Per-and polyfluoroalkyl substances(PFASs)are emerging persistent organic pollutants(POPs).In this study,47 surface sediment samples were collected from the Yellow River Delta wetland(YRDW)to investigate the occurrence...Per-and polyfluoroalkyl substances(PFASs)are emerging persistent organic pollutants(POPs).In this study,47 surface sediment samples were collected from the Yellow River Delta wetland(YRDW)to investigate the occurrence,spatial distribution,potential sources,and ecological risks of PFASs.Twenty-three out of 26 targeted PFASs were detected in surface sediment samples from the YRDW,with totalΣ23PFASs concentrations ranging from 0.23 to 16.30 ng g^(-1) dw and a median value of 2.27 ng g^(-1) dw.Perfluorooctanoic acid(PFOA),perfluorobutanoic acid(PFBA)and perfluorooctanesulfonic acid(PFOS)were the main contaminants.The detection frequency and concentration of perfluoroalkyl carboxylic acids(PFCAs)were higher than those of perfluoroal-kanesulfonic acids(PFSAs),while those of long-chain PFASs were higher than those of short-chain PFASs.The emerging PFASs substitutes were dominated by 6:2 chlorinated polyfluoroalkyl ether sulfonic acid(6:2 Cl-PFESA).The distribution of PFASs is significantly influenced by the total organic carbon content in the sediments.The concentration of PFASs seems to be related to human activities,with high concentration levels of PFASs near locations such as beaches and villages.By using a positive matrix factorization model,the potential sources of PFASs in the region were identified as metal plating mist inhibitor and fluoropolymer manufacturing sources,metal plating industry and firefighting foam and textile treatment sources,and food packaging material sources.The risk assessment indicated that PFASs in YRDW sediments do not pose a significant ecological risk to benthic organisms in the region overall,but PFOA and PFOS exert a low to moderate risk at individual stations.展开更多
The compositions of REE in quartz and pyrite from the main stage of the Laowan gold deposit in Henan Province and that in quartz from Laowan granite were determined by inductively coupled plasma-mass-spectrometry (IC...The compositions of REE in quartz and pyrite from the main stage of the Laowan gold deposit in Henan Province and that in quartz from Laowan granite were determined by inductively coupled plasma-mass-spectrometry (ICP-MS) to trace the source of ore-forming materials. Meanwhile, the REE compositions of the deposit ore, granite and metamorphic wall rock were also considered for comparative studies in detail. The range of ∑REE of quartz and pyrite from the deposit ores is 4.18 × 10^-6- 30.91 × 10^-6, the average of ∑REE is 13.39 × 10^-6, and the average of ∑REE of quartz in the Laowan granite is 6.68 × 10^-6. There is no distinct difference of REE parameters between the deposit ore quartz and granite quartz. The quartz in gold deposit has the same REE particular parameters as quartzes from Laowan granite, such as δEu, δCe, (La/Yb)N and (La/Sm)N, partition degree of LREE to HREE, especially, the chondrite-normalized REE patterns, but no similarity to those from metamorphic wall rock, which shows that ore-forming hydrothermal fluid is mainly the fluid coming from the Laowan granite magma, rather than metamorphic fluid. Meanwhile, comparison studies on REE features between minerals from the deposit ores and related geological bodies in the deposit show that REE characteristics of minerals can serve as an indicator of ore-forming fluid properties and sources, while the REE characteristics of the bulk samples (such as deposit ores, granites and wall rocks) can not trace the source of the ore-forming materials exactly.展开更多
Based on the main characteristics of the tectonic -magmatic evolution of region and Tanlu fault zone,we have discussed ore-bearing magmatic rocks petrochemistry,strontium and lead isotope,and the source of ore-forming...Based on the main characteristics of the tectonic -magmatic evolution of region and Tanlu fault zone,we have discussed ore-bearing magmatic rocks petrochemistry,strontium and lead isotope,and the source of ore-forming materials in Yinan skarn deposit in this paper.The petrochemical features show that the ore-bearing magmatic rocks are calc-alkaline rocks of sub-alkaline series formed during展开更多
Abstract This paper deals with characteristics of silicon isotope compositions and siliceous cathodoluminescence of host rocks, ores and hydrothermal silicified quartz of the Carlin-type ore deposits in the Yunnan-Gui...Abstract This paper deals with characteristics of silicon isotope compositions and siliceous cathodoluminescence of host rocks, ores and hydrothermal silicified quartz of the Carlin-type ore deposits in the Yunnan-Guizhou-Guangxi triangle area. The study shows that primary silicified quartz is nonluminescent but quartz in host rocks and secondary silicified quartz are luminescent by the action of cathode rays. Correspondingly, silicon isotope compositions of host rocks, ores and hydro6thermal quartz veins are clearly distinguished. In strata