Source localization plays an indispensable role in many applications.This paper addresses the directional source localization problem in a three-dimensional(3D)wireless sensor network using hybrid received-signal-stre...Source localization plays an indispensable role in many applications.This paper addresses the directional source localization problem in a three-dimensional(3D)wireless sensor network using hybrid received-signal-strength(RSS)and angle-of-arrival(AOA)measurements.Both the position and transmission orientation of the source are to be estimated.In the considered positioning scenario,the angle and range measurements are respectively corresponding to the AOA model and RSS model that integrates the Gaussian-shaped radiation pattern.Given that the localization problem is non-convex and the unknown parameters therein are coupled together,this paper adopts the second-order cone relaxation and alternating optimization techniques in the proposed estimation algorithm.Moreover,to provide a performance benchmark for any localization method,the corresponding Cramer-Rao lower bounds(CRLB)of estimating the unknown position and transmission orientation of the source are derived.Numerical and simulation results demonstrate that the presented algorithm effectively resolves the problem,and its estimation performance is close to the CRLB for the localization with the hybrid measurements.展开更多
Effective information fusion is very important in hybrid source localization. In this paper, the performance analysis of conventional joint direction of arrival(DOA) and time difference of arrival(TDOA) system is deri...Effective information fusion is very important in hybrid source localization. In this paper, the performance analysis of conventional joint direction of arrival(DOA) and time difference of arrival(TDOA) system is derived and it is shown that this hybrid system may inferior to the single system when the ratio of angular measurements error to distance measurements error exceeds a threshold. To avoid this problem, an effective DOA/TDOA adaptive cascaded(DTAC) technique is presented. The rotation feature of UAVs and spatial filtering technique are applied to gain the signal-to-noise ratio(SNR), which leads to more accurate estimation of time delay by using DOAs. Nevertheless, the time delay estimation precision is still limited by the sampling frequency, which is constrained by the finite load of UAV. To break through the limitation, an enhanced self-delay-compensation(SDC) method is proposed, which aims at detecting the overlooked time delay within the sampling interval by adding a tiny time delay. Finally, the position of the source is estimated by the Chan algorithm. Compared to DOA-only algorithm, TDOA-only algorithm and joint DOA/TDOA(JDT) algorithm, the proposed method shows better localization accuracy regardless of different SNRs and sampling frequencies. Numerical simulations are presented to validate the effectiveness and robustness of the proposed algorithm.展开更多
A uniform array of scalar-sensors with intersensor spacings over a large aperture size generally offers enhanced resolution and source localization accuracy,but it may also lead to cyclic ambiguity.By exploiting the p...A uniform array of scalar-sensors with intersensor spacings over a large aperture size generally offers enhanced resolution and source localization accuracy,but it may also lead to cyclic ambiguity.By exploiting the polarization information of impinging waves,an electromagnetic vector-sensor array outperforms the unpolarized scalar-sensor array in resolving this cyclic ambiguity.However,the electromagnetic vector-sensor array usually consists of cocentered orthogonal loops and dipoles(COLD),which is easily subjected to mutual coupling across these cocentered dipoles/loops.As a result,the source localization performance of the COLD array may substantially degrade rather than being improved.This paper proposes a new source localization method with a non-cocentered orthogonal loop and dipole(NCOLD)array.The NCOLD array contains only one dipole or loop on each array grid,and the intersensor spacings are larger than a half-wavelength.Therefore,unlike the COLD array,these well separated dipoles/loops minimize the mutual coupling effects and extend the spatial aperture as well.With the NCOLD array,the proposed method can effciently exploit the polarization information to offer high localization precision.展开更多
基金supported in part by Beijing Natural Science Foundation(No.19L2002)in part by the National Natural Science Foundation of China(No.61631004)in part by BUPT Excellent Ph.D.students Foundation(No.CX2019312).
文摘Source localization plays an indispensable role in many applications.This paper addresses the directional source localization problem in a three-dimensional(3D)wireless sensor network using hybrid received-signal-strength(RSS)and angle-of-arrival(AOA)measurements.Both the position and transmission orientation of the source are to be estimated.In the considered positioning scenario,the angle and range measurements are respectively corresponding to the AOA model and RSS model that integrates the Gaussian-shaped radiation pattern.Given that the localization problem is non-convex and the unknown parameters therein are coupled together,this paper adopts the second-order cone relaxation and alternating optimization techniques in the proposed estimation algorithm.Moreover,to provide a performance benchmark for any localization method,the corresponding Cramer-Rao lower bounds(CRLB)of estimating the unknown position and transmission orientation of the source are derived.Numerical and simulation results demonstrate that the presented algorithm effectively resolves the problem,and its estimation performance is close to the CRLB for the localization with the hybrid measurements.
基金co-supported by China Scholarship Council(201806830081)National science foundation of China(61827801,61371169,61601167,61601504)+3 种基金Jiangsu NSF(BK20161489)the open research fund of State Key Laboratory of Millimeter Waves,Southeast University(No.K201826)the Fundamental Research Funds for the Central Universities(NO.NE2017103and NT2019013)the postgraduate Research and Practice Innovation Program of Jiangsu Province(KYCX18_0293).
文摘Effective information fusion is very important in hybrid source localization. In this paper, the performance analysis of conventional joint direction of arrival(DOA) and time difference of arrival(TDOA) system is derived and it is shown that this hybrid system may inferior to the single system when the ratio of angular measurements error to distance measurements error exceeds a threshold. To avoid this problem, an effective DOA/TDOA adaptive cascaded(DTAC) technique is presented. The rotation feature of UAVs and spatial filtering technique are applied to gain the signal-to-noise ratio(SNR), which leads to more accurate estimation of time delay by using DOAs. Nevertheless, the time delay estimation precision is still limited by the sampling frequency, which is constrained by the finite load of UAV. To break through the limitation, an enhanced self-delay-compensation(SDC) method is proposed, which aims at detecting the overlooked time delay within the sampling interval by adding a tiny time delay. Finally, the position of the source is estimated by the Chan algorithm. Compared to DOA-only algorithm, TDOA-only algorithm and joint DOA/TDOA(JDT) algorithm, the proposed method shows better localization accuracy regardless of different SNRs and sampling frequencies. Numerical simulations are presented to validate the effectiveness and robustness of the proposed algorithm.
基金supported by the Scientifc Research Fund of Zhejiang Provincial Education Department(No.Y201225848)the Scientifc and Technological Innovation Programs of Higher Education Institutions in Shanxi(No.2013124)
文摘A uniform array of scalar-sensors with intersensor spacings over a large aperture size generally offers enhanced resolution and source localization accuracy,but it may also lead to cyclic ambiguity.By exploiting the polarization information of impinging waves,an electromagnetic vector-sensor array outperforms the unpolarized scalar-sensor array in resolving this cyclic ambiguity.However,the electromagnetic vector-sensor array usually consists of cocentered orthogonal loops and dipoles(COLD),which is easily subjected to mutual coupling across these cocentered dipoles/loops.As a result,the source localization performance of the COLD array may substantially degrade rather than being improved.This paper proposes a new source localization method with a non-cocentered orthogonal loop and dipole(NCOLD)array.The NCOLD array contains only one dipole or loop on each array grid,and the intersensor spacings are larger than a half-wavelength.Therefore,unlike the COLD array,these well separated dipoles/loops minimize the mutual coupling effects and extend the spatial aperture as well.With the NCOLD array,the proposed method can effciently exploit the polarization information to offer high localization precision.