The Paleocene mudrocks in Ghana’s Tano Basin have received limited attention despite ongoing efforts to explore hydrocarbon resources.A thorough geochemical analysis is imperative to assess these mudrocks’petroleum ...The Paleocene mudrocks in Ghana’s Tano Basin have received limited attention despite ongoing efforts to explore hydrocarbon resources.A thorough geochemical analysis is imperative to assess these mudrocks’petroleum generation potential and formulate effective exploration strategies.In this study,a comprehensive geochemical analysis was carried out on ten Paleocene rock cuttings extracted from TP-1,a discovery well within the Tano Basin.Various analytical techniques,including total organic carbon(TOC)analysis,Rock–Eval pyrolysis,gas chromatography-mass spectrometry,and isotope ratio-mass spectrometry,were employed to elucidate their hydrocar-bon potential and organic facies.Thefindings in this study were subsequently compared to existing geochemical data on Paleocene source rocks in the South Atlantic marginal basins.The results indicated that the Paleocene samples have TOC content ranging from 0.68 to 2.93 wt%.The prevalent kerogen types identified in these samples were Type Ⅱ and Type Ⅲ.Molecular and isotope data suggest that the organic matter found in the Paleocene mudrocks can be traced back to land plants and lower aquatic organisms.These mudrocks were deposited in a transi-tional environment withfluctuating water salinity,charac-terized by sub-oxic redox conditions.Maturity indices,both bulk and molecular,indicated a spectrum of maturity levels within the Paleocene mudrocks,spanning from immature to marginally mature,with increasing maturity observed with greater depth.In comparison,the organic composition and depositional environments of Paleocene source rocks in the Tano Basin closely resemble those found in the Niger Delta Basin,Douala,and Kribi-Campo Basins,the Kwanza Formation in Angola,and certain Brazilian marginal basins.However,it is worth noting that Paleocene source rocks in some of the basins,such as the Niger Delta and Brazilian marginal basins,exhibit rela-tively higher thermal maturity levels compared to those observed in the current Paleocene samples from the Tano Basin.In conclusion,the comprehensive geochemical analysis of Paleocene mudrocks within Ghana’s Tano Basin has unveiled their marginal hydrocarbon generation potential.The shared geochemical characteristics between the Paleocene mudrocks in the Tano Basin and those in the nearby South Atlantic marginal basins offer valuable insights into source rock quality,which is crucial for shaping future strategies in petroleum exploration in this region.展开更多
The outcrop samples of the Tak Fa Formation(Lower Permian)in Phetchabun Province have been studied to determine their organic geochemical characteristic,depositional paleoenvironment,and hydrocarbon generation potenti...The outcrop samples of the Tak Fa Formation(Lower Permian)in Phetchabun Province have been studied to determine their organic geochemical characteristic,depositional paleoenvironment,and hydrocarbon generation potential.The total organic carbon(TOC)values ranging from 1.42 to 4.58 wt%and extractable organic matter values ranging from 76.84 to 197.65 ppm of the Tak Fa Formation were generally low and associated with low S2 values(0.00-0.50 mg HC/g rock)and hydrogen index values in range of 0-32 mg/g TOC,although this could reflect highly thermal maturity and complex tectonic history.Thus,kerogen classification can be based on a nonbiomarker study for these outcrop samples instead.The non-biomarker plot,Pr/n-C17 and Ph/n-C18 from this study indicates that organic matter originally comes from typeⅡ/III kerogen.The samples were also investigated and indicated that the organic matter inputs were derived from mixed marine and terrigenous sources and deposited under suboxic to oxic conditions.The depositional environment of the Tak Fa Formation in this study is interpreted to be an estuarine environment or restricted lagoonal carbonate platforms.This has been achieved from normal alkane and isoprenoids distributions,terpane,and sterane biomarkers.Thus,the Tak Fa Formation is considered to be a hydrocarbon source rock during the time of the deposition.Although the geochemical data in this study indicate that the Tak Fa Formation has experienced high maturation,one or more locations could meet a condition that places this formation to be an active source rock.The approach and concepts presented in this study can be applied to similar evaporite-carbonate deposits in Thailand to find more petroleum plays.展开更多
