期刊文献+
共找到647篇文章
< 1 2 33 >
每页显示 20 50 100
Impacts of degrading permafrost on streamflow in the source area of Yellow River on the Qinghai-Tibet Plateau,China 被引量:15
1
作者 MA Qiang JIN Hui-Jun +4 位作者 Victor F.BENSE LUO Dong-Liang Sergey S.MARCHENKO Stuart A.HARRIS LAN Yong-Chao 《Advances in Climate Change Research》 SCIE CSCD 2019年第4期225-239,共15页
Many observations in and model simulations for northern basins have confirmed an increased streamflow from degrading permafrost,while the streamflow has declined in the source area of the Yellow River(SAYR,above the T... Many observations in and model simulations for northern basins have confirmed an increased streamflow from degrading permafrost,while the streamflow has declined in the source area of the Yellow River(SAYR,above the Tanag hydrological station)on the northeastern Qinghai-Tibet Plateau,West China.How and to what extent does the degrading permafrost change the flow in the SAYR?According to seasonal regimes of hydrological processes,the SAYR is divided intofour sub-basins with varied permafrost extents to detect impacts of permafrost degradation on the Yellow River streamflow.Results show that permafrost degradation may have released appreciable meltwater for recharging groundwater.The potential release rate of ground-ice melt-water in the Sub-basin 1(the headwater area of the Yellow River(HAYR),above the Huangheyan hydrological station)is the highest(5.6 mm per year),contributing to 14.4%of the annual Yellow River streamflow at Huangheyan.Seasonal/intra-and annual shifts of streamflow,a possible signal for the marked alteration of hydrological processes by permafrost degradation,is observed in the HAYR,but the shifts are minor in other sub-basins in the SAYR.Improved hydraulic connectivity is expected to occur during and after certain degrees of permafrost degradation.Direct impacts of permafrost degradation on the annual Yellow River streamflow in the SAYR at Tanag,i.e.,from the meltwater of ground-ice,is estimated at 4.9%that of the annual Yellow River discharge at Tanag,yet with a high uncertainty,due to neglecting of the improved hydraulic connections from permafrost degradation and the flow generation conditions for the ground-ice meltwater.Enhanced evapotranspiration,substantial weakening of the Southwest China Autumn Rain,and anthropogenic disturbances may largely account for the declined streamflow in the SAYR. 展开更多
关键词 Streamflow Warming climate Permafrost degradation Streamflow patterns source area of Yellow river(SAYR)
下载PDF
Diversity analysis of soil dematiaceous hyphomycetes from the Yellow River source area:Ⅰ 被引量:5
2
作者 Hao-qin PAN Jin-feng YU Yue-ming WU Tian-yu ZHANG Hong-feng WANG 《Journal of Zhejiang University-Science B(Biomedicine & Biotechnology)》 SCIE CAS CSCD 2008年第10期829-834,共6页
Twenty-four soil samples of eight ecosystem-types around the Yellow River source area were investigated for the number and specific composition of soil dematiaceous hyphomycetes by dilution plate technique. And then t... Twenty-four soil samples of eight ecosystem-types around the Yellow River source area were investigated for the number and specific composition of soil dematiaceous hyphomycetes by dilution plate technique. And then the co-relationship between genus species of soil dematiaceous hyphomycetes and ecosystem-types was analyzed. The results show that the amount and species distribution of soil dematiaceous hyphomycetes had an obvious variability in different ecosystem-types, and that the dominant genus species varied in the eight ecosystem-types studied, with Cladosporium being the dominant genus in seven of the eight ecosystem-types except wetland. The index of species diversity varied in different ecosystem-types. The niche breadth analysis showed that Cladosporium had the highest niche breadth and distributed in all ecosystem-types, while the genera with a narrow niche breadth distributed only in a few ecosystem-types. The results of niche overlap index analysis indicated that Stachybotrys and Torula, Doratomyces and Scolecobasidium, Cladosporium and Chrysosporium had a higher niche overlap, whereas Arthrinium and Gliomastix, Phialophora and Doratomyces, Oidiodendron and Ulocladium had no niche overlap. 展开更多
关键词 Yellow river source area ECOSYSTEMS Fungal species diversity Soil dematiaceous hyphomycetes Niche breadth Niche overlap
下载PDF
Ice-wedge Pseudomorphs Showing Climatic Change Since the Late Pleistocene in the Source Area of the Yellow River, Northeast Tibet 被引量:3