from the Middle Triassic to the “Dachang” host bed, δ30Si of the host rocks ranges from 0.0% ?0.3%, while that of primary ore-forming silicified fluids from ?0.1% to ?0.4%; in the Upper Permian and Lower Carboniferous strata and Indosinian diabase host beds, δ30Si of the host rocks is from ?0.1% to ?0.2% and that of the primary silicified quartz veins from 0.3 % ?0.5 %. This pattern demonstrates the following geochemical mineralization process, primary ore-forming siliceous fluids migrated upwards quickly along the main passages of deep-seated faults from mantle to crust and entered secondary faults where gold deposits were eventually formed as a result of permeation and replacement of the siliceous ore-forming fluids into different ore-bearing strata. This gives important evidence for the fact that ore-forming fluids of this type of gold deposits were mainly derived from upper mantle differentiation and shows good prospects for deep gold deposits and geochemical background for large and superlarge gold deposits.展开更多
The compositions of REE in quartz and pyrite from main mineralized stage of the Laowan gold deposit in Henan province and that of quartz from Laowan granite were determined by Inductively Coupled Plasma-Mass-Spectrome...The compositions of REE in quartz and pyrite from main mineralized stage of the Laowan gold deposit in Henan province and that of quartz from Laowan granite were determined by Inductively Coupled Plasma-Mass-Spectrometry (ICP-MS). The REE of deposit ore of the Laowan gold deposit, wall-rock and Laowan granite also were studied to trace the source of metallogenic materials in Laowan gold deposit in detail. The range of ∑ REE in quartz and pyrite from gold deposit is 4.18 × 10^-6 - 30.91 × 10^-6, average of 13.39 × 10^-6, 6.68 × 10^-6 of the Laowan granite quartz, obviously lower to REE concentration of deposit, granite and wall-rock. The value of (La/ Yb)N and (La/Sm)N of ore minerals from the gold deposit is 13.23 and 4.17 respectively. The differences in REE parameters, such as δEu, δCe and diffusion degree in REE from light to heavy, among deposit ore minerals and granite mineral are weak. Especially, there are no differences between the chondrite-normalised REE curves of minerals from gold deposit and those of quartzs in Laowan granite, no similarity to wall-rock', which shows that ore-forming hydrothermal fluid mainly came from magma fluid resulting from the Laowan granite magma, metamorphic fluid in few. The results also show that REE characteristics of ore minerals in deposit are effective for disclosing oreforming fluid quality comparing with deposit ore'REE compositions.展开更多
1 Introduction The Tudimiaogou-Yindongshan lead-zinc polymetallic orefield is located in the Tudimiaogou-Weimoshi lead and zinc silver polymetallic metallogenic belt.The belt is an important part of southwestern Henan...1 Introduction The Tudimiaogou-Yindongshan lead-zinc polymetallic orefield is located in the Tudimiaogou-Weimoshi lead and zinc silver polymetallic metallogenic belt.The belt is an important part of southwestern Henan lead and zinc展开更多
Objective The Beiya super-large Au-rich porphyry deposit(304 t Au,2.4 g/t Au)is located within the western Yangtze craton,to the southeast of the Sanjiang Tethyan Orogen(Fig.1).The ore-forming porphyry is adakitic,cha...Objective The Beiya super-large Au-rich porphyry deposit(304 t Au,2.4 g/t Au)is located within the western Yangtze craton,to the southeast of the Sanjiang Tethyan Orogen(Fig.1).The ore-forming porphyry is adakitic,characterized by high Sr/Y and La/Yb ratios coupled with low Y and Yb contents,and is generally thought to be derived from partial melting of thickened mafic lower crust.The lower crust underneath the western Yangtze craton is mainly composed of ancient crust with Archean ages,juvenile crust resulting from the Neoproterozoic subduction(740–1000 Ma),and late Permian juvenile crust related to the Emeishan mantle plume.Which lower crustal end-member has played a critical role in genesis of the Beiya ore-forming porphyry can be constrained by zircon U-Pb ages of amphibolite xenoliths hosted in the ore-forming porphyry,because these xenoliths represent direct samples of the source.In this study,we present new zircon U-Pb ages of these amphibolite xenoliths to have insight into the nature of the Beiya adakitic porphyry source.展开更多
Objective The Shizishan Pb-Zn deposit is located in the southeastern margin of the Yangtze Block,and its Pb-Zn orebodies are mainly hosted in the Lower Cambrian Qingxudong Formation limestone.Previous researches have ...Objective The Shizishan Pb-Zn deposit is located in the southeastern margin of the Yangtze Block,and its Pb-Zn orebodies are mainly hosted in the Lower Cambrian Qingxudong Formation limestone.Previous researches have investigated the geological characteristics,geochemistry and fluid inclusions of this deposit.展开更多