Shallow groundwater collected in Chaozhou,Huizhou,and Guangzhou allowed testing of concentrations and the isotope ratios of noble gases.Based on the calculated noble gas temperature(NGT)and the ratio of noble gas isot...Shallow groundwater collected in Chaozhou,Huizhou,and Guangzhou allowed testing of concentrations and the isotope ratios of noble gases.Based on the calculated noble gas temperature(NGT)and the ratio of noble gas isotopes,the recharge temperature,recharge source,and residence time of groundwater can be calculated.In addition,the contribution of noble gas components from different sources to the sample components can be assessed.In the Huizhou area,according to the 1/Xe vs.Ne/Xe and NGT data,the shallow sandstone-confined water samples in the Shiba area and the unconfined water samples of the Huangshadong are in different temperature ranges,indicating that they have different recharge sources,both in time or space.The He components in the samples are calculated to obtain the content of radiogenic ^(4)He in the crust and to simulate the groundwater ages.The noble gas isotope ratios show the addition of mantle components into the basalt aquifers and sandstone aquifers in Chaozhou and Huizhou.Except for atmospheric and crustal sources,there is a certain proportion of mantle-derived components in the shallow underground cold water in Huizhou and Chaozhou.The noble gases in the Chaozhou groundwater have an obvious mantle signature,allowing speculation that there is a deep fluid carrying mantle characteristics.This upwelling of mantle-derived material might be caused by the India-Eurasia collision or that between the Philippine Sea Plate and the Eurasian Plate.展开更多
According to the hydrochemical characteristics, hydrogen and oxygen isotope characteristics and the ratio of noble gas isotopes of the sandstone aquifer and basalt aquifer, this study calculated the recharge temperatu...According to the hydrochemical characteristics, hydrogen and oxygen isotope characteristics and the ratio of noble gas isotopes of the sandstone aquifer and basalt aquifer, this study calculated the recharge temperature and residence time of groundwater in the Weishan area of Wudalianchi, also calculating the contribution of noble gas components from different sources to the samples. Based on the characteristics of hydrogen and oxygen isotopes and noble gases Xe and Ne, the recharge altitude and recharge temperature of the two aquifers were estimated, and the recharge temperature fitting with the NGT model as verified, the results showing that the main recharge altitude of groundwater in the region was 500–600 m, the recharge temperature being 2–7°C. He_(eq) and He_(ea) of the samples have been simulated using the OD model, the content of radioactive ~4He in the crust being obtained, the groundwater ages under the two conditions(closed condition and open condition) both being simulated. The results show that groundwater from the sandstone layer water is older than groundwater from the basalt layer. Hydrochemical characteristics and noble gas isotope ratios indicate that in the basalt aquifer and sandstone aquifer in the Weishan area, in addition to atmospheric and crustal helium, there is also an input of mantle-derived helium. The fault constitutes the uplift channel for groundwater containings mantle components, which results in the mantle source composition in water samples near the fault being much higher than those form non-fault areas.展开更多
基金funded by the State Key Petroleum Lab of Petroleum Resources and Prospecting at China University of Petroleum (Beijing)
文摘The Paleocene mudrocks in Ghana’s Tano Basin have received limited attention despite ongoing efforts to explore hydrocarbon resources.A thorough geochemical analysis is imperative to assess these mudrocks’petroleum generation potential and formulate effective exploration strategies.In this study,a comprehensive geochemical analysis was carried out on ten Paleocene rock cuttings extracted from TP-1,a discovery well within the Tano Basin.Various analytical techniques,including total organic carbon(TOC)analysis,Rock–Eval pyrolysis,gas chromatography-mass spectrometry,and isotope ratio-mass spectrometry,were employed to elucidate their hydrocar-bon potential and organic facies.Thefindings in this study were subsequently compared to existing geochemical data on Paleocene source rocks in the South Atlantic marginal basins.The results indicated that the Paleocene samples have TOC content ranging from 0.68 to 2.93 wt%.The prevalent kerogen types identified in these samples were Type Ⅱ and Type Ⅲ.Molecular and isotope data suggest that the organic matter found in the Paleocene mudrocks can be traced back to land plants and lower aquatic organisms.These mudrocks were deposited in a transi-tional environment withfluctuating water salinity,charac-terized by sub-oxic redox conditions.Maturity indices,both bulk and molecular,indicated a spectrum of maturity levels within the Paleocene mudrocks,spanning from immature to marginally mature,with increasing maturity observed with greater depth.In comparison,the organic composition and depositional environments of Paleocene source rocks in the Tano Basin closely resemble those found in the Niger Delta Basin,Douala,and Kribi-Campo Basins,the Kwanza Formation in Angola,and certain Brazilian marginal basins.However,it is worth noting that Paleocene source rocks in some of the basins,such as the Niger Delta and Brazilian marginal basins,exhibit rela-tively higher thermal maturity levels compared to those observed in the current Paleocene samples from the Tano Basin.In conclusion,the comprehensive geochemical analysis of Paleocene mudrocks within Ghana’s Tano Basin has unveiled their marginal hydrocarbon generation potential.The shared geochemical characteristics between the Paleocene mudrocks in the Tano Basin and those in the nearby South Atlantic marginal basins offer valuable insights into source rock quality,which is crucial for shaping future strategies in petroleum exploration in this region.