3
作者 CHENG Jie ZHANG Xujiao +4 位作者 TIAN Mingzhong YU Wenyang YU Jiangkuan TANG Dexiang YUE Jianwei 《Journal of Mountain Science》 SCIE CSCD 2005年第3期193-201,共9页
The source area of the Yellow River is located in the northeastern Tibetan Plateau, and is a high-elevation region with the annual mean temperature of -3.9℃. The ice-wedge pseudomorphs discovered in this region are r... The source area of the Yellow River is located in the northeastern Tibetan Plateau, and is a high-elevation region with the annual mean temperature of -3.9℃. The ice-wedge pseudomorphs discovered in this region are recognized as two types. One was found in sandy gravel beds of the second terrace of the Yellow River. This ice-wedge pseudomorph is characterized by higher ratio of breadth/depth, and are 1-1.4 m wide and about 1 m deep. The bottom border of the ice-wedge pseudomorph is round arc in section. Another discovered in the pedestal of the second terrace has lower ratio of width/depth, and is o.3-1.0 m wide and 1-2 m deep. Its bottom border is sharp. Based on the TL dating, the former was formed at the middleHolocene (5.69±0.43 ka BP and 5.43±0.41 ka BP), that is, the Megathermal, and the latter was formed at the late Last Glacial Maximum (13.49±1.43 ka BP). Additionally, the thawing-freezing folders discovered in the late Late Pleistocene proluvium are 39.83±3.84 ka BP in age. The study on the ice-wedge pseudomorphs showed that the air temperature was lowered by up to 6-7℃ in the source area of the Yellow River when the ice-wedge pseudomorphs and thawing-freezing folds developed. 展开更多
关键词 Ice-wedge pseudomorph PALEOCLIMATE Last Glacial Age MEGAtheRMAL the source area of the Yellow river Tibetan Plateau
下载PDF
Risk prevention and control strategies for the severely affected areas of snow disaster in the Three Rivers Source Region(TRSR), China 被引量:1
4
作者 ShiJin Wang ShengYun Chen YanQiang Wei 《Research in Cold and Arid Regions》 CSCD 2019年第3期248-252,共5页
Historically,frequent and heavy snow disaster(SD)has caused serious livestock death and casualties,resulting in a devastating impact on animal husbandry development in the Three Rivers Source Region(TRSR).From winter ... Historically,frequent and heavy snow disaster(SD)has caused serious livestock death and casualties,resulting in a devastating impact on animal husbandry development in the Three Rivers Source Region(TRSR).From winter in 2018 to spring in 2019,the largest SD occurred in this area over the past 10 years,especially in core zones of the Lancang River Source Region.Field research results show that the main causes of the major SD include weak infrastructure(i.e.,roads,communications,warm sheds,and insufficient forage reserve),low rate of domestic animals for sale before the SD,and low loss settlement rate.SD occurrence could furtherly reduce the ability of disaster prevention,mitigation and relief of disaster loss.In the future,heavily affected SD areas should improve the forecasting ability of snowfall incidents,strengthen infrastructure construction,implement grass and livestock balance strategies,optimize livestock structure,improve loss settlement rate,and develop a modern compound model of animal husbandry development model that combines breeding,slaughtering and deep processing of animal product. 展开更多
关键词 THREE riverS source Region SNOW DISASTER severely AFFECTED area risk prevention control strategy
下载PDF
An evaluation of soil moisture from AMSR-E over source area of the Yellow River, China 被引量:1
5
作者 TangTang Zhang Mekonnen Gebremichael +3 位作者 Akash Koppa XianHong Meng Qun Du Jun Wen 《Research in Cold and Arid Regions》 CSCD 2019年第6期461-469,共9页
In this study,in-situ soil moisture measurements are used to evaluate the accuracy of three AMSR-E soil moisture prod ucts from NASA(National Aeronautics and Space Administration),JAXA(Japanese Aerospace Exploration A... In this study,in-situ soil moisture measurements are used to evaluate the accuracy of three AMSR-E soil moisture prod ucts from NASA(National Aeronautics and Space Administration),JAXA(Japanese Aerospace Exploration Agency)and VUA(Vrije University Amsterdam and NASA)over Maqu County,Source Area of the Yellow River(SAYR),China.Re sults show that the VUA soil moisture product performs the best among the three AMSR-E soil moisture products in the study area,with a minimum RMSE(root mean square error)of 0.08(0.10)m3/m3 and smallest absolute error of 0.07(0.08)m3/m3 at the grassland area with ascending(descending)data.Therefore,the VUA soil moisture product is used to describe the spatial variation of soil moisture during the 2010 growing season over SAYR.The VUA soil moisture product shows that soil moisture presents a declining trend from east south(0.42 m3/m3)to west north(0.23 m3/m3),with good agreement with a general precipitation distribution.The center of SAYR presents extreme wetness(0.60 m3/m3)dur ing the whole study period,especially in July,while the head of SAYR presents a high level soil moisture(0.23 m3/m3)in July,August and September. 展开更多