The Xiajinbao gold deposit is located in Yong’an-Xiayingfang-Maojiagou polymetallic metallogenic belt,which is animportant metallogenic belt in North China block.In this paper,we present a detailed study on fluid inc...The Xiajinbao gold deposit is located in Yong’an-Xiayingfang-Maojiagou polymetallic metallogenic belt,which is animportant metallogenic belt in North China block.In this paper,we present a detailed study on fluid inclusions and stable isotopes ofthe Xiajinbao gold deposit,Hebei Province,China,aiming at discussing the ore source,evolution of ore-forming fluid andore-forming mechanism of the deposit.The macroscopic geological characteristics,S and Pb isotopic analysis results show that thesource of ore-forming materials is mainly from granitic magma,and subordinately from country rocks.H and O isotopic compositionfeatures indicate that the ore-forming fluid is mainly derived from magmatic water.Fluid inclusion characteristics show that theore-forming fluid experienced boiling during the early mineralization stage,which led to the precipitation of gold.Fluid mixingdominated the precipitation of the ore-forming materials during the middle and late stages.The gold precipitation was caused bywater/rock reaction throughout the whole ore-forming process.展开更多
Porphyry Cu(Mo-Au)deposit is one of the most important types of copper deposit and usually formed under magmatic arc-related settings,whilst the Mujicun porphyry Cu-Mo deposit in North China Craton uncommonly generate...Porphyry Cu(Mo-Au)deposit is one of the most important types of copper deposit and usually formed under magmatic arc-related settings,whilst the Mujicun porphyry Cu-Mo deposit in North China Craton uncommonly generated within intra-continental settings.Although previous studies have focused on the age,origin and ore genesis of the Mujicun deposit,the ore-forming age,magma source and tectonic evolution remain controversial.Here,this study targeted rutile(TiO_(2))in the ore-hosting diorite porphyry from the Mujicun Cu-Mo deposit to conduct in situ U-Pb dating and trace element composition studies,with major views to determine the timing and magma evolution and to provide new insights into porphyry Cu-Mo metallogeny.Rutile trace element data show flat-like REE patterns characterized by relatively enrichment LREEs and depleted HREEs,which could be identified as magmatic rutile.Rutile U-Pb dating yields lower intercept ages of 139.3–138.4 Ma,interpreted as post magmatic cooling timing below about 500℃,which are consistent or slightly postdate with the published zircon U-Pb ages of diorite porphyry(144.1–141.7 Ma)and skarn(146.2 Ma;139.9 Ma)as well as the molybdenite Re-Os ages of molybdenum ores(144.8–140.0 Ma).Given that the overlap between the closure temperature of rutile U-Pb system and ore-forming temperature of the Mujicun deposit,this study suggests that the ore-forming ages of the Mujicun deposit can be constrained at 139.3–138.4 Ma,with temporal links to the late large-scale granitic magmatism at 138–126 Ma in the Taihang Orogen.Based on the Mg and Al contents in rutile,the magma of ore-hosting diorite porphyry was suggested to be derived from crust-mantle mixing components.In conjunction with previous studies in Taihang Orogen,this study proposes that the far-field effect and the rollback of the subducting Paleo-Pacific slab triggered lithospheric extension,asthenosphere upwelling,crust-mantle interaction and thermo-mechanical erosion,which jointly facilitated the formation of dioritic magmas during the Early Cretaceous.Subsequently,the dioritic magmas carrying crust-mantle mixing metallic materials were emplaced and precipitated at shallow positions along NNE-trending ore-controlling faults,eventually resulting in the formation of the Mujicun Cu-Mo deposit within an intracontinental extensional setting.展开更多
The macroscopic and microscopic studies (in mineral inclusions, stable isotopes, traceelements, etc.) on the Donchuan-Yimen type copper deposits show that the ore material deriv-ed from host rocks and their underlying...The macroscopic and microscopic studies (in mineral inclusions, stable isotopes, traceelements, etc.) on the Donchuan-Yimen type copper deposits show that the ore material deriv-ed from host rocks and their underlying beds, and Bi, Pb, Zn probably did from deep frac-tures. The ore-forming fluid is hot brine in nature, and the water in it is probably stratumwater in origin. The sulphur derived from bacteria reducing of sulphate in sea water. Thecarbon derived from marine carbonate. The organic carbon plays an important role in themetallogenesis. In the Kangdian Axis, two deep fractures controlled the sedimentation of thecupriferous algal reef carbonate formation. They were ore-, heat-, brine-conducting tectonicsand led to the formation and transformation of many copper ore beds.展开更多
