(Multichannel)Singular spectrum analysis is considered as one of the most effective methods for seismic incoherent noise suppression.It utilizes the low-rank feature of seismic signal and regards the noise suppression...(Multichannel)Singular spectrum analysis is considered as one of the most effective methods for seismic incoherent noise suppression.It utilizes the low-rank feature of seismic signal and regards the noise suppression as a low-rank reconstruction problem.However,in some cases the seismic geophones receive some erratic disturbances and the amplitudes are dramatically larger than other receivers.The presence of this kind of noise,called erratic noise,makes singular spectrum analysis(SSA)reconstruction unstable and has undesirable effects on the final results.We robustify the low-rank reconstruction of seismic data by a reweighted damped SSA(RD-SSA)method.It incorporates the damped SSA,an improved version of SSA,into a reweighted framework.The damping operator is used to weaken the artificial disturbance introduced by the low-rank projection of both erratic and random noise.The central idea of the RD-SSA method is to iteratively approximate the observed data with the quadratic norm for the first iteration and the Tukeys bisquare norm for the rest iterations.The RD-SSA method can suppress seismic incoherent noise and keep the reconstruction process robust to the erratic disturbance.The feasibility of RD-SSA is validated via both synthetic and field data examples.展开更多
Electric vibrators find wide applications in reliability testing, waveform generation, and vibration simulation, making their noise characteristics a topic of significant interest. While Variational Mode Decomposition...Electric vibrators find wide applications in reliability testing, waveform generation, and vibration simulation, making their noise characteristics a topic of significant interest. While Variational Mode Decomposition (VMD) and Empirical Wavelet Transform (EWT) offer valuable support for studying signal components, they also present certain limitations. This article integrates the strengths of both methods and proposes an enhanced approach that integrates VMD into the frequency band division principle of EWT. Initially, the method decomposes the signal using VMD, determining the mode count based on residuals, and subsequently employs EWT decomposition based on this information. This addresses mode aliasing issues in the original method while capitalizing on VMD’s adaptability. Feasibility was confirmed through simulation signals and ultimately applied to noise signals from vibrators. Experimental results demonstrate that the improved method not only resolves EWT frequency band division challenges but also effectively decomposes signal components compared to the VMD method.展开更多
Flow channels with a variable cross-section are important components of piping system and are widely used in variousfields of engineering.Using afinite element method and modal analysis theory,flow-induced noise,mode ...Flow channels with a variable cross-section are important components of piping system and are widely used in variousfields of engineering.Using afinite element method and modal analysis theory,flow-induced noise,mode shapes,and structure-borne noise in such systems are investigated in this study.The results demonstrate that the maximum displacement and equivalent stress are located in the part with variable cross-sectional area.The aver-age excitation force on theflow channel wall increases with theflow velocity.The maximum excitation force occurs in the range of 0–20 Hz,and then it decreases gradually in the range of 20–1000 Hz.Additionally,as theflow velocity rises from 1 to 3 m/s,the overall sound pressure level associated with theflow-induced noise grows from 49.37 to 66.37 dB.Similarly,the overall sound pressure level associated with the structure-borne noise rises from 40.27 to 72.20 dB.When theflow velocity is increased,the increment of the structure-borne noise is higher than that of theflow-induced noise.展开更多
We present a new approach to polarization analysis of seismic noise recorded by three-component seismometers. It is based on statistical analysis of frequency-dependent particle motion properties determined from a lar...We present a new approach to polarization analysis of seismic noise recorded by three-component seismometers. It is based on statistical analysis of frequency-dependent particle motion properties determined from a large number of time windows via eigenanalysis of the 3-by-3, Hermitian, spectral covariance matrix. We applied the algorithm to continuous data recorded in 2009 by the seismic station SLM, located in central North America. A rich variety of noise sources was observed. At low frequencies (〈0.05 Hz) we observed a tilt-related signal that showed some elliptical motion in the horizontal plane. In the microseism band of 0.05-0.25 Hz, we observed Rayleigh energy arriving from the northeast, but with three distinct peaks instead of the classic single and double frequency peaks. At intermediate frequencies of 0.5-2.0 Hz, the noise was dominated by non-fundamental-mode Rayleigh energy, most likely P and Lg waves. At the highest frequencies (〉3 Hz), Rayleigh-type energy was again dominant in the form of Rg waves created by nearby cultural activities. Analysis of the time dependence of noise power shows that a frequency range of at least 0.02-1.0 Hz (much larger than the microseism band) is sensitive to annual, meteorologically induced sources of noise.展开更多