关键词 AMSR-E soil moisture products soil moisture ground measurements source area of the Yellow river AMSR-E soil moisture products applicability
下载PDF
Large-scale characteristics of thermokarst lakes across the source area of the Yellow River on the Qinghai-Tibetan Plateau 被引量:1
6
作者 LIU Wen-hui ZHOU Guang-hao +5 位作者 LIU Hai-rui LI Qing-peng XIE Chang-wei LI Qing ZHAO Jian-yun ZHANG Qi 《Journal of Mountain Science》 SCIE CSCD 2023年第6期1589-1604,共16页
As significant evidence of permafrost degradation,thermokarst lakes play an important role in the permafrost regions by regulating hydrology,ecology,and biogeochemistry.In the Sources Area of the Yellow River(SAYR),pe... As significant evidence of permafrost degradation,thermokarst lakes play an important role in the permafrost regions by regulating hydrology,ecology,and biogeochemistry.In the Sources Area of the Yellow River(SAYR),permafrost degradation has accelerated since the 1980s,and numerous thermokarst lakes have been discovered.In this paper,we use Sentinel-2 images to extract thermokarst lake boundaries and perform a regional-scale study on their geometry across the permafrost region in the SAYR.We also explored the spatiotemporal variations and potential drivers from the perspectives of the permafrost,climate,terrain and vegetation conditions.The results showed that there were 47,518 thermokarst lakes in 2021 with a total area of 190.22×106 m^(2),with an average size of 4,003.3 m^(2).The 44,928 ponds(≤10,000 m^(2))predominated the whole lake number(94.1%)but contributed to a small portion of the total lake area(28.8%).With 2,590 features(5.9%),small-sized(10,000 to 100,000 m^(2))and large-sized lakes(>100,000 m^(2))constituted up to 71.2%of the total lake area.Thermokarst lakes developed more significantly in warm permafrost regions than in cold permafrost areas;74.1%of lakes with a total area of 119.6×106 m^(2)(62.9%),were distributed in warm permafrost regions.Most thermokarst lakes were likely to develop within the elevation range of 4,500~4,800 m,on flat terrain(slope<10°),on SE and S aspects and in alpine meadow areas.The thermokarst lakes in the study region experienced significant shrinkage between 1990 and 2021,characterized by obvious lake drainage;the lake numbers decreased by 5418(56.1%),with a decreasing area of 58.63×106 m^(2)(49.0%).This shrinkage of the thermokarst lake area was attributable mainly to the intensified degradation of rich-ice permafrost thawing arising from continued climate warming,despite the wetting climatic trend. 展开更多
关键词 thermokarst lake Spatial characteristic Influencing factor source area of the Yellow river
下载PDF
CHARACTERISTICS OF PERIGLACIAL GEOMORPHOLOGY IN THE SOURCE AREA OF THE HUANGHE RIVER
7
作者 郭鹏飞 边纯玉 《Chinese Geographical Science》 SCIE CSCD 1993年第2期69-78,共10页
There widely occur stretches of permafrost at more than 3,800-4,200 meters above sea level in the source area of the Huanghe (Yellow) River. The periglacial geomorphology develops quite well, including frozen disinteg... There widely occur stretches of permafrost at more than 3,800-4,200 meters above sea level in the source area of the Huanghe (Yellow) River. The periglacial geomorphology develops quite well, including frozen disintegration geomorphology, freezing and thawing geomorphology in cold environments, periglacial dune, buried ices and fossil periglacial phenomena. In light of the relation between stratigraphy and periglacial phenomena, three periglacial periods can be divided, which are the Middle Pleistocene periglacial period, the Late Pleistocene periglacial period and modern periglacial period. 展开更多
关键词 source area of the Huanghe river PERIGLACIAL GEOMORPHOLOGY PERIGLACIAL PERIOD
下载PDF
THE BACKGROUND VALUES OF RARE EARTH AND RADIOACTIVE ELEMENTS IN WATER SYSTEM OF SOURCE AREA OF THE CHANG JIANG RIVER
8
