This paper discussed the experimental results of the performance of an organic Rankine cycle(ORC)system with an ultra-low temperature heat source.The low boiling point working medium R134a was adopted in the system.Th...This paper discussed the experimental results of the performance of an organic Rankine cycle(ORC)system with an ultra-low temperature heat source.The low boiling point working medium R134a was adopted in the system.The simulated heat source temperature(SHST)in this work was set from 39.51°C to 48.60°C by the simulated heat source module.The influence of load percentage of simulated heat source(LPSHS)between 50%and 70%,the rotary valve opening(RVO)between 20%and 100%,the resistive load between 36Ωand 180Ωor the no-load of the generator,as well as the autumn and winter ambient temperature on the system performance were studied.The results showed that the stability of the system was promoted when the generator had a resistive load.The power generation(PG)and generator speed(GS)of the system in autumn were better than in winter,but the expander pressure ratio(EPR)was lower than in winter.Keep RVO unchanged,the SHST,the mass flow rate(MFR)of the working medium,GS,and the PG of the system increased with the increasing of LPSHS for different generator resistance load values.When the RVO was 60%,LPSHS was 70%,the SHST was 44.15°C and the resistive load was 72Ω,the highest PG reached 15.11 W.Finally,a simulation formula was obtained for LPSHS,resistance load,and PG,and its correlation coefficient was between 0.9818 and 0.9901.The formula can accurately predict the PG.The experimental results showed that the standard deviation between the experimental and simulated values was below 0.0792,and the relative error was within±5%.展开更多
Since loading complexand dynamic heat source is a difficult job during welding simulation process, methods are studied to add the load automatically. Firstly, an expert module for selecting welding heat source model i...Since loading complexand dynamic heat source is a difficult job during welding simulation process, methods are studied to add the load automatically. Firstly, an expert module for selecting welding heat source model is founded based on simulation knowledge and experienc Secondly, a method named as "High order routine" is presented, which creates subroutines of 3D dynamic heat source m'od, el for user. Then an automated tool is presented to load the welding heat source boundary based on Marc software. The tool uses Marc command file to robustly achieve the process. At last, an electron beam welding heat model is presented to express the "toading method.展开更多
Since programing complex and dynamic heat source model for welding simulation is a complex job,the parametric methods are studied in this paper.Firstly,an overall flow to achieve automatically modeling welding was int...Since programing complex and dynamic heat source model for welding simulation is a complex job,the parametric methods are studied in this paper.Firstly,an overall flow to achieve automatically modeling welding was introduced.Secondly,an expert module rule for selecting welding heat source model was founded,which is based on simulation knowledge and experiences.Thirdly,a modularity routine method was investigated using writing with C++programing,which automatically creates subroutines of 3D dynamic heat source model for user.To realize the dynamic weld path,the local weld path coordinate system was moved in the global coordinate system and it is used to model the direction of weld gun,welding path and welding pose.The weld path data file was prepared by the automatic tool for the welding heat source subroutines.All above functions were integrated in the user interface and the connection with architecture was introduced.At last,a laser beam welding heat source modeling was automatically modeled and the weld pool geometry was compared with the reported literature.It demonstrated that the automated tool is valid for welding simulation.Since modeling became convenient for welding simulation using the tool proposed,it could be easy and useful for welding engineers to acquire the needed information.展开更多
A frequency domain analysis method based on the three-dimensional translating-pulsating (3DTP) source Green function is developed to investigate wave loads and free motions of two ships advancing on parallel course ...A frequency domain analysis method based on the three-dimensional translating-pulsating (3DTP) source Green function is developed to investigate wave loads and free motions of two ships advancing on parallel course in waves. Two experiments are carried out respectively to mea- sure the wave loads and the free motions for a pair of side-by- side arranged ship models advancing with an identical speed in head regular waves. For comparison, each model is also tested alone. Predictions obtained by the present solution are found in favorable agreement with the model tests and are more accurate than the traditional method based on the three dimensional pulsating (3DP) source Green function. Numer- ical resonances and peak shift can be found in the 3DP pre- dictions, which result from the wave energy trapped in the gap between two ships and the extremely inhomogeneous wave load distribution on each hull. However, they can be eliminated by 3DTP, in which the speed affects the free sur- face and most of the wave energy can be escaped from the gap. Both the experiment and the present prediction show that hydrodynamic interaction effects on wave loads and free motions are significant. The present solver may serve as a validated tool to predict wave loads and motions of two ves- sels under replenishment at sea, and may help to evaluate the hydrodynamic interaction effects on the ships safety in replenishment operation.展开更多