Wavelet transforms (WT) are proposed as an alternative tool to overcome the limitations of Fourier transforms (FFT) in the analysis of electrochemical noise (EN) data. The most relevant feature of this method of analy...Wavelet transforms (WT) are proposed as an alternative tool to overcome the limitations of Fourier transforms (FFT) in the analysis of electrochemical noise (EN) data. The most relevant feature of this method of analysis is its capability of decomposing electrochemical noise records into different sets of wavelet coefficients, which contain information about the time scale characteristic of the associated corrosion event. In this context, the potential noise fluctuations during the free corrosion of pure aluminum in sodium chloride solution was recorded and analyzed with wavelet transform technique. The typical results showed that the EN signal is composed of distinct type of events, which can be classified according to their scales, i.e. their time constants. Meanwhile, the energy distribution plot (EDP) can be used as 'fingerprints' of EN signals and can be very useful for analyzing EN data in the future.展开更多
How to simulate interior aerodynamic noise accurately is an important question of a car interior noise reduction. The unsteady aerodynamic pressure on body surfaces is proved to be the key effect factor of car interio...How to simulate interior aerodynamic noise accurately is an important question of a car interior noise reduction. The unsteady aerodynamic pressure on body surfaces is proved to be the key effect factor of car interior aerodynamic noise control in high frequency on high speed. In this paper, a detail statistical energy analysis (SEA) model is built. And the vibra-acoustic power inputs are loaded on the model for the valid result of car interior noise analysis. The model is the solid foundation for further optimization on car interior noise control. After the most sensitive subsystems for the power contribution to car interior noise are pointed by SEA comprehensive analysis, the sound pressure level of car interior aerodynamic noise can be reduced by improving their sound and damping characteristics. The further vehicle testing results show that it is available to improve the interior acoustic performance by using detailed SEA model, which comprised by more than 80 subsystems, with the unsteady aerodynamic pressure calculation on body surfaces and the materials improvement of sound/damping properties. It is able to acquire more than 2 dB reduction on the central frequency in the spectrum over 800 Hz. The proposed optimization method can be looked as a reference of car interior aerodynamic noise control by the detail SEA model integrated unsteady computational fluid dynamics (CFD) and sensitivity analysis of acoustic contribution.展开更多
The corrosion behaviors of zinc alloy (ZnAl4Cul) in 3.5% (mass fraction) NaCl, 7.3% (mass fraction) Na2SO4 and simulated acid rain solutions were investigated using electrochemical measurements. The potential no...The corrosion behaviors of zinc alloy (ZnAl4Cul) in 3.5% (mass fraction) NaCl, 7.3% (mass fraction) Na2SO4 and simulated acid rain solutions were investigated using electrochemical measurements. The potential noise during dry-wet cycle was monitored and analyzed by fast Fourier transform (FFT), fast wavelet transform (FWT), shot noise theory and stochastic theory. Cumulative probability curves of event frequency fn indicate that the corrosion events in the dry cycles are greater than those in the wet cycles. Uniform corrosion was observed in the NaCl solution compared with more localized corrosion in the Na2SO4 solution, which is evidenced by FWT and SEM. Conditional events generation rate r(t) for diffusion controlled reactions decreases with increasing the time. r(t) values for uniform corrosion and diffusion controlled process are the largest in the wet cycle in 3.5% NaCl solution. The values of r(t) for pitting corrosion in Na2SO4 solution are observed to become large during spraying periods, and r(t) for pitting corrosion has the largest value in the Na2SO4 solution. The intergranular corrosion of zinc is serious in simulated acid rain solution.展开更多