作者 张立诚 周克俊 +1 位作者 钱杏珍 李岫霞 《Chinese Geographical Science》 SCIE CSCD 1993年第3期74-85,共12页
Using neutron activation analysis method we determined contents of rare-earth and radioactive elements (La, Ce, Nd, Sm, Eu, Tb, Yb, Lu, Cs, Rb, Sb, Sc, Sr, Ba, U, Th) in source water system of the Changjiang (Yangtze)... Using neutron activation analysis method we determined contents of rare-earth and radioactive elements (La, Ce, Nd, Sm, Eu, Tb, Yb, Lu, Cs, Rb, Sb, Sc, Sr, Ba, U, Th) in source water system of the Changjiang (Yangtze) River, which is mainly composed of the Tuotuo River, the Chumaer River, and the Buqu River. The contents of these elements in the unflltered water have a great variation and a close correlation with the water turbidity. The contents of these elements in filtered water only have a little variation and are lower than those in the unflltered water. The variations in contents of these elements in sediments are also very little. These elements in the unifiltered water are in geometric distribution, except Sc. Most of the elements in sediments are in arithmetic distribution, but Cs, Sb, Th, are in deviation distribution. The contents of most of these elements in the river source area correspond to the contents of fresh water of the earth. Most of these elements have a little variation in their 展开更多
关键词 source area of the CHANGJIANG river background value RADIOACTIVE elements neutron activation analysis method
下载PDF
Legislation on protection of drinking water sources and local management practices in the Pearl River Delta region of China 被引量:6
9
作者 Zhigang Wang Yang Liu +2 位作者 Yingzhi Li Peng Zhao Jiangyu Yu 《Chinese Journal of Population,Resources and Environment》 2016年第2期144-152,共9页
The protection of drinking water sources is vital to urban development and public health.In this study,the current situation of the mandatory protection area for drinking water source in the Pearl River Delta region w... The protection of drinking water sources is vital to urban development and public health.In this study,the current situation of the mandatory protection area for drinking water source in the Pearl River Delta region was investigated using a method combining Google Earth with the field survey.The gaps between management practices and legislation requirements were analyzed.Finally,several countermeasures for water resource protection were proposed as follows:to promote delineation in a more scientific way,to safeguard the sanctity of the law,to make better plan on water saving,and to encourage public participation in supervision and management. 展开更多
关键词 Pearl river Delta region drinking water source protection area for drinking water source COUNTERMEASURES
下载PDF
Distributional characteristics and sources of elements in soil from typical area of Pearl River Delta economic zone, Guangdong Province, China 被引量:1
10
作者 Lei Dou Shu-Zhen Shen Hai-Yan Du 《Chinese Journal Of Geochemistry》 EI CAS CSCD 2015年第3期299-310,共12页
Dongguan City, located in the Pearl River Delta economic zone of China, is famous for its rapid developing township-enterprises in the past 30 years. A total of 759 composite soil samples, including 606 surface soil s... Dongguan City, located in the Pearl River Delta economic zone of China, is famous for its rapid developing township-enterprises in the past 30 years. A total of 759 composite soil samples, including 606 surface soil samples and 153 deep soil samples, have been collected in the city. These samples have been analyzed for 13elements(Al, As, Cu, Cd, Co, Cr, Fe, Hg, Mn, Ni, Pb, Si,and Zn) and other parameters(p H values and organic matter) to evaluate the influence of anthropic activities on the soil environmental quality and to identify the spatial distribution of heavy metals and their possible sources. The results indicate that the average concentrations of heavy metals in soil were significantly lower than the threshold of the second grade of the Soil Environment Quality Standard in China(GB15618-1995) and the soil environmental quality in this area is comparatively good. But in comparison with local soil geochemical baseline values, As,Cd, Cu, Hg, Pb, and Zn have accumulated remarkably.Specifically, the average concentrations of As, Cd, Cu, and Hg in the small part samples of the west plain and central areas are higher than the national second-grade quality standard, indicating some level of contamination. Multivariate and geostatistical methods have been applied to differentiate the influences of natural