The formation of heavy metal pollution in soil is closely related to human production and life. In order to effectively control heavy metal pollution and repair damaged soil,the pollution source should be known and ju...The formation of heavy metal pollution in soil is closely related to human production and life. In order to effectively control heavy metal pollution and repair damaged soil,the pollution source should be known and judged first. Based on the preliminary analysis of major sources of soil heavy metal pollution in soil,combined with relevant literatures on heavy metal pollution source of soil or sediment at home and abroad in recent years,application progress of isotope tracer technique,especially lead isotope tracer technique,in the study of heavy metal pollution sources in soils and sediments were reviewed. The key points of future isotope tracer technology in the field of heavy metal pollution source apportionment were prospected.展开更多
Formaldehyde(HCHO) is one of the most important intermediate products of atmospheric photochemical reactions in the troposphere, therefore understanding of HCHO sources is essential for effective ozone control measu...Formaldehyde(HCHO) is one of the most important intermediate products of atmospheric photochemical reactions in the troposphere, therefore understanding of HCHO sources is essential for effective ozone control measures. The objective of this work is to distinguish between primary and secondary sources of HCHO. Based on about one month of online measurements in winter in Ziyang,Sichuan, the multi-linear regression analysis of ambient concentrations of HCHO and possible tracers(acetonitrile, propane and peroxyacetyl nitrate) was performed. The results show that during winter in Ziyang, biomass burning contributed an average of 53.2% to ambient HCHO levels, while secondary processes contributed about 30.1%, and vehicular sources accounted for 7.1%.展开更多
Methylmercury (MeHg) contaminated rice is a global issue, particularly in mercury-polluted areas, posing a potential threat to human health. The sources and transformations of mercury (Hg) species in rice are critical...Methylmercury (MeHg) contaminated rice is a global issue, particularly in mercury-polluted areas, posing a potential threat to human health. The sources and transformations of mercury (Hg) species in rice are critical points that are not yet fully understood. In this study, field experimental pots together with a stable Hg isotope tracing technique were used to provide direct evidence of the sources and transformations of Hg species in rice plants. Enriched inorganic Hg (IHg) isotope (200Hg(NO3)2) was spiked into paddy soils, and the concentrations of inorganic Hg tracer (I200Hg), MeHg tracer (Me200Hg), and ambient Hg species (IHg and MeHg) were measured in the tissues of rice plants and their corresponding soil samples during the rice growing season. Here, we show that, in addition to the atmosphere, the soil is an important source of IHg to rice grains and was previously largely underestimated. We also show that MeHg is formed in paddy soil via microbial IHg methylation, absorbed through the rice root, translocated from the root to above-ground parts, and finally accumulated in rice grains. Although in vivo methylation of IHg in rice plants is unlikely to occur during the rice growing season, we observed in vivo demethylation of MeHg in the above-ground parts of rice plants, possibly via photolytic demethylation. Promoting in vivo demethylation of MeHg may be an effective approach to mitigate MeHg accumulation in rice grains.展开更多
基金Supported by Research Project of Young and Middle-aged Teachers in Fujian Province(JAT170817)Innovation and Entrepreneurship Project of College Students(201712709011)
文摘The formation of heavy metal pollution in soil is closely related to human production and life. In order to effectively control heavy metal pollution and repair damaged soil,the pollution source should be known and judged first. Based on the preliminary analysis of major sources of soil heavy metal pollution in soil,combined with relevant literatures on heavy metal pollution source of soil or sediment at home and abroad in recent years,application progress of isotope tracer technique,especially lead isotope tracer technique,in the study of heavy metal pollution sources in soils and sediments were reviewed. The key points of future isotope tracer technology in the field of heavy metal pollution source apportionment were prospected.
文摘Formaldehyde(HCHO) is one of the most important intermediate products of atmospheric photochemical reactions in the troposphere, therefore understanding of HCHO sources is essential for effective ozone control measures. The objective of this work is to distinguish between primary and secondary sources of HCHO. Based on about one month of online measurements in winter in Ziyang,Sichuan, the multi-linear regression analysis of ambient concentrations of HCHO and possible tracers(acetonitrile, propane and peroxyacetyl nitrate) was performed. The results show that during winter in Ziyang, biomass burning contributed an average of 53.2% to ambient HCHO levels, while secondary processes contributed about 30.1%, and vehicular sources accounted for 7.1%.
基金This work was supported by the National Natural Science Foundation of China(41473123,42022024,41931297,41921004)CAS“Light of West China”Program,and the State Key Laboratory of Environmental Geochemistry(SKLEG2019707).
文摘Methylmercury (MeHg) contaminated rice is a global issue, particularly in mercury-polluted areas, posing a potential threat to human health. The sources and transformations of mercury (Hg) species in rice are critical points that are not yet fully understood. In this study, field experimental pots together with a stable Hg isotope tracing technique were used to provide direct evidence of the sources and transformations of Hg species in rice plants. Enriched inorganic Hg (IHg) isotope (200Hg(NO3)2) was spiked into paddy soils, and the concentrations of inorganic Hg tracer (I200Hg), MeHg tracer (Me200Hg), and ambient Hg species (IHg and MeHg) were measured in the tissues of rice plants and their corresponding soil samples during the rice growing season. Here, we show that, in addition to the atmosphere, the soil is an important source of IHg to rice grains and was previously largely underestimated. We also show that MeHg is formed in paddy soil via microbial IHg methylation, absorbed through the rice root, translocated from the root to above-ground parts, and finally accumulated in rice grains. Although in vivo methylation of IHg in rice plants is unlikely to occur during the rice growing season, we observed in vivo demethylation of MeHg in the above-ground parts of rice plants, possibly via photolytic demethylation. Promoting in vivo demethylation of MeHg may be an effective approach to mitigate MeHg accumulation in rice grains.