Cavity resonance noise of passenger car tires is generated by interacting excitation between a tire structure and the fill gas (air), and generally lies in a frequency range of 200?250 Hz. As such, this noise is stron...Cavity resonance noise of passenger car tires is generated by interacting excitation between a tire structure and the fill gas (air), and generally lies in a frequency range of 200?250 Hz. As such, this noise is strongly perceived and may be a serious source of driver annoyance. Thus, many studies regarding the cavity noise mechanism and its reduction have already been conducted. In this work, a vibro-acoustic coupled analysis was conducted between a tire structure and air cavity. Using this analysis, we can more accurately simulate the tire noise performance in the region of the cavity resonance frequency. An analysis of the effects of variation of tire contour design factors was conducted, using design-of-experiments methods. Finally, a multi-objective optimization was performed using in-house codes to reduce the cavity noise level while minimizing the loss of other performances, such as diminished ride comfort and handling caused by the variations of contour. As a result of this optimization, an optimized contour shape was derived, which satisfied the multi-objective performances.展开更多
Independent component analysis was applied to analyze the acoustic signals from diesel engine. First the basic prin-ciple of independent component analysis (ICA) was reviewed. Diesel engine acoustic signal was decompo...Independent component analysis was applied to analyze the acoustic signals from diesel engine. First the basic prin-ciple of independent component analysis (ICA) was reviewed. Diesel engine acoustic signal was decomposed into several inde-pendent components (ICs); Fourier transform and continuous wavelet transform (CWT) were applied to analyze the independent components. Different noise sources of the diesel engine were separated, based on the characteristics of different component in time-frequency domain.展开更多
This paper shows the presence of noises and technique to reduce these noises during the surface wave analysis. The frequency-dependent properties of Rayleigh-type surface waves can be used for imaging and characterizi...This paper shows the presence of noises and technique to reduce these noises during the surface wave analysis. The frequency-dependent properties of Rayleigh-type surface waves can be used for imaging and characterizing the shallow subsurface. Interference by coherent source-generated noise inhibits the reliability of shear-wave velocities determined through inversion of the phase velocities of Rayleigh waves. Among these interferences by non-planar, non-fundamental mode Rayleigh waves (noise) are body waves, scattered and non-source-generated surface waves, and highermode surface waves. For the reduction of noise, the filtering technique is implemented in this paper for the multichannel analysis of surface wave method (MASW). With the de-noising technique during the MASW method, more robust and reliable outcome is achieved. The significance of this paper is to obtain pre-awareness about noises during surface wave analysis and take better outcomes with denoising performance in near surface soil investigations.展开更多
The paper deals with the criteria for the closed- loop stability of a noise control system in a duct. To study the stability of the system, the model of delay differential equation is derived from the propagation of a...The paper deals with the criteria for the closed- loop stability of a noise control system in a duct. To study the stability of the system, the model of delay differential equation is derived from the propagation of acoustic wave governed by a partial differential equation of hyperbolic type. Then, a simple feedback controller is designed, and its closed- loop stability is analyzed on the basis of the derived model of delay differential equation. The obtained criteria reveal the influence of the controller gain and the positions of a sensor and an actuator on the closed-loop stability. Finally, numerical simulations are presented to support the theoretical results.展开更多
As vibration-based structural damage detection methods are easily affected by environmental noise, a new statistie-based noise analysis method is proposed together with the Monte Carlo technique to investigate the inf...As vibration-based structural damage detection methods are easily affected by environmental noise, a new statistie-based noise analysis method is proposed together with the Monte Carlo technique to investigate the influence of experimental noise of modal data on sensitivity-based damage detection methods. Different from the com- monly used random perturbation technique, the proposed technique is deduced directly by Moore-Pen"ose generalized inverse of the sensitivity matrix, which does not only make the analysis process more efficient but also can analyze the influence of noise on both frequencies and mode shapes for three commonly used sensitivity-based damage detection methods in a similar way. A one-story portal frame is adopted to evaluate the efficiency of the proposed noise analysis technique.展开更多