Traditional optimal scheduling methods are limited to accurate physical models and parameter settings, which aredifficult to adapt to the uncertainty of source and load, and there are problems such as the inability to...Traditional optimal scheduling methods are limited to accurate physical models and parameter settings, which aredifficult to adapt to the uncertainty of source and load, and there are problems such as the inability to make dynamicdecisions continuously. This paper proposed a dynamic economic scheduling method for distribution networksbased on deep reinforcement learning. Firstly, the economic scheduling model of the new energy distributionnetwork is established considering the action characteristics of micro-gas turbines, and the dynamic schedulingmodel based on deep reinforcement learning is constructed for the new energy distribution network system with ahigh proportion of new energy, and the Markov decision process of the model is defined. Secondly, Second, for thechanging characteristics of source-load uncertainty, agents are trained interactively with the distributed networkin a data-driven manner. Then, through the proximal policy optimization algorithm, agents adaptively learn thescheduling strategy and realize the dynamic scheduling decision of the new energy distribution network system.Finally, the feasibility and superiority of the proposed method are verified by an improved IEEE 33-node simulationsystem.展开更多
The stability control of surrounding rock for large or super-large section chamber is a difficult technical problem in deep mining condition.Based on the in-site geological conditions of Longgu coal mine,this paper us...The stability control of surrounding rock for large or super-large section chamber is a difficult technical problem in deep mining condition.Based on the in-site geological conditions of Longgu coal mine,this paper used the dynamic module of FLAC3D to study the response characteristics of deep super-large section chamber under dynamic and static combined loading condition.Results showed that under the static loading condition,the maximum vertical stress,deformation and failure range are large,where the stress concentration coefficient is 1.64.The maximum roof-to-floor and two-sides deformations are 54.6 mm and 53.1 mm,respectively.Then,under the dynamic and static combined loading condition:(1)The influence of dynamic load frequency on the two-sides is more obvious;(2)The dynamic load amplitude has the greatest influence on the stress concentration degree,and the plastic failure tends to develop to the deeper;(3)With the dynamic load source distance increase,the response of surrounding rock is gradually attenuated.On this basis,empirical equations for each dynamic load conditions were obtained by using regression analysis method,and all correlation coefficients are greater than 0.99.This research provided reference for the supporting design of deep super-large section chamber under same or similar conditions.展开更多
A large-area high-power radio-frequency(RF) driven ion source was developed for positive and negative neutral beam injectors at the Korea Atomic Energy Research Institute(KAERI). The RF ion source consists of a dr...A large-area high-power radio-frequency(RF) driven ion source was developed for positive and negative neutral beam injectors at the Korea Atomic Energy Research Institute(KAERI). The RF ion source consists of a driver region, including a helical antenna and a discharge chamber, and an expansion region. RF power can be transferred at up to 10 kW with a fixed frequency of 2 MHz through an optimized RF matching system. An actively water-cooled Faraday shield is located inside the driver region of the ion source for the stable and steady-state operations of high-power RF discharge. Plasma ignition of the ion source is initiated by the injection of argongas without a starter-filament heating, and the argon-gas is then slowly exchanged by the injection of hydrogen-gas to produce pure hydrogen plasmas. The uniformities of the plasma parameter,such as a plasma density and an electron temperature, are measured at the lowest area of the driver region using two RF-compensated electrostatic probes along the direction of the shortand long-dimensions of the driver region. The plasma parameters will be compared with those obtained at the lowest area of the expansion bucket to analyze the plasma expansion properties from the driver region to the expansion region.展开更多
This paper reports a wideband passive mixer for direct conversion multi-standard receivers.A brief comparison between current-commutating passive mixers and active mixers is presented.The effect of source and load imp...This paper reports a wideband passive mixer for direct conversion multi-standard receivers.A brief comparison between current-commutating passive mixers and active mixers is presented.The effect of source and load impedance on the linearity of a mixer is analyzed.Specially,the impact of the input impedance of the transimpedance amplifier(TIA),which acts as the load impedance of a mixer,is investigated in detail.The analysis is verified by a passive mixer implemented with 0.18 μm CMOS technology.The circuit is inductorless and can operate over a broad frequency range.On wafer measurements show that,with radio frequency(RF) ranges from 700 MHz to 2.3 GHz,the mixer achieves 21 dB of conversion voltage gain with a-1 dB intermediate frequency(IF) bandwidth of 10 MHz.The measured IIP3 is 9 dBm and the measured double-sideband noise figure(NF) is 10.6 dB at 10 MHz output.The chip occupies an area of 0.19 mm2 and drains a current of 5.5 mA from a 1.8 V supply.展开更多
基金This work was supported by Tianjin Natural Science Foundation(No.21JCZDJC00750).
