavier molecular weight PAHs have a different pollution trend from the lower PAHs. Seasonal variations were mainly attributed to the difference in coal combustion emission and meteorological conditions. The source apportionment analysis suggests that PAHs from PM2.5 in Beijing city mainly come from coal combustion and vehicle exhaust emission. New measures about restricting coal combustion and vehicle exhaust must be established as soon as possible to improve the air pollution situation in Beijing city.展开更多
In this paper,using concentration data of PM2. 5in 2013 in China and referring to a lot of literature,we preliminary studied the pollution of fine particulate matter and summarized PM2. 5source apportionment in the ke...In this paper,using concentration data of PM2. 5in 2013 in China and referring to a lot of literature,we preliminary studied the pollution of fine particulate matter and summarized PM2. 5source apportionment in the key cities in China. Our results showed that PM2. 5showed significant spatial and temporal distribution; high surface concentrations of PM2. 5concentrated mainly in the North China Plain,the Sichuan Basin,Yangtze River Delta and other regions; the average annual concentration of PM2. 5was about 80μg / m3 in North China Plain; Seasonal changes in the concentration of PM2. 5was winter > spring > autumn > summer; fired sources,industrial sources,vehicle exhaust were the major sources of PM2. 5; motor vehicle exhaust mostly contributed 10%- 30% to PM2. 5. This review provides a fundamental understanding of PM2. 5source apportionment and serves as an important reference for future source apportionment studies to be widely conducted in China.展开更多
In this work, receptor models were used to identify the PM2.5 sources and its contribution to the air quality in residential, comercial and industrial sampling sites in the Metropolitan Area of Costa Rica. Principal c...In this work, receptor models were used to identify the PM2.5 sources and its contribution to the air quality in residential, comercial and industrial sampling sites in the Metropolitan Area of Costa Rica. Principal component analysis with absolute principal component scores (PCA-APCS), UNIMX and positive matrix factorization (PMF) was applied to analyze the data collected during 1 year of sampling campaign (2010-2011). The PM2.5 samples were characterized through its composition looking for trace elements, inorganic ions and organic and elemental carbon. These three models identified some common sources of PM2.5: marine aerosol, crustal material, traffic, secondary aerosols (secondary sulfate and secondary nitrate resolved by PMF), a mixed source of heavy fuels combustion and biomass burning, and industrial emissions. The three models predicted that the major sources of PM2.5 in the Metropolitan Area of Costa Rica were related to anthropogenic sources (73%, 65% and 69%, respectively, for PCA-APCS, Unmix and PMF) although natural sources also contributed to PM2.5 (21%, 24% and 26%). On average, PCA and PMF methods resolved 94% and 95% of the PM2.5 mass concentrations, respectively. The results were comparable to the estimate using UNMIX.展开更多
During 2005, the filter samples of ambient PM10 from five sites and the source samples of particulate matter were collected in Kaifeng, Henan Province of China. Nineteen elements, water-soluble ions, total carbon (TC...During 2005, the filter samples of ambient PM10 from five sites and the source samples of particulate matter were collected in Kaifeng, Henan Province of China. Nineteen elements, water-soluble ions, total carbon (TC) and organic carbon (OC) contained in samples were analyzed. Seven contributive source types were identified and their contributions to ambient PM10 were estimated by chemical mass balance (CMB) receptor model. Weak associations between the concentrations of organic carbon and element carbon (EC) were observed during the sampling periods, indicating that there was secondary organic aerosol pollution in the urban atmosphere. An indirect method of "OC/EC minimum ratio" was applied to estimate the concentration of secondary organic carbon (SOC). The results showed that SOC contributed 26.2%, 32.4% and 18.0% of TC in spring, summer-fall and winter, respectively, and the annual average SOC concentration was 7.07 μg/m^3, accounting for 5.73% of the total mass in ambient PM10. The carbon species concentrations in ambient PM10 were recalculated by subtracting SOC concentrations from measured concentrations of TC and OC to increase the compatibility of source and receptor measurements for CMB model.展开更多