processes and human activities on the concentration of heavy metals in surface soils in the study area. Cluster and factor analyses result in the grouping of Al, As, Cr, Cu, Fe, Ni, and Si into factor F1; Co, Mn, Pb, and Zn into F2; and Cd and Hg into F3.The spatial pattern of the three factors may be well demonstrated by geostatistical analysis. It is shown that the first factor could be considered as a natural source controlled by parent material. The second factor could be referred to as ‘‘industrial and traffic pollution sources' '. The source of the third factor is mainly controlled by long-term anthropic activities, including agricultural activities, fossil fuel consumption, and atmospheric deposition. 展开更多
关键词 珠江三角洲经济区 元素分布特征 土壤样品 土壤重金属含量 典型区 广东省 土壤环境质量 交通污染源
下载PDF
Characteristics and Effects of Inorganic Nitrogen in East Water-source and Inflow Rivers of Chaohu Lake
11
作者 张习 曹静 +2 位作者 李琪 王宁 李玉成 《Agricultural Science & Technology》 CAS 2012年第4期877-882,共6页
[Objective] To study the characteristics and effects of inorganic nitrogen in east water-source and inflow rivers of Chaohu Lake. [Method] The speciation and distribution characteristics of dissolvable inorganic nitro... [Objective] To study the characteristics and effects of inorganic nitrogen in east water-source and inflow rivers of Chaohu Lake. [Method] The speciation and distribution characteristics of dissolvable inorganic nitrogen (DIN) in east water-source and inflow rivers of Chaohu Lake were investigated, and their effects on water qual- ity were examined. [Result] The concentrations of NH3-N and NO2--N were the high in flood season, and low in non-flood season, while the concentration of NO3--N pre- sented the opposite trend; the concentration of NO3--N was the highest in Shuangqiao estuary, where the pollution was the worst. DIN in Zhegao estuary and Xiaozhegao estuary was mainly caused by domestic sewage and industrial wastewaters; surface runoff and pollution from ships contribute the most to the DIN content in Shuangqiao estuary. [Conclusion] This study provided basic data and theoretical basis for the control and management of eutrophication in Chaohu Lake. 展开更多
关键词 Chaohu Lake Water source area Inflow rivers Inorganic nitrogen SPECIATION
下载PDF
Evidence for a recent warming and wetting in the source area of the Yellow River (SAYR) and its hydrological impacts 被引量:13
12
作者 TIAN Hui LAN Yongchao +4 位作者 WEN Jun JIN Huijun WANG Chenghai WANG Xin KANG Yue 《Journal of Geographical Sciences》 SCIE CSCD 2015年第6期643-668,共26页
Climate change investigation at a watershed-scale plays a significant role in re- vealing the historical evolution and future trend of the runoff variation in watershed. This study examines the multisource hydrologica... Climate change investigation at a watershed-scale plays a significant role in re- vealing the historical evolution and future trend of the runoff variation in watershed. This study examines the multisource hydrological and meteorological variables over the source area of the Yellow River (SAYR) from 1961 to 2,012 and the future climate scenarios in the region during 2006-2100 based on the CMIP5 projection data. It recognizes the significant charac-teristics of the recent climate change in the SAYR and predicts the change trend of future flow in the region. It is found that (1) The climate in the SAYR has experienced a significant warm-wet change since the early 2000s, which is very different from the antecedent warm-dry trend since the late 1980s; (2) The warm-wet trend in the northwestern SAYR (the headwater area of the Yellow River (HAYR), is more obvious than that in the whole SAYR; (3) With pre- cipitation increase, the runoff in the region also experienced an increasing process since 2006. The runoff variations in the region are sensitive to the changes of precipitation, PET and maximum air temperature, but not very sensitive to changes in mean and minimum air temperatures; (4) Based on the CMIP5 projection data, the warm-wet climate trend in SAYR are likely to continue until 2049 if considering three different (i.e. RCP2.6, RCP4.5 and RCP8.5) greenhouse gas emission scenarios, and the precipitation in SAYR will not be less than the current level before 2100; however, it is estimated that the recent flow increase in the SAYR is likely to be the decadal change and it will at most continue until the 2020s; (5) The inter-annual variations of the East Asian winter monsoon are found to be closely related to the variations of annual precipitation in the region. Meanwhile, the increased precipitation as well as the increase of potential evapotranspiration (PET) being far less than that of precipitation in the recent period are the main climate causes for the flow increase in the region. 展开更多