文摘This paper discussed the experimental results of the performance of an organic Rankine cycle(ORC)system with an ultra-low temperature heat source.The low boiling point working medium R134a was adopted in the system.The simulated heat source temperature(SHST)in this work was set from 39.51°C to 48.60°C by the simulated heat source module.The influence of load percentage of simulated heat source(LPSHS)between 50%and 70%,the rotary valve opening(RVO)between 20%and 100%,the resistive load between 36Ωand 180Ωor the no-load of the generator,as well as the autumn and winter ambient temperature on the system performance were studied.The results showed that the stability of the system was promoted when the generator had a resistive load.The power generation(PG)and generator speed(GS)of the system in autumn were better than in winter,but the expander pressure ratio(EPR)was lower than in winter.Keep RVO unchanged,the SHST,the mass flow rate(MFR)of the working medium,GS,and the PG of the system increased with the increasing of LPSHS for different generator resistance load values.When the RVO was 60%,LPSHS was 70%,the SHST was 44.15°C and the resistive load was 72Ω,the highest PG reached 15.11 W.Finally,a simulation formula was obtained for LPSHS,resistance load,and PG,and its correlation coefficient was between 0.9818 and 0.9901.The formula can accurately predict the PG.The experimental results showed that the standard deviation between the experimental and simulated values was below 0.0792,and the relative error was within±5%.
基金This work is supported by the National Natural Science Foundation of China under contract 50904038.
文摘Since loading complexand dynamic heat source is a difficult job during welding simulation process, methods are studied to add the load automatically. Firstly, an expert module for selecting welding heat source model is founded based on simulation knowledge and experienc Secondly, a method named as "High order routine" is presented, which creates subroutines of 3D dynamic heat source m'od, el for user. Then an automated tool is presented to load the welding heat source boundary based on Marc software. The tool uses Marc command file to robustly achieve the process. At last, an electron beam welding heat model is presented to express the "toading method.
基金supported by Young Innovative Talents Training Plan of Heilongjiang(UNPYSCT-2018133).
文摘Since programing complex and dynamic heat source model for welding simulation is a complex job,the parametric methods are studied in this paper.Firstly,an overall flow to achieve automatically modeling welding was introduced.Secondly,an expert module rule for selecting welding heat source model was founded,which is based on simulation knowledge and experiences.Thirdly,a modularity routine method was investigated using writing with C++programing,which automatically creates subroutines of 3D dynamic heat source model for user.To realize the dynamic weld path,the local weld path coordinate system was moved in the global coordinate system and it is used to model the direction of weld gun,welding path and welding pose.The weld path data file was prepared by the automatic tool for the welding heat source subroutines.All above functions were integrated in the user interface and the connection with architecture was introduced.At last,a laser beam welding heat source modeling was automatically modeled and the weld pool geometry was compared with the reported literature.It demonstrated that the automated tool is valid for welding simulation.Since modeling became convenient for welding simulation using the tool proposed,it could be easy and useful for welding engineers to acquire the needed information.
基金supported by the National Natural Science Foundation of China(50879090)the Key Research Program of Hydrodynamics of China(9140A14030712JB11044)
文摘A frequency domain analysis method based on the three-dimensional translating-pulsating (3DTP) source Green function is developed to investigate wave loads and free motions of two ships advancing on parallel course in waves. Two experiments are carried out respectively to mea- sure the wave loads and the free motions for a pair of side-by- side arranged ship models advancing with an identical speed in head regular waves. For comparison, each model is also tested alone. Predictions obtained by the present solution are found in favorable agreement with the model tests and are more accurate than the traditional method based on the three dimensional pulsating (3DP) source Green function. Numer- ical resonances and peak shift can be found in the 3DP pre- dictions, which result from the wave energy trapped in the gap between two ships and the extremely inhomogeneous wave load distribution on each hull. However, they can be eliminated by 3DTP, in which the speed affects the free sur- face and most of the wave energy can be escaped from the gap. Both the experiment and the present prediction show that hydrodynamic interaction effects on wave loads and free motions are significant. The present solver may serve as a validated tool to predict wave loads and motions of two ves- sels under replenishment at sea, and may help to evaluate the hydrodynamic interaction effects on the ships safety in replenishment operation.
基金the State Grid Liaoning Electric Power Supply Co.,Ltd.(Research on Scheduling Decision Technology Based on Interactive Reinforcement Learning for Adapting High Proportion of New Energy,No.2023YF-49).