The increasing emission of primary and gaseous precursors of secondarily formed atmospheric particulate matter due to continuing industrial development and urbanization are leading to an increased public awareness of ...The increasing emission of primary and gaseous precursors of secondarily formed atmospheric particulate matter due to continuing industrial development and urbanization are leading to an increased public awareness of environmental issues and human health risks in China. As part of a pilot study, 12-h integrated fine fraction particulate matter (PM2.5) filter samples were collected to chemically characterize and investigate the sources of ambient particulate matter in Guiyang City, Guizhou Province, southwestern China. Results showed that the 12-h integrated PM2.5 concentrations exhibited a daytime average of 51 ± 22 μg m^-3 (mean -4- standard deviation) with a range of 17-128 μg m^-3 and a nighttime average of 55 ± 32 μg m^-3 with a range of 4-186 μg m^-3. The 24-h integrated PM2.5 concentrations varied from 15 to 157 μg m^-3, with amean value of 53 ± 25 μg m^-3, which exceeded the 24-h PM2.5 standard of 35μg m^-3 set by USEPA, but was below the standard of 75 μg m^-3, set by China Ministry of Environmental Protection. Energy-dispersive X-ray fluorescence spectrometry (XRF) was applied to determine PM2.5 chemical element concentrations. The order of concentrations of heavy metals in PM2.5 were iron (Fe) 〉 zinc (Zn) 〉 manganese (Mn) 〉 lead (Pb) 〉 arsenic (As)〉 chromium (Cr). The total concentration of 18 chemical elements was 13 ± 2 μg m^-3, accounting for 25% in PM2.5, which is comparable to other major cities in China, but much higher than cities outside of China.展开更多
基金the National Science Fund for Distinguished Young Scholars (No.20725723)
文摘During 2001-2006,PM2.5 (particle matter with aerodynamic diameter less than 2.5 microns) and PM10 (particle matter with aerodynamic diameter less than 10 microns) were collected at the Beijng Normal University (BNU) site,China,and in 2006,at a background site in Duolun (DL).The long-term monitoring data of elements,ions,and black carbon showed that the major constituents of PM2.5 were black carbon (BC) crustal elements,nitrates,ammonium salts,and sulfates.These five major components accounted for 20%-80% of...
基金Financial support from the National Natural Science Foundation of China (Grant No. 40475049) the Natural Sciences Foundation of Beijing city (Grant No. 8032012) are acknowledged.
文摘A total of 11 PM2.5 samples were collected from October 2003 to October 2004 at 8 sampling sites in Beijing city. The PM2.5 concentrations are all above the PM2.5 pollution standard (65 μg m^-3) established by Environmental Protection Agency, USA (USEPA) in 1997 except for the Ming Tombs site. PM2.5 concentrations in winter are much higher than in summer. The 16 Polycyclic aromatic hydrocarbons (PAHs) listed as priority pollutants by USEPA in PM2.5 were completely identified and quantified by high performance liquid chromatography (HPLC) with variable wavelength detector (VWD) and fluorescence detector (FLD) employed. The PM2.5 concentrations indicate that the pollution situation is still serious in Beijing. The sum of 16 PAHs concentrations ranged from 22.17 to 5366 ng m^-3. The concentrations of the heavier molecular weight PAHs have a different pollution trend from the lower PAHs. Seasonal variations were mainly attributed to the difference in coal combustion emission and meteorological conditions. The source apportionment analysis suggests that PAHs from PM2.5 in Beijing city mainly come from coal combustion and vehicle exhaust emission. New measures about restricting coal combustion and vehicle exhaust must be established as soon as possible to improve the air pollution situation in Beijing city.
文摘In this paper,using concentration data of PM2. 5in 2013 in China and referring to a lot of literature,we preliminary studied the pollution of fine particulate matter and summarized PM2. 5source apportionment in the key cities in China. Our results showed that PM2. 5showed significant spatial and temporal distribution; high surface concentrations of PM2. 5concentrated mainly in the North China Plain,the Sichuan Basin,Yangtze River Delta and other regions; the average annual concentration of PM2. 5was about 80μg / m3 in North China Plain; Seasonal changes in the concentration of PM2. 5was winter > spring > autumn > summer; fired sources,industrial sources,vehicle exhaust were the major sources of PM2. 5; motor vehicle exhaust mostly contributed 10%- 30% to PM2. 5. This review provides a fundamental understanding of PM2. 5source apportionment and serves as an important reference for future source apportionment studies to be widely conducted in China.