基金financial support from the Ratchadaphisek Somphot Endowment Fund under Outstanding Research Performance Program, Science Super Ⅲ (Department)-009, Chulalongkorn University
文摘The outcrop samples of the Tak Fa Formation(Lower Permian)in Phetchabun Province have been studied to determine their organic geochemical characteristic,depositional paleoenvironment,and hydrocarbon generation potential.The total organic carbon(TOC)values ranging from 1.42 to 4.58 wt%and extractable organic matter values ranging from 76.84 to 197.65 ppm of the Tak Fa Formation were generally low and associated with low S2 values(0.00-0.50 mg HC/g rock)and hydrogen index values in range of 0-32 mg/g TOC,although this could reflect highly thermal maturity and complex tectonic history.Thus,kerogen classification can be based on a nonbiomarker study for these outcrop samples instead.The non-biomarker plot,Pr/n-C17 and Ph/n-C18 from this study indicates that organic matter originally comes from typeⅡ/III kerogen.The samples were also investigated and indicated that the organic matter inputs were derived from mixed marine and terrigenous sources and deposited under suboxic to oxic conditions.The depositional environment of the Tak Fa Formation in this study is interpreted to be an estuarine environment or restricted lagoonal carbonate platforms.This has been achieved from normal alkane and isoprenoids distributions,terpane,and sterane biomarkers.Thus,the Tak Fa Formation is considered to be a hydrocarbon source rock during the time of the deposition.Although the geochemical data in this study indicate that the Tak Fa Formation has experienced high maturation,one or more locations could meet a condition that places this formation to be an active source rock.The approach and concepts presented in this study can be applied to similar evaporite-carbonate deposits in Thailand to find more petroleum plays.
基金funded by the China Geological Survey(Grant No.1212011220014)。
文摘Shallow groundwater collected in Chaozhou,Huizhou,and Guangzhou allowed testing of concentrations and the isotope ratios of noble gases.Based on the calculated noble gas temperature(NGT)and the ratio of noble gas isotopes,the recharge temperature,recharge source,and residence time of groundwater can be calculated.In addition,the contribution of noble gas components from different sources to the sample components can be assessed.In the Huizhou area,according to the 1/Xe vs.Ne/Xe and NGT data,the shallow sandstone-confined water samples in the Shiba area and the unconfined water samples of the Huangshadong are in different temperature ranges,indicating that they have different recharge sources,both in time or space.The He components in the samples are calculated to obtain the content of radiogenic ^(4)He in the crust and to simulate the groundwater ages.The noble gas isotope ratios show the addition of mantle components into the basalt aquifers and sandstone aquifers in Chaozhou and Huizhou.Except for atmospheric and crustal sources,there is a certain proportion of mantle-derived components in the shallow underground cold water in Huizhou and Chaozhou.The noble gases in the Chaozhou groundwater have an obvious mantle signature,allowing speculation that there is a deep fluid carrying mantle characteristics.This upwelling of mantle-derived material might be caused by the India-Eurasia collision or that between the Philippine Sea Plate and the Eurasian Plate.
基金financially supported by the China Geological Survey (No. 1212011220014)。
文摘According to the hydrochemical characteristics, hydrogen and oxygen isotope characteristics and the ratio of noble gas isotopes of the sandstone aquifer and basalt aquifer, this study calculated the recharge temperature and residence time of groundwater in the Weishan area of Wudalianchi, also calculating the contribution of noble gas components from different sources to the samples. Based on the characteristics of hydrogen and oxygen isotopes and noble gases Xe and Ne, the recharge altitude and recharge temperature of the two aquifers were estimated, and the recharge temperature fitting with the NGT model as verified, the results showing that the main recharge altitude of groundwater in the region was 500–600 m, the recharge temperature being 2–7°C. He_(eq) and He_(ea) of the samples have been simulated using the OD model, the content of radioactive ~4He in the crust being obtained, the groundwater ages under the two conditions(closed condition and open condition) both being simulated. The results show that groundwater from the sandstone layer water is older than groundwater from the basalt layer. Hydrochemical characteristics and noble gas isotope ratios indicate that in the basalt aquifer and sandstone aquifer in the Weishan area, in addition to atmospheric and crustal helium, there is also an input of mantle-derived helium. The fault constitutes the uplift channel for groundwater containings mantle components, which results in the mantle source composition in water samples near the fault being much higher than those form non-fault areas.