关键词 source area of the Yellow river (SAYR) climate warming and wetting decadal scale hydrological impacts
原文传递
Jurassic rocks,bivalves,and depositional environments of the source area of the Yangtze River,Qinghai Province,western China 被引量:4
13
作者 YAO HuaZhou ZHANG RenJie +5 位作者 DUAN QiFa SHENG XianCai NIU ZhiJun WANG JianXiong ZENG BoFu WU JianHui 《Science China Earth Sciences》 SCIE EI CAS 2011年第8期1136-1148,共13页
Jurassic rocks are abundantly developed in the source area of the Yangtze River,South Qinghai,with the greatest thickness of 6311 m,including five stratigraphic units:Qoimaco Formation,Buqu Formation,Xiali Formation,S... Jurassic rocks are abundantly developed in the source area of the Yangtze River,South Qinghai,with the greatest thickness of 6311 m,including five stratigraphic units:Qoimaco Formation,Buqu Formation,Xiali Formation,Suowa Formation,and Xueshan Formation.Based on sufficient fossils of bivalves,ammonites,and brachiopods,the major part of these formations is ascribed to the Middle Jurassic Bathonian to Callovian.No diagnostic fossils have been found from the Lower Qoimaco Formation or Upper Xueshan Formation,which could possibly contain in part Bajocian and Oxfordian taxa respectively. 展开更多
关键词 source area of Yangtze river JURASSIC ROCKS bivalves depositional environments
原文传递
Basin-filling processes and hydrocarbon source rock prediction of low-exploration degree areas in rift lacustrine basins:a case from the Wenchang Formation in low-exploration degree areas,northern Zhu I Depression,Pearl River Mouth Basin,E China 被引量:1
14
作者 He-Ming Lin Hao Liu +4 位作者 Xu-Dong Wang Xin-Wei Qiu Yong-Tao Ju Jun Meng Lei Li 《Journal of Palaeogeography》 SCIE CSCD 2022年第2期286-313,共28页
Hydrocarbon source rocks, as a main geologic factor of petroliferous systems in a sedimentary basin, play a key role in the accumulation of oil and gas and the formation of hydrocarbon accumulations. This study, which... Hydrocarbon source rocks, as a main geologic factor of petroliferous systems in a sedimentary basin, play a key role in the accumulation of oil and gas and the formation of hydrocarbon accumulations. This study, which focuses on difficulties in prediction of hydrocarbon source rocks in basins or sags with low exploration degree and insufficient hydrocarbon source rock indicators, taking the Wenchang Formation of northern Zhu I Depression, Pearl River Mouth Basin as an example, proposed a hypothesis of “finding lakes and hydrocarbon source rocks”. Detailed steps include, first, determination of the lacustrine basin boundary according to analysis of seismic foreset facies, determination of the depositional area based on the compilation of strata residual thickness maps, determination of the lacustrine basin shape according to deciphering slope break belt system, determination of the fluctuation of paleo-water depth according to biogeochemical indicators of mature exploration areas, determination of the lacustrine basin scale based on analyses of tectonics intensity and accommodation space, which prove the existence of the lacustrine basin and identify the range of semi deep-deep lake;second, further analyses of tectonopalaeogeomorphology, paleo-provenance,palaeoclimate and paleo-water depth to reconstruct the geologic background of the original basin and semideep-deep lacustrine facies, to determine the distribution of semi-deep/deep lacustrine sediments in combination with studies of logging facies, core facies, seismic facies and sedimentary facies, and to rank the sags’ potential of developing hydrocarbon source rocks from controlling factors of source-to-sink system development;third, on the basis of regional sedimentary facies analysis, through identification and assessment of seismic facies types of semi-deep/deep lacustrine basins in mature areas, establishing “hydrocarbon source rock facies” in mature areas to instruct the identification and depicting of hydrocarbon source rocks in semideep/deep lacustrine basins with low exploration degree;fourth, through systematical summary of hydrocarbon-rich geological factors and lower limit index of hydrocarbon formation of the sags already revealed by drilling wells(e.g., sag area, tectonic subsidence amount, accommodation space, provenance characteristic, mudstone thickness, water body environment, sedimentary facies types of hydrocarbon source rocks), in correlation with corresponding indexes of sags with low exploration degree, then the evaluation and sorting of high-quality source rocks in areas with sparsely distributed or no drilling wells can be conducted with multi-factors and multiple dimensions. It is concluded that LF22 sag, HZ10 sag and HZ8 sag are II-order hydrocarbon rich sags;whereas HZS, HZ11 and HZ24 are the III-order hydrocarbon-generating sags. 展开更多