This paper deals with internally generated noise of bioelectric amplifiers that are usually used for processing of bioelectric events. The main purpose of this paper is to present a procedure for analysis of the effec...This paper deals with internally generated noise of bioelectric amplifiers that are usually used for processing of bioelectric events. The main purpose of this paper is to present a procedure for analysis of the effects of internal noise generated by the active circuits and to evaluate the output noise of the author's new designed bioelectric amplifier that caused by internal effects to the amplifier circuit itself in order to compare it with the noise generated by conventional amplifiers. The obtained analysis results of internally generated noise showed that the total output noise of bioelectric active circuits does not increase when some of their resistors have a larger value. This behavior is caused by the different transfer functions for the signal and the respective noise sources associated with these resistors. Moreover, the new designed bioelectric amplifier has an output noise less than that for conventional amplifiers. The obtained analysis results were also experimentally verified and the final conclusions were drawn.展开更多
To analyze the security of two-step quantum direct communication protocol (QDCP) by using Einstein-Podolsky Rosen pair proposed by Deng et al. [Phys. Rev. A 68 (2003)042317] in collective-rotation noise channel, a...To analyze the security of two-step quantum direct communication protocol (QDCP) by using Einstein-Podolsky Rosen pair proposed by Deng et al. [Phys. Rev. A 68 (2003)042317] in collective-rotation noise channel, an excellent model of noise analysis is proposed. In the security analysis, the method of the entropy theory is introduced, and is compared with QDCP, an error rate point Qo(M : (Q0, 1.0)) is given. In different noise levels, if Eve wants to obtain the same amount of information, the error rate Q is distinguishable. The larger the noise level ~ is, the larger the error rate Q is. When the noise level ~ is lower than 11%, the high error rate is 0.153 without eavesdropping. Lastly, the security of the proposed protocol is discussed. It turns out that the quantum channel will be safe when Q 〈 0.153. Similarly, if error rate Q〉 0.153 = Q0, eavesdropping information I 〉 1, which means that there exist eavesdroppers in the quantum channel, and the quantum channel will not be safe anymore.展开更多
A dynamic finite element method combined with finite element mixed formula for contact problem is used to analyze the dynamic characteristics of gear system. Considering the stiffness excitation, error excitation and ...A dynamic finite element method combined with finite element mixed formula for contact problem is used to analyze the dynamic characteristics of gear system. Considering the stiffness excitation, error excitation and meshing shock excitation, the dynamic finite element model is established for the entire gear system which includes gears, shafts, bearings and gearbox housing. By the software of I-DEAS, the natural frequency, normal mode, dynamic time-domain response, frequency-domain response and one-third octave velocity grade structure borne noise of gear system are studied by the method of theoretical modal analysis and dynamic response analysis. The maximum values of vibration and structure borne noise are occurred at the mesh frequency of output grade gearing.展开更多
The noise level of coal face by full-mechanized coal winning technology was measured in a coal mine. And then it was analyzed and evaluated using environment science, ergonomics and fussy mathematics analysis. Basis o...The noise level of coal face by full-mechanized coal winning technology was measured in a coal mine. And then it was analyzed and evaluated using environment science, ergonomics and fussy mathematics analysis. Basis of the statistics and analysis of the measured noise level some measures, such as applying the new materials and improving the construction of the equipment, were carried out. The resuts show that they can reduce the noise level, improve the working environment and enhance the work efficiency.展开更多