文摘Traditional optimal scheduling methods are limited to accurate physical models and parameter settings, which aredifficult to adapt to the uncertainty of source and load, and there are problems such as the inability to make dynamicdecisions continuously. This paper proposed a dynamic economic scheduling method for distribution networksbased on deep reinforcement learning. Firstly, the economic scheduling model of the new energy distributionnetwork is established considering the action characteristics of micro-gas turbines, and the dynamic schedulingmodel based on deep reinforcement learning is constructed for the new energy distribution network system with ahigh proportion of new energy, and the Markov decision process of the model is defined. Secondly, Second, for thechanging characteristics of source-load uncertainty, agents are trained interactively with the distributed networkin a data-driven manner. Then, through the proximal policy optimization algorithm, agents adaptively learn thescheduling strategy and realize the dynamic scheduling decision of the new energy distribution network system.Finally, the feasibility and superiority of the proposed method are verified by an improved IEEE 33-node simulationsystem.
基金Project(2018YFC0604703)supported by the National Key R&D Program of ChinaProjects(51804181,51874190)supported by the National Natural Science Foundation of China+3 种基金Project(ZR2018QEE002)supported by the Shandong Province Natural Science Fund,ChinaProject(ZR2018ZA0603)supported by the Major Program of Shandong Province Natural Science Foundation,ChinaProject(2019GSF116003)supported by the Key R&D Project of Shandong Province,ChinaProject(SDKDYC190234)supported by the Shandong University of Science and Technology,Graduate Student Technology Innovation Project,China。
文摘The stability control of surrounding rock for large or super-large section chamber is a difficult technical problem in deep mining condition.Based on the in-site geological conditions of Longgu coal mine,this paper used the dynamic module of FLAC3D to study the response characteristics of deep super-large section chamber under dynamic and static combined loading condition.Results showed that under the static loading condition,the maximum vertical stress,deformation and failure range are large,where the stress concentration coefficient is 1.64.The maximum roof-to-floor and two-sides deformations are 54.6 mm and 53.1 mm,respectively.Then,under the dynamic and static combined loading condition:(1)The influence of dynamic load frequency on the two-sides is more obvious;(2)The dynamic load amplitude has the greatest influence on the stress concentration degree,and the plastic failure tends to develop to the deeper;(3)With the dynamic load source distance increase,the response of surrounding rock is gradually attenuated.On this basis,empirical equations for each dynamic load conditions were obtained by using regression analysis method,and all correlation coefficients are greater than 0.99.This research provided reference for the supporting design of deep super-large section chamber under same or similar conditions.
基金supported by the Ministry of Science,ICT and Future Planning of the Republic of Korea under the ITER Technology R&D ProgramNational R&D Program Through the National Research Foundation of Korea(NRF)Funded by the Ministry of Science,ICT&Future Planning(NRF-2014M1A7A1A03045372)
文摘A large-area high-power radio-frequency(RF) driven ion source was developed for positive and negative neutral beam injectors at the Korea Atomic Energy Research Institute(KAERI). The RF ion source consists of a driver region, including a helical antenna and a discharge chamber, and an expansion region. RF power can be transferred at up to 10 kW with a fixed frequency of 2 MHz through an optimized RF matching system. An actively water-cooled Faraday shield is located inside the driver region of the ion source for the stable and steady-state operations of high-power RF discharge. Plasma ignition of the ion source is initiated by the injection of argongas without a starter-filament heating, and the argon-gas is then slowly exchanged by the injection of hydrogen-gas to produce pure hydrogen plasmas. The uniformities of the plasma parameter,such as a plasma density and an electron temperature, are measured at the lowest area of the driver region using two RF-compensated electrostatic probes along the direction of the shortand long-dimensions of the driver region. The plasma parameters will be compared with those obtained at the lowest area of the expansion bucket to analyze the plasma expansion properties from the driver region to the expansion region.
基金Project supported by the National Science and Technology Major Project (No.2010ZX03007-002-01)the State Key Development Program for Basic Research of China (No.2010CB327404)
文摘This paper reports a wideband passive mixer for direct conversion multi-standard receivers.A brief comparison between current-commutating passive mixers and active mixers is presented.The effect of source and load impedance on the linearity of a mixer is analyzed.Specially,the impact of the input impedance of the transimpedance amplifier(TIA),which acts as the load impedance of a mixer,is investigated in detail.The analysis is verified by a passive mixer implemented with 0.18 μm CMOS technology.The circuit is inductorless and can operate over a broad frequency range.On wafer measurements show that,with radio frequency(RF) ranges from 700 MHz to 2.3 GHz,the mixer achieves 21 dB of conversion voltage gain with a-1 dB intermediate frequency(IF) bandwidth of 10 MHz.The measured IIP3 is 9 dBm and the measured double-sideband noise figure(NF) is 10.6 dB at 10 MHz output.The chip occupies an area of 0.19 mm2 and drains a current of 5.5 mA from a 1.8 V supply.