Receptor models have been proved as useful tools to identify source categories and quantitatively calculate the contributions of extracted sources.In this study,sixty surface sediment samples were collected from fourt...Receptor models have been proved as useful tools to identify source categories and quantitatively calculate the contributions of extracted sources.In this study,sixty surface sediment samples were collected from fourteen lakes in Jiangsu Province,China.The total concentrations of C_4–C_(14)-perfluoroalkyl carboxylic acids and perfluorooctane sulfonic acid(∑_(12)PFASs) in sediments ranged from 0.264 to 4.44 ng/g dw(dry weight),with an average of 1.76 ng/g dw.Three commonly-applied receptor models,namely principal component analysis-multiple linear regression(PCA-MLR),positive matrix factorization(PMF) and Unmix models,were employed to apportion PFAS sources in sediments.Overall,these three models all could well track the ∑_(12) PFASs concentrations as well as the concentrations explained in sediments.These three models identified consistently four PFAS sources:the textile treatment sources,the fluoropolymer processing aid/fluororesin coating sources,the textile treatment/metal plating sources and the precious metal sources,contributing 28.1%,37.0%,29.7% and 5.3% by PCA-MLR model,30.60%,39.3%,22.4% and 7.7% by PMF model,and 20.6%,52.4%,20.2% and 6.8% by Unmix model to the ∑_(12) PFASs,respectively.Comparative statistics of multiple analytical methods could minimize individual-method weaknesses and provide convergent results to enhance the persuasiveness of the conclusions.The findings could give us a better knowledge of PFAS sources in aquatic environments.展开更多
The source and evolution of ore-forming fluids is important to understand the genesis of Carlin-type gold deposit.Constraints on the source and evolution of ore fluid components by the con-ventional geochemical method...The source and evolution of ore-forming fluids is important to understand the genesis of Carlin-type gold deposit.Constraints on the source and evolution of ore fluid components by the con-ventional geochemical methods have long been a challenge due to the very fine-grained nature and complex textures of hydrothermal minerals in these deposits.In this study,we present the crush-leach analyzed solute data of fluid inclusion extracts within quartz,calcite,realgar,and fluorite from the Shuiyindong,Nibao,and Yata gold deposits in the Youjiang Basin,providing new insights into the source and evolution of ore-forming fluids.The results show that the high molar Cl/Br ratios up to 2508 in fluid inclusion extracts are indicative of a contribution of magmatic hydrothermal fluids.Flu-ids mixing between basinal and magmatic-hydrothermal fluids are evident on the plots of Cl/Br versus Na/K ratios,showing that ore-stage milky quartz near the magmatic-hydrothermal fluids reflects magma origin of the ore-forming fluids,whereas late ore-stage drusy quartz and realgar near the de-fined basinal fluids suggest the later input of basinal fluids in late-ore stage.Although the predominate-ly host rocks in Shuiyindong,Nibao and Yata gold deposit are bioclastic limestone,sedimentary tuff,and calcareous siltstone,respectively,the solute data of fluid inclusion extracts records they underwent the similar fluid-rocks reactions between the Na-rich magmatic hydrothermal fluids and the Ca-and Mg-rich host rocks.This study highlights the solute data of fluid inclusion extracts obtained by crush-leach analyses have the potential to fingerprint the source and evolution of ore-forming fluids of the Carlin-type gold deposit.展开更多
THE Laowangzhai superlarge gold deposit was found in 1984. Although studies on regional structure, geology of deposits and lamprophyres, which are temporally and spatially related to gold mineralization,have been carr...THE Laowangzhai superlarge gold deposit was found in 1984. Although studies on regional structure, geology of deposits and lamprophyres, which are temporally and spatially related to gold mineralization,have been carried out, the views on the source of ore-forming materials have been different. Thisnote summarized the characteristics of lead isotopic composition of the deposits, and probed further intothe source of ore-forming materials. 1 Geological setting The Laowangzhai gold deposit, located in the north of the Ailaoshan fault zone, consists of Donggualin and Laowangzhai ore block. The strata in the orefield include Paleozoic (Pz<sub>3</sub>) epimetamorphic ma-展开更多
There are increasing evidences for the presence of an endogenous digitalis-like substance (EDLS) which interacts with the digitalis receptor and acts against the digoxin serum response in human body. The plasma EDLS l...There are increasing evidences for the presence of an endogenous digitalis-like substance (EDLS) which interacts with the digitalis receptor and acts against the digoxin serum response in human body. The plasma EDLS level increases in response to fluid or salt loading. EDLS may play a role in salt and blood pressure regulation. Being considered as a volume-expanding state, pregnancy may cause an increase in maternal EDLS. However, further studies to identify the origin of EDLS in normal pregnancy are needed.展开更多
基金financially supported by the National Natural Science Foundation of China(NSFC)(No.42377217)the Cooperation Fund between Dongying City and Universities(No.SXHZ-2023-02-6).