The ground penetrating radar (GPR) detection data is a wide band signal, always disturbed by some noise, such as ambient random noise and muhiple refleetion waves. The noise affects the target identification of unde...The ground penetrating radar (GPR) detection data is a wide band signal, always disturbed by some noise, such as ambient random noise and muhiple refleetion waves. The noise affects the target identification of underground medium seriously. A method based on principal component analysis (PCA) was proposed to ex- tract the target signal and remove the uncorrelated noise. According to the correlation of signal, the authors get the eigenvalues and corresponding eigenvectors by decomposing the covariance matrix of GPR data and make linear transformation for the GPR data to get the principal components (PCs). The lower-order PCs stand h^r the strong correlated target signals of the raw data, and the higher-order ones present the uneorrelated noise. Thus the authors can extract the target signal and filter uncorrelated noise effectively by the PCA. This method was demonstrated on real ultra-wideband through-wall radar data and simulated GPR data. Both of the results show that the PCA method can effectively extract the GPR target signal and remove the uncorrelated noise.展开更多
As a discrete spectrum correction method, the Fourier transform (FT) continuous zoom analysis method is widely used in vibration signal analysis, but little effort had been made on this method's anti-noise performa...As a discrete spectrum correction method, the Fourier transform (FT) continuous zoom analysis method is widely used in vibration signal analysis, but little effort had been made on this method's anti-noise performance. It is widely believed that the analysis accuracy of the method can be substantially improved by increasing the zoom multiple, however, with the zoom multiple increases, the frequency estimation accuracy may decline sometimes in practices. Aiming at the problems above, this paper analyzes the sources of frequency estimation error when a harmonic signal mixed with and without noise is processed using the FT continuous zoom analysis. According to the characteristics that the local maximum of the zoom spectrum may be wrongly selected when the signal is corrupted with noise, the number of wrongly selected spectrum lines is deduced under different signal-to-noise ratio and local zoom multiple, and then the maximum frequency estimation error is given accordingly. The validity of the presented analysis is confirmed by simulations results. The frequency estimation accuracy of this method will not improve any more under the influence of noise, and there is a best zoom multiple, when the zoom multiple is larger than the best zoom multiple; the maximum frequency estimation error will fluctuate back and forth. The best zoom multiple curves under different signal-to-noise ratios given provide a theoretical basis for the choice of the appropriate zoom multiples of the FT continuous zoom analysis method in engineering applications.展开更多
A distributed feedback fiber laser (DFB FL) sensor system with ultra-high resolution is described. The sensor is made by writing distributed feedback structures into a high gain active fiber, and the system employs ...A distributed feedback fiber laser (DFB FL) sensor system with ultra-high resolution is described. The sensor is made by writing distributed feedback structures into a high gain active fiber, and the system employs an unbalanced Michelson interferometer to translate laser wavelength shifts induced by weak measurands into phase shifts. A digital phase generated carrier demodulation scheme is introduced to achieve ultra-high resolution interrogation. A detailed noise analysis of the system is presented, and it is shown that the system resolution is limited by the frequency noise of the DFB FL.展开更多
基金supported by the National Natural Science Foundation of China under grant no.42374133the Beijing Nova Program under grant no.2022056+1 种基金the Fundamental Research Funds for the Central Universities under grant no.2462020YXZZ006the Young Elite Scientists Sponsorship Program by CAST(YESS)under grant no.2018QNRC001。
文摘(Multichannel)Singular spectrum analysis is considered as one of the most effective methods for seismic incoherent noise suppression.It utilizes the low-rank feature of seismic signal and regards the noise suppression as a low-rank reconstruction problem.However,in some cases the seismic geophones receive some erratic disturbances and the amplitudes are dramatically larger than other receivers.The presence of this kind of noise,called erratic noise,makes singular spectrum analysis(SSA)reconstruction unstable and has undesirable effects on the final results.We robustify the low-rank reconstruction of seismic data by a reweighted damped SSA(RD-SSA)method.It incorporates the damped SSA,an improved version of SSA,into a reweighted framework.The damping operator is used to weaken the artificial disturbance introduced by the low-rank projection of both erratic and random noise.The central idea of the RD-SSA method is to iteratively approximate the observed data with the quadratic norm for the first iteration and the Tukeys bisquare norm for the rest iterations.The RD-SSA method can suppress seismic incoherent noise and keep the reconstruction process robust to the erratic disturbance.The feasibility of RD-SSA is validated via both synthetic and field data examples.