关键词 Wenchang Formation Pearl river Mouth Basin Low-exploration degree areas Rift lacustrine basins Reconstruction of original basins source-to-sink system Basin filling process Hydrocarbon source rock facies
原文传递
Changes in lake area and water level in response to hydroclimate variations in the source area of the Yellow River:a case study from Lake Ngoring
15
作者 Yang PU Min ZHAN +4 位作者 Xiaohua SHAO Josef PWERNE Philip AMEYERS Jiaojiao YAO Da ZHI 《Frontiers of Earth Science》 SCIE CSCD 2023年第4期920-932,共13页
In the north-eastern Qinghai-Tibet Plateau(QTP),the source area of the Yellow River(SAYR)has been experiencing significant changes in climatic and environmental conditions in recent decades.To date,few studies have co... In the north-eastern Qinghai-Tibet Plateau(QTP),the source area of the Yellow River(SAYR)has been experiencing significant changes in climatic and environmental conditions in recent decades.To date,few studies have combined modern hydrological conditions with paleoclimate records to explore the mechanism(s)of these changes.This study seeks to improve understanding of hydrological variability on decadal and centennial timescales in the SAYR and to identify its general cause.We first determined annual fluctuations in the surface area of Lake Ngoring from 1985 to 2020 using multi-temporal Landsat images.The results show that lake surface area changes were generally consistent with variations in precipitation,streamflow and the regional dry-wet index in the SAYR,suggesting that the water balance of the Lake Ngoring area is closely associated with regional hydroclimate changes.These records are also comparable to the stalagmite δ^(18)O monsoon record,as well fluctuations in the Southern Oscillation Index(SOI).Moreover,an association of high TSI(total solar insolation)anomalies and sunspot numbers with the expansion of Lake Ngoring surface area is observed,implying that solar activity is the key driving factor for hydrologic variability in the SAYR on a decadal timescale.Following this line of reasoning,we compared the δ^(13)C org-based lake level fluctuations of Lake Ngoring for the last millennium,as previously reported,with the hydroclimatic history and the reconstructed TSI record.We conclude that the hydrological regime of Lake Ngoring has been mainly controlled by centennial fluctuations in precipitation for the last millennium,which is also dominated by solar activity.In general,it appears that solar activity has exerted a dominant influence on the hydrological regime of the SAYR on both decadal and centennial timescales,which is clearly manifested in the variations of lake area and water level of Lake Ngoring. 展开更多
关键词 Qinghai-Tibet Plateau(QTP) source area of the Yellow river(SAYR) lake area/level Asian summer monsoon(ASM) El Nino-Southern Oscillation(ENSO) total solar insolation(TSI)
原文传递
An Estimation of Ground Ice Volumes in Permafrost Layers in North- eastern Qinghai-Tibet Plateau, China 被引量:4
16
作者 WANG Shengting SHENG Yu +3 位作者 LI Jing WU Jichun CAO Wei MA Shuai 《Chinese Geographical Science》 SCIE CSCD 2018年第1期61-73,共13页
The ground ice content in permafrost serves as one of the dominant properties of permafrost for the study of global climate change, ecology, hydrology and engineering construction in cold regions. This paper initially... The ground ice content in permafrost serves as one of the dominant properties of permafrost for the study of global climate change, ecology, hydrology and engineering construction in cold regions. This paper initially attempts to assess the ground ice volume in permafrost layers on the Qinghai-Tibet Plateau by considering landform types, the corresponding lithological composition, and the measured water content in various regions. An approximation demonstrating the existence of many similarities in lithological composition