文摘Per-and polyfluoroalkyl substances(PFASs)are emerging persistent organic pollutants(POPs).In this study,47 surface sediment samples were collected from the Yellow River Delta wetland(YRDW)to investigate the occurrence,spatial distribution,potential sources,and ecological risks of PFASs.Twenty-three out of 26 targeted PFASs were detected in surface sediment samples from the YRDW,with totalΣ23PFASs concentrations ranging from 0.23 to 16.30 ng g^(-1) dw and a median value of 2.27 ng g^(-1) dw.Perfluorooctanoic acid(PFOA),perfluorobutanoic acid(PFBA)and perfluorooctanesulfonic acid(PFOS)were the main contaminants.The detection frequency and concentration of perfluoroalkyl carboxylic acids(PFCAs)were higher than those of perfluoroal-kanesulfonic acids(PFSAs),while those of long-chain PFASs were higher than those of short-chain PFASs.The emerging PFASs substitutes were dominated by 6:2 chlorinated polyfluoroalkyl ether sulfonic acid(6:2 Cl-PFESA).The distribution of PFASs is significantly influenced by the total organic carbon content in the sediments.The concentration of PFASs seems to be related to human activities,with high concentration levels of PFASs near locations such as beaches and villages.By using a positive matrix factorization model,the potential sources of PFASs in the region were identified as metal plating mist inhibitor and fluoropolymer manufacturing sources,metal plating industry and firefighting foam and textile treatment sources,and food packaging material sources.The risk assessment indicated that PFASs in YRDW sediments do not pose a significant ecological risk to benthic organisms in the region overall,but PFOA and PFOS exert a low to moderate risk at individual stations.
文摘The compositions of REE in quartz and pyrite from the main stage of the Laowan gold deposit in Henan Province and that in quartz from Laowan granite were determined by inductively coupled plasma-mass-spectrometry (ICP-MS) to trace the source of ore-forming materials. Meanwhile, the REE compositions of the deposit ore, granite and metamorphic wall rock were also considered for comparative studies in detail. The range of ∑REE of quartz and pyrite from the deposit ores is 4.18 × 10^-6- 30.91 × 10^-6, the average of ∑REE is 13.39 × 10^-6, and the average of ∑REE of quartz in the Laowan granite is 6.68 × 10^-6. There is no distinct difference of REE parameters between the deposit ore quartz and granite quartz. The quartz in gold deposit has the same REE particular parameters as quartzes from Laowan granite, such as δEu, δCe, (La/Yb)N and (La/Sm)N, partition degree of LREE to HREE, especially, the chondrite-normalized REE patterns, but no similarity to those from metamorphic wall rock, which shows that ore-forming hydrothermal fluid is mainly the fluid coming from the Laowan granite magma, rather than metamorphic fluid. Meanwhile, comparison studies on REE features between minerals from the deposit ores and related geological bodies in the deposit show that REE characteristics of minerals can serve as an indicator of ore-forming fluid properties and sources, while the REE characteristics of the bulk samples (such as deposit ores, granites and wall rocks) can not trace the source of the ore-forming materials exactly.