文摘Electric vibrators find wide applications in reliability testing, waveform generation, and vibration simulation, making their noise characteristics a topic of significant interest. While Variational Mode Decomposition (VMD) and Empirical Wavelet Transform (EWT) offer valuable support for studying signal components, they also present certain limitations. This article integrates the strengths of both methods and proposes an enhanced approach that integrates VMD into the frequency band division principle of EWT. Initially, the method decomposes the signal using VMD, determining the mode count based on residuals, and subsequently employs EWT decomposition based on this information. This addresses mode aliasing issues in the original method while capitalizing on VMD’s adaptability. Feasibility was confirmed through simulation signals and ultimately applied to noise signals from vibrators. Experimental results demonstrate that the improved method not only resolves EWT frequency band division challenges but also effectively decomposes signal components compared to the VMD method.
基金supported by the Key Research and Development Project of Shandong Province[2019GSF109084]the National Natural Science Foundation of China[51776111]Young Scholars Program of Shandong University[2018WLJH73].
文摘Flow channels with a variable cross-section are important components of piping system and are widely used in variousfields of engineering.Using afinite element method and modal analysis theory,flow-induced noise,mode shapes,and structure-borne noise in such systems are investigated in this study.The results demonstrate that the maximum displacement and equivalent stress are located in the part with variable cross-sectional area.The aver-age excitation force on theflow channel wall increases with theflow velocity.The maximum excitation force occurs in the range of 0–20 Hz,and then it decreases gradually in the range of 20–1000 Hz.Additionally,as theflow velocity rises from 1 to 3 m/s,the overall sound pressure level associated with theflow-induced noise grows from 49.37 to 66.37 dB.Similarly,the overall sound pressure level associated with the structure-borne noise rises from 40.27 to 72.20 dB.When theflow velocity is increased,the increment of the structure-borne noise is higher than that of theflow-induced noise.
基金supported by the United States Geological Survey
文摘We present a new approach to polarization analysis of seismic noise recorded by three-component seismometers. It is based on statistical analysis of frequency-dependent particle motion properties determined from a large number of time windows via eigenanalysis of the 3-by-3, Hermitian, spectral covariance matrix. We applied the algorithm to continuous data recorded in 2009 by the seismic station SLM, located in central North America. A rich variety of noise sources was observed. At low frequencies (〈0.05 Hz) we observed a tilt-related signal that showed some elliptical motion in the horizontal plane. In the microseism band of 0.05-0.25 Hz, we observed Rayleigh energy arriving from the northeast, but with three distinct peaks instead of the classic single and double frequency peaks. At intermediate frequencies of 0.5-2.0 Hz, the noise was dominated by non-fundamental-mode Rayleigh energy, most likely P and Lg waves. At the highest frequencies (〉3 Hz), Rayleigh-type energy was again dominant in the form of Rg waves created by nearby cultural activities. Analysis of the time dependence of noise power shows that a frequency range of at least 0.02-1.0 Hz (much larger than the microseism band) is sensitive to annual, meteorologically induced sources of noise.