文摘In this work, receptor models were used to identify the PM2.5 sources and its contribution to the air quality in residential, comercial and industrial sampling sites in the Metropolitan Area of Costa Rica. Principal component analysis with absolute principal component scores (PCA-APCS), UNIMX and positive matrix factorization (PMF) was applied to analyze the data collected during 1 year of sampling campaign (2010-2011). The PM2.5 samples were characterized through its composition looking for trace elements, inorganic ions and organic and elemental carbon. These three models identified some common sources of PM2.5: marine aerosol, crustal material, traffic, secondary aerosols (secondary sulfate and secondary nitrate resolved by PMF), a mixed source of heavy fuels combustion and biomass burning, and industrial emissions. The three models predicted that the major sources of PM2.5 in the Metropolitan Area of Costa Rica were related to anthropogenic sources (73%, 65% and 69%, respectively, for PCA-APCS, Unmix and PMF) although natural sources also contributed to PM2.5 (21%, 24% and 26%). On average, PCA and PMF methods resolved 94% and 95% of the PM2.5 mass concentrations, respectively. The results were comparable to the estimate using UNMIX.
基金supported by the National Technology Supporting, Kaifeng Environmental Protec-tion Bureau, Henan Province, China
文摘During 2005, the filter samples of ambient PM10 from five sites and the source samples of particulate matter were collected in Kaifeng, Henan Province of China. Nineteen elements, water-soluble ions, total carbon (TC) and organic carbon (OC) contained in samples were analyzed. Seven contributive source types were identified and their contributions to ambient PM10 were estimated by chemical mass balance (CMB) receptor model. Weak associations between the concentrations of organic carbon and element carbon (EC) were observed during the sampling periods, indicating that there was secondary organic aerosol pollution in the urban atmosphere. An indirect method of "OC/EC minimum ratio" was applied to estimate the concentration of secondary organic carbon (SOC). The results showed that SOC contributed 26.2%, 32.4% and 18.0% of TC in spring, summer-fall and winter, respectively, and the annual average SOC concentration was 7.07 μg/m^3, accounting for 5.73% of the total mass in ambient PM10. The carbon species concentrations in ambient PM10 were recalculated by subtracting SOC concentrations from measured concentrations of TC and OC to increase the compatibility of source and receptor measurements for CMB model.
基金The U.S. Environmental Protection Agency (EPA), through its Office of Research and Development, partially funded and participated in the research described here through cooperative agreement CR-833232-01 through the U.S. National Science Foundation-National Research Council Research Associateship Awardfunded by the National Key Basic Research Program of China (2013CB430004)the National Natural Science Foundation of China (No. 40773067)
文摘The increasing emission of primary and gaseous precursors of secondarily formed atmospheric particulate matter due to continuing industrial development and urbanization are leading to an increased public awareness of environmental issues and human health risks in China. As part of a pilot study, 12-h integrated fine fraction particulate matter (PM2.5) filter samples were collected to chemically characterize and investigate the sources of ambient particulate matter in Guiyang City, Guizhou Province, southwestern China. Results showed that the 12-h integrated PM2.5 concentrations exhibited a daytime average of 51 ± 22 μg m^-3 (mean -4- standard deviation) with a range of 17-128 μg m^-3 and a nighttime average of 55 ± 32 μg m^-3 with a range of 4-186 μg m^-3. The 24-h integrated PM2.5 concentrations varied from 15 to 157 μg m^-3, with amean value of 53 ± 25 μg m^-3, which exceeded the 24-h PM2.5 standard of 35μg m^-3 set by USEPA, but was below the standard of 75 μg m^-3, set by China Ministry of Environmental Protection. Energy-dispersive X-ray fluorescence spectrometry (XRF) was applied to determine PM2.5 chemical element concentrations. The order of concentrations of heavy metals in PM2.5 were iron (Fe) 〉 zinc (Zn) 〉 manganese (Mn) 〉 lead (Pb) 〉 arsenic (As)〉 chromium (Cr). The total concentration of 18 chemical elements was 13 ± 2 μg m^-3, accounting for 25% in PM2.5, which is comparable to other major cities in China, but much higher than cities outside of China.