文摘Based on the main characteristics of the tectonic -magmatic evolution of region and Tanlu fault zone,we have discussed ore-bearing magmatic rocks petrochemistry,strontium and lead isotope,and the source of ore-forming materials in Yinan skarn deposit in this paper.The petrochemical features show that the ore-bearing magmatic rocks are calc-alkaline rocks of sub-alkaline series formed during
文摘Abstract This paper deals with characteristics of silicon isotope compositions and siliceous cathodoluminescence of host rocks, ores and hydrothermal silicified quartz of the Carlin-type ore deposits in the Yunnan-Guizhou-Guangxi triangle area. The study shows that primary silicified quartz is nonluminescent but quartz in host rocks and secondary silicified quartz are luminescent by the action of cathode rays. Correspondingly, silicon isotope compositions of host rocks, ores and hydro6thermal quartz veins are clearly distinguished. In strata from the Middle Triassic to the “Dachang” host bed, δ30Si of the host rocks ranges from 0.0% ?0.3%, while that of primary ore-forming silicified fluids from ?0.1% to ?0.4%; in the Upper Permian and Lower Carboniferous strata and Indosinian diabase host beds, δ30Si of the host rocks is from ?0.1% to ?0.2% and that of the primary silicified quartz veins from 0.3 % ?0.5 %. This pattern demonstrates the following geochemical mineralization process, primary ore-forming siliceous fluids migrated upwards quickly along the main passages of deep-seated faults from mantle to crust and entered secondary faults where gold deposits were eventually formed as a result of permeation and replacement of the siliceous ore-forming fluids into different ore-bearing strata. This gives important evidence for the fact that ore-forming fluids of this type of gold deposits were mainly derived from upper mantle differentiation and shows good prospects for deep gold deposits and geochemical background for large and superlarge gold deposits.
文摘The compositions of REE in quartz and pyrite from main mineralized stage of the Laowan gold deposit in Henan province and that of quartz from Laowan granite were determined by Inductively Coupled Plasma-Mass-Spectrometry (ICP-MS). The REE of deposit ore of the Laowan gold deposit, wall-rock and Laowan granite also were studied to trace the source of metallogenic materials in Laowan gold deposit in detail. The range of ∑ REE in quartz and pyrite from gold deposit is 4.18 × 10^-6 - 30.91 × 10^-6, average of 13.39 × 10^-6, 6.68 × 10^-6 of the Laowan granite quartz, obviously lower to REE concentration of deposit, granite and wall-rock. The value of (La/ Yb)N and (La/Sm)N of ore minerals from the gold deposit is 13.23 and 4.17 respectively. The differences in REE parameters, such as δEu, δCe and diffusion degree in REE from light to heavy, among deposit ore minerals and granite mineral are weak. Especially, there are no differences between the chondrite-normalised REE curves of minerals from gold deposit and those of quartzs in Laowan granite, no similarity to wall-rock', which shows that ore-forming hydrothermal fluid mainly came from magma fluid resulting from the Laowan granite magma, metamorphic fluid in few. The results also show that REE characteristics of ore minerals in deposit are effective for disclosing oreforming fluid quality comparing with deposit ore'REE compositions.
文摘1 Introduction The Tudimiaogou-Yindongshan lead-zinc polymetallic orefield is located in the Tudimiaogou-Weimoshi lead and zinc silver polymetallic metallogenic belt.The belt is an important part of southwestern Henan lead and zinc
基金financially supported by the National Key Research and Development Program of China(grant No.2016YFC0600310)the 973 Project(2015CB452600,2011CB4031006)+2 种基金the National Natural Science Foundation of China(grants No.41872083,41472076)the Program of the China Geological Survey(grants No.DD20160024–07,DD20179172)the China Fundamental Research Funds for the Central Universities(grant No.2652018133).
文摘Objective The Beiya super-large Au-rich porphyry deposit(304 t Au,2.4 g/t Au)is located within the western Yangtze craton,to the southeast of the Sanjiang Tethyan Orogen(Fig.1).The ore-forming porphyry is adakitic,characterized by high Sr/Y and La/Yb ratios coupled with low Y and Yb contents,and is generally thought to be derived from partial melting of thickened mafic lower crust.The lower crust underneath the western Yangtze craton is mainly composed of ancient crust with Archean ages,juvenile crust resulting from the Neoproterozoic subduction(740–1000 Ma),and late Permian juvenile crust related to the Emeishan mantle plume.Which lower crustal end-member has played a critical role in genesis of the Beiya ore-forming porphyry can be constrained by zircon U-Pb ages of amphibolite xenoliths hosted in the ore-forming porphyry,because these xenoliths represent direct samples of the source.In this study,we present new zircon U-Pb ages of these amphibolite xenoliths to have insight into the nature of the Beiya adakitic porphyry source.
基金financially supported by the National Natural Science Foundation of China(grant No.41303026)
文摘Objective The Shizishan Pb-Zn deposit is located in the southeastern margin of the Yangtze Block,and its Pb-Zn orebodies are mainly hosted in the Lower Cambrian Qingxudong Formation limestone.Previous researches have investigated the geological characteristics,geochemistry and fluid inclusions of this deposit.