基金the financial support of the National Key Basic Research Foundation of China (Project G19990650), the National Natural Science Foundation of China (Project 50071054) and the financial support of State Key
文摘Wavelet transforms (WT) are proposed as an alternative tool to overcome the limitations of Fourier transforms (FFT) in the analysis of electrochemical noise (EN) data. The most relevant feature of this method of analysis is its capability of decomposing electrochemical noise records into different sets of wavelet coefficients, which contain information about the time scale characteristic of the associated corrosion event. In this context, the potential noise fluctuations during the free corrosion of pure aluminum in sodium chloride solution was recorded and analyzed with wavelet transform technique. The typical results showed that the EN signal is composed of distinct type of events, which can be classified according to their scales, i.e. their time constants. Meanwhile, the energy distribution plot (EDP) can be used as 'fingerprints' of EN signals and can be very useful for analyzing EN data in the future.
基金supported by National Natural Science Foundation of China (Grant No. 51175214)Scientific and Technological Planning Project of China (Grant No. 2011BAG03B01-1)Based Research Operation Expenses Project of Jilin University, China (Grant No. 421032572415)
文摘How to simulate interior aerodynamic noise accurately is an important question of a car interior noise reduction. The unsteady aerodynamic pressure on body surfaces is proved to be the key effect factor of car interior aerodynamic noise control in high frequency on high speed. In this paper, a detail statistical energy analysis (SEA) model is built. And the vibra-acoustic power inputs are loaded on the model for the valid result of car interior noise analysis. The model is the solid foundation for further optimization on car interior noise control. After the most sensitive subsystems for the power contribution to car interior noise are pointed by SEA comprehensive analysis, the sound pressure level of car interior aerodynamic noise can be reduced by improving their sound and damping characteristics. The further vehicle testing results show that it is available to improve the interior acoustic performance by using detailed SEA model, which comprised by more than 80 subsystems, with the unsteady aerodynamic pressure calculation on body surfaces and the materials improvement of sound/damping properties. It is able to acquire more than 2 dB reduction on the central frequency in the spectrum over 800 Hz. The proposed optimization method can be looked as a reference of car interior aerodynamic noise control by the detail SEA model integrated unsteady computational fluid dynamics (CFD) and sensitivity analysis of acoustic contribution.
基金Projects (51131005, 51171172, J0830413) supported by the National Natural Science Foundation of ChinaProject (Y4110074) supported by Zhejiang Provincial Natural Science Foundation, China
文摘The corrosion behaviors of zinc alloy (ZnAl4Cul) in 3.5% (mass fraction) NaCl, 7.3% (mass fraction) Na2SO4 and simulated acid rain solutions were investigated using electrochemical measurements. The potential noise during dry-wet cycle was monitored and analyzed by fast Fourier transform (FFT), fast wavelet transform (FWT), shot noise theory and stochastic theory. Cumulative probability curves of event frequency fn indicate that the corrosion events in the dry cycles are greater than those in the wet cycles. Uniform corrosion was observed in the NaCl solution compared with more localized corrosion in the Na2SO4 solution, which is evidenced by FWT and SEM. Conditional events generation rate r(t) for diffusion controlled reactions decreases with increasing the time. r(t) values for uniform corrosion and diffusion controlled process are the largest in the wet cycle in 3.5% NaCl solution. The values of r(t) for pitting corrosion in Na2SO4 solution are observed to become large during spraying periods, and r(t) for pitting corrosion has the largest value in the Na2SO4 solution. The intergranular corrosion of zinc is serious in simulated acid rain solution.
文摘Cavity resonance noise of passenger car tires is generated by interacting excitation between a tire structure and the fill gas (air), and generally lies in a frequency range of 200?250 Hz. As such, this noise is strongly perceived and may be a serious source of driver annoyance. Thus, many studies regarding the cavity noise mechanism and its reduction have already been conducted. In this work, a vibro-acoustic coupled analysis was conducted between a tire structure and air cavity. Using this analysis, we can more accurately simulate the tire noise performance in the region of the cavity resonance frequency. An analysis of the effects of variation of tire contour design factors was conducted, using design-of-experiments methods. Finally, a multi-objective optimization was performed using in-house codes to reduce the cavity noise level while minimizing the loss of other performances, such as diminished ride comfort and handling caused by the variations of contour. As a result of this optimization, an optimized contour shape was derived, which satisfied the multi-objective performances.