and water content within a unified landform was established during the calculations. Considerable knowledge of the case study area, here called the Source Area of the Yellow(Huanghe) River(SAYR) in the northeastern Qinghai-Tibet Plateau, has been accumulated related to permafrost and fresh water resources during the past 40 years. Considering the permafrost distribution, extent, spatial distribution of landform types, the ground ice volume at the depths of 3.0–10.0 m below the ground surface was estimated based on the data of 101 boreholes from field observations and geological surveys in different types of landforms in the permafrost region of the SAYR. The total ground ice volume in permafrost layers at the depths of 3.0–10.0 m was approximately(51.68 ± 18.81) km^3, and the ground ice volume per unit volume was(0.31 ± 0.11) m^3/m^3. In the horizontal direction, the ground ice content was higher in the landforms of lacustrine-marshland plains and alluvial-lacustrine plains, and the lower ground ice content was distributed in the erosional platforms and alluvial-proluvial plains. In the vertical direction, the volume of ground ice was relatively high in the top layers(especially near the permafrost table) and at the depths of 7.0–8.0 m. This calculation method will be used in the other areas when the necessary information is available, including landform type, borehole data, and measured water content. 展开更多
关键词 ground ice volume PERMAFROST source area of the Yellow river Qinghai-Tibet Plateau
下载PDF
环境变化的径流效应研究进展及黄河水源涵养区研究展望 被引量:2
17
作者 王国庆 张建云 《水资源保护》 EI CAS CSCD 北大核心 2024年第2期1-8,共8页
针对变化环境下黄河流域实测径流大幅度锐减,严重影响流域水资源与生态安全的问题,面向黄河生态保护和高质量发展的国家重大战略需求,梳理了变化环境下径流效应研究中亟待解决的关键科学问题与关键技术。以黄河水源涵养区为对象,以环境... 针对变化环境下黄河流域实测径流大幅度锐减,严重影响流域水资源与生态安全的问题,面向黄河生态保护和高质量发展的国家重大战略需求,梳理了变化环境下径流效应研究中亟待解决的关键科学问题与关键技术。以黄河水源涵养区为对象,以环境变化的径流效应和水资源预测为核心,细化了数据集构建、机理解析、模型研发、趋势预估4项具体研究内容与研究方案。预期研究成果将揭示黄河水源涵养区水文-生态过程的互馈耦合机理、创新变化环境下生态水文的模拟和预测技术,科学预测变化环境下流域水安全和生态环境风险趋势,有效支撑流域水资源可持续利用与生态环境保护决策。 展开更多
关键词 环境变化 生态水文过程 水资源 生态安全 黄河水源涵养区
下载PDF
龙羊峡水库后汛期入库径流特征及可蓄水量分析 被引量:1
18
作者 刘龙庆 刘玉环 +1 位作者 张献志 沈延青 《人民黄河》 CAS 北大核心 2024年第2期38-40,48,共4页
以1956—2022年唐乃亥水文站实测水文数据为基础,采用数理统计方法,重点分析黄河源区后汛期径流特征,并结合龙羊峡水库满负荷发电流量,对龙羊峡水库在后汛期可蓄水量进行不同情景的分析讨论。研究表明:1)唐乃亥水文站后汛期径流量年际... 以1956—2022年唐乃亥水文站实测水文数据为基础,采用数理统计方法,重点分析黄河源区后汛期径流特征,并结合龙羊峡水库满负荷发电流量,对龙羊峡水库在后汛期可蓄水量进行不同情景的分析讨论。研究表明:1)唐乃亥水文站后汛期径流量年际变化较大,丰枯不均,以正常偏枯为主,多年平均后汛期径流量占汛期径流量的29.1%;2)唐乃亥水文站后汛期日平均流量在1000 m^(3)/s以上的径流量平均为8.96亿m^(3),年际变化极大,以1000 m^(3)/s发电流量运用,龙羊峡水库蓄至正常蓄水位的保证率仅为10%,多数年份汛期结束后水位无法达到正常蓄水位2600 m。建议根据后期来水,适时调整进入后汛期的时机,优化和调整龙羊峡水库年度调度方案,为高效合理利用黄河源区后汛期水资源奠定基础。 展开更多
关键词 后汛期 径流特征 水库可蓄水量 龙羊峡水库 黄河源区
下载PDF
基于CNN-OBIA的黄河源区水体提取及时空变化
19
作者 陈伟 张秀霞 +3 位作者 党星海 樊新成 李旺平 徐俊伟 《人民长江》 北大核心 2024年第4期133-141,共9页
准确识别水体信息是分析地表水时空动态变化的重要技术手段。针对目前各种长时序水体信息提取方法精度低的问题,基于Landsat遥感影像,选用1986~2022年5484景黄河源区遥感影像,分别运用卷积神经网络结合面向对象(CNN-OBIA)和多指数水体... 准确识别水体信息是分析地表水时空动态变化的重要技术手段。针对目前各种长时序水体信息提取方法精度低的问题,基于Landsat遥感影像,选用1986~2022年5484景黄河源区遥感影像,分别运用卷积神经网络结合面向对象(CNN-OBIA)和多指数水体检测规则(MIWDR)两种方法提取了黄河源区的地表水体,并对两种方法的提取精度进行了对比分析。在此基础上,探究了1986~2022年黄河源区水体信息的时空变化特征,并对其主要气候因素进行相关分析。结果表明:①CNN-OBIA的总体精度和Kappa系数分别为96.78%和0.93,MIWDR的总体精度和Kappa系数分别为94.28%和0.88,总体而言,CNN-OBIA的提取精度高于MIWDR方法。CNN-OBIA的提取结果可以很好地保持水体边界完整性和有效去除山体阴影,可以较好地对细小河流进行提取。②研究区水体总面积呈现出先减少(1986~2001年)后增加(2001~2022年)的变化趋势。③相关性分析表明,降水和气温与水体面积的变化均表现出显著正相关。 展开更多
关键词 水体面积提取 卷积神经网络 面向对象 驱动力分析 黄河源区
下载PDF
基于SWAT模型的武强溪流域非点源污染关键源区界定与控制策略 被引量:4
20
作者 王慧琳 邹民忠 +4 位作者 方伟文 刘灵敏 郝新梅 康绍忠 毛晓敏 《农业工程学报》 EI CAS CSCD 北大核心 2024年第2期228-238,共11页
随着点源污染的控制与处理技术日趋完善,非点源污染成为重要的水污染源。武强溪作为流入千岛湖的第二大支流,量化武强溪流域非点源污染负荷,解析非点源污染时空分布特征,提出适合削减武强溪流域污染物的最佳管理措施(best management pr... 随着点源污染的控制与处理技术日趋完善,非点源污染成为重要的水污染源。武强溪作为流入千岛湖的第二大支流,量化武强溪流域非点源污染负荷,解析非点源污染时空分布特征,提出适合削减武强溪流域污染物的最佳管理措施(best management practices,BMPs)对千岛湖水污染高效治理至关重要。该研究基于土壤水分评估工具(Soil and water assessment tool,SWAT)分析了武强溪流域径流量、总氮输出负荷量的时空分布特征,探究了不同管理措施及组合的削减效果,提出了武强溪流域非点源污染针对性的治理措施。结果表明:1)SWAT模型对于武强溪流域径流量和总氮输出负荷量的模拟具有较好的适用性,径流量校准期和验证期的决定系数(coefficient of determination,R^(2))分别为0.86、0.97,纳什系数(nash-sutcliffe coefficient,NSE)分别为0.83、0.96,百分比偏差(percent bias,PBIAS)分别为15.8%、-6.3%,总氮校准期和验证期的决定系数分别为0.87、0.74,纳什系数分别为0.63、0.66,百分比偏差分别为31.6%、21.2%;2)该流域径流量和总氮负荷主要集中在3—7月,分别占全年输出量的71.67%和75.76%。综合考虑氮的来源和流失途径,将耕地和林地面积占比大、坡度陡的子流域设置为总氮的关键污染源区。考虑调整化肥施用量/配方、改变耕作方式和设置植被缓冲带等削减非点源污染的手段,进行总氮输出负荷削减效率的情景模拟,表明10 m植被缓冲带是减少总氮输出负荷的最佳单一控制策略,总氮削减率可达到69.90%;实施综合管理措施对总氮的污染削减效果更佳,10 m植被缓冲带与施肥量减少20%可使总氮削减率达到74.79%。研究结果可为千岛湖水质管理与控制提供理论基础。 展开更多
关键词 模型 径流 关键污染源区 最佳管理措施 武强溪流域 SWAT
下载PDF
上一页 1 2 33 下一页 到第
使用帮助 返回顶部