基金Project(2015CX008) supported by the Innovation Driven Plan of Central South University,China
文摘The Xiajinbao gold deposit is located in Yong’an-Xiayingfang-Maojiagou polymetallic metallogenic belt,which is animportant metallogenic belt in North China block.In this paper,we present a detailed study on fluid inclusions and stable isotopes ofthe Xiajinbao gold deposit,Hebei Province,China,aiming at discussing the ore source,evolution of ore-forming fluid andore-forming mechanism of the deposit.The macroscopic geological characteristics,S and Pb isotopic analysis results show that thesource of ore-forming materials is mainly from granitic magma,and subordinately from country rocks.H and O isotopic compositionfeatures indicate that the ore-forming fluid is mainly derived from magmatic water.Fluid inclusion characteristics show that theore-forming fluid experienced boiling during the early mineralization stage,which led to the precipitation of gold.Fluid mixingdominated the precipitation of the ore-forming materials during the middle and late stages.The gold precipitation was caused bywater/rock reaction throughout the whole ore-forming process.
基金jointly supported by the National Natural Science Foundation of China(4220207742103025)+5 种基金the Opening Foundation of MNR Key Laboratory of Metallogeny and Mineral Assessment(ZS2209ZS2106)the Opening Foundation of Key Laboratory of Mineral Resources in Western China(Gansu Province)(MRWCGS-2021-01)the Natural Science Foundation of Gansu Province(22JR5RA440)the Fundamental Research Funds for the Central Universities(LZUJBKY-2022-42)the Guiding Special Funds of“Double First-Class(First-Class University&First-Class Disciplines)”(561119201)of Lanzhou University,China。
文摘Porphyry Cu(Mo-Au)deposit is one of the most important types of copper deposit and usually formed under magmatic arc-related settings,whilst the Mujicun porphyry Cu-Mo deposit in North China Craton uncommonly generated within intra-continental settings.Although previous studies have focused on the age,origin and ore genesis of the Mujicun deposit,the ore-forming age,magma source and tectonic evolution remain controversial.Here,this study targeted rutile(TiO_(2))in the ore-hosting diorite porphyry from the Mujicun Cu-Mo deposit to conduct in situ U-Pb dating and trace element composition studies,with major views to determine the timing and magma evolution and to provide new insights into porphyry Cu-Mo metallogeny.Rutile trace element data show flat-like REE patterns characterized by relatively enrichment LREEs and depleted HREEs,which could be identified as magmatic rutile.Rutile U-Pb dating yields lower intercept ages of 139.3–138.4 Ma,interpreted as post magmatic cooling timing below about 500℃,which are consistent or slightly postdate with the published zircon U-Pb ages of diorite porphyry(144.1–141.7 Ma)and skarn(146.2 Ma;139.9 Ma)as well as the molybdenite Re-Os ages of molybdenum ores(144.8–140.0 Ma).Given that the overlap between the closure temperature of rutile U-Pb system and ore-forming temperature of the Mujicun deposit,this study suggests that the ore-forming ages of the Mujicun deposit can be constrained at 139.3–138.4 Ma,with temporal links to the late large-scale granitic magmatism at 138–126 Ma in the Taihang Orogen.Based on the Mg and Al contents in rutile,the magma of ore-hosting diorite porphyry was suggested to be derived from crust-mantle mixing components.In conjunction with previous studies in Taihang Orogen,this study proposes that the far-field effect and the rollback of the subducting Paleo-Pacific slab triggered lithospheric extension,asthenosphere upwelling,crust-mantle interaction and thermo-mechanical erosion,which jointly facilitated the formation of dioritic magmas during the Early Cretaceous.Subsequently,the dioritic magmas carrying crust-mantle mixing metallic materials were emplaced and precipitated at shallow positions along NNE-trending ore-controlling faults,eventually resulting in the formation of the Mujicun Cu-Mo deposit within an intracontinental extensional setting.
基金the National Natural Science Foundation of China.
文摘The macroscopic and microscopic studies (in mineral inclusions, stable isotopes, traceelements, etc.) on the Donchuan-Yimen type copper deposits show that the ore material deriv-ed from host rocks and their underlying beds, and Bi, Pb, Zn probably did from deep frac-tures. The ore-forming fluid is hot brine in nature, and the water in it is probably stratumwater in origin. The sulphur derived from bacteria reducing of sulphate in sea water. Thecarbon derived from marine carbonate. The organic carbon plays an important role in themetallogenesis. In the Kangdian Axis, two deep fractures controlled the sedimentation of thecupriferous algal reef carbonate formation. They were ore-, heat-, brine-conducting tectonicsand led to the formation and transformation of many copper ore beds.
基金supported by the Mega-projects of Science Research for Water Environmental Improvement(No.2012ZX07101-002)the National Natural Science Foundation of China(No.41521003)
文摘Receptor models have been proved as useful tools to identify source categories and quantitatively calculate the contributions of extracted sources.In this study,sixty surface sediment samples were collected from fourteen lakes in Jiangsu Province,China.The total concentrations of C_4–C_(14)-perfluoroalkyl carboxylic acids and perfluorooctane sulfonic acid(∑_(12)PFASs) in sediments ranged from 0.264 to 4.44 ng/g dw(dry weight),with an average of 1.76 ng/g dw.Three commonly-applied receptor models,namely principal component analysis-multiple linear regression(PCA-MLR),positive matrix factorization(PMF) and Unmix models,were employed to apportion PFAS sources in sediments.Overall,these three models all could well track the ∑_(12) PFASs concentrations as well as the concentrations explained in sediments.These three models identified consistently four PFAS sources:the textile treatment sources,the fluoropolymer processing aid/fluororesin coating sources,the textile treatment/metal plating sources and the precious metal sources,contributing 28.1%,37.0%,29.7% and 5.3% by PCA-MLR model,30.60%,39.3%,22.4% and 7.7% by PMF model,and 20.6%,52.4%,20.2% and 6.8% by Unmix model to the ∑_(12) PFASs,respectively.Comparative statistics of multiple analytical methods could minimize individual-method weaknesses and provide convergent results to enhance the persuasiveness of the conclusions.The findings could give us a better knowledge of PFAS sources in aquatic environments.
基金This study is supported by the Natural Science Foundation of China(Nos.41802094,U1812402)the National Basic Research Program(No.2014CB440906).
文摘The source and evolution of ore-forming fluids is important to understand the genesis of Carlin-type gold deposit.Constraints on the source and evolution of ore fluid components by the con-ventional geochemical methods have long been a challenge due to the very fine-grained nature and complex textures of hydrothermal minerals in these deposits.In this study,we present the crush-leach analyzed solute data of fluid inclusion extracts within quartz,calcite,realgar,and fluorite from the Shuiyindong,Nibao,and Yata gold deposits in the Youjiang Basin,providing new insights into the source and evolution of ore-forming fluids.The results show that the high molar Cl/Br ratios up to 2508 in fluid inclusion extracts are indicative of a contribution of magmatic hydrothermal fluids.Flu-ids mixing between basinal and magmatic-hydrothermal fluids are evident on the plots of Cl/Br versus Na/K ratios,showing that ore-stage milky quartz near the magmatic-hydrothermal fluids reflects magma origin of the ore-forming fluids,whereas late ore-stage drusy quartz and realgar near the de-fined basinal fluids suggest the later input of basinal fluids in late-ore stage.Although the predominate-ly host rocks in Shuiyindong,Nibao and Yata gold deposit are bioclastic limestone,sedimentary tuff,and calcareous siltstone,respectively,the solute data of fluid inclusion extracts records they underwent the similar fluid-rocks reactions between the Na-rich magmatic hydrothermal fluids and the Ca-and Mg-rich host rocks.This study highlights the solute data of fluid inclusion extracts obtained by crush-leach analyses have the potential to fingerprint the source and evolution of ore-forming fluids of the Carlin-type gold deposit.
文摘THE Laowangzhai superlarge gold deposit was found in 1984. Although studies on regional structure, geology of deposits and lamprophyres, which are temporally and spatially related to gold mineralization,have been carried out, the views on the source of ore-forming materials have been different. Thisnote summarized the characteristics of lead isotopic composition of the deposits, and probed further intothe source of ore-forming materials. 1 Geological setting The Laowangzhai gold deposit, located in the north of the Ailaoshan fault zone, consists of Donggualin and Laowangzhai ore block. The strata in the orefield include Paleozoic (Pz<sub>3</sub>) epimetamorphic ma-
文摘There are increasing evidences for the presence of an endogenous digitalis-like substance (EDLS) which interacts with the digitalis receptor and acts against the digoxin serum response in human body. The plasma EDLS level increases in response to fluid or salt loading. EDLS may play a role in salt and blood pressure regulation. Being considered as a volume-expanding state, pregnancy may cause an increase in maternal EDLS. However, further studies to identify the origin of EDLS in normal pregnancy are needed.