基金Project (No. 50575203) supported by the National Natural ScienceFoundation of China
文摘Independent component analysis was applied to analyze the acoustic signals from diesel engine. First the basic prin-ciple of independent component analysis (ICA) was reviewed. Diesel engine acoustic signal was decomposed into several inde-pendent components (ICs); Fourier transform and continuous wavelet transform (CWT) were applied to analyze the independent components. Different noise sources of the diesel engine were separated, based on the characteristics of different component in time-frequency domain.
基金supported by Research Project of Science Fund No. 01-01-02-SF0338Science Fund No.01-01-02-SF0681 from Ministry of Science, Technologyand Innovation of Malaysia
文摘This paper shows the presence of noises and technique to reduce these noises during the surface wave analysis. The frequency-dependent properties of Rayleigh-type surface waves can be used for imaging and characterizing the shallow subsurface. Interference by coherent source-generated noise inhibits the reliability of shear-wave velocities determined through inversion of the phase velocities of Rayleigh waves. Among these interferences by non-planar, non-fundamental mode Rayleigh waves (noise) are body waves, scattered and non-source-generated surface waves, and highermode surface waves. For the reduction of noise, the filtering technique is implemented in this paper for the multichannel analysis of surface wave method (MASW). With the de-noising technique during the MASW method, more robust and reliable outcome is achieved. The significance of this paper is to obtain pre-awareness about noises during surface wave analysis and take better outcomes with denoising performance in near surface soil investigations.
基金the National Natural Science Foundation of China (10532050)
文摘The paper deals with the criteria for the closed- loop stability of a noise control system in a duct. To study the stability of the system, the model of delay differential equation is derived from the propagation of acoustic wave governed by a partial differential equation of hyperbolic type. Then, a simple feedback controller is designed, and its closed- loop stability is analyzed on the basis of the derived model of delay differential equation. The obtained criteria reveal the influence of the controller gain and the positions of a sensor and an actuator on the closed-loop stability. Finally, numerical simulations are presented to support the theoretical results.
基金Project supported jointly by the National Natural Science Foundation of China (No.50608036)the Innovative Funding of the Ministry of Water Resources of China (No. SCX2003-18)
文摘As vibration-based structural damage detection methods are easily affected by environmental noise, a new statistie-based noise analysis method is proposed together with the Monte Carlo technique to investigate the influence of experimental noise of modal data on sensitivity-based damage detection methods. Different from the com- monly used random perturbation technique, the proposed technique is deduced directly by Moore-Pen"ose generalized inverse of the sensitivity matrix, which does not only make the analysis process more efficient but also can analyze the influence of noise on both frequencies and mode shapes for three commonly used sensitivity-based damage detection methods in a similar way. A one-story portal frame is adopted to evaluate the efficiency of the proposed noise analysis technique.
文摘This paper deals with internally generated noise of bioelectric amplifiers that are usually used for processing of bioelectric events. The main purpose of this paper is to present a procedure for analysis of the effects of internal noise generated by the active circuits and to evaluate the output noise of the author's new designed bioelectric amplifier that caused by internal effects to the amplifier circuit itself in order to compare it with the noise generated by conventional amplifiers. The obtained analysis results of internally generated noise showed that the total output noise of bioelectric active circuits does not increase when some of their resistors have a larger value. This behavior is caused by the different transfer functions for the signal and the respective noise sources associated with these resistors. Moreover, the new designed bioelectric amplifier has an output noise less than that for conventional amplifiers. The obtained analysis results were also experimentally verified and the final conclusions were drawn.
基金Supported by the National Natural Science Foundation of China under Grant Nos 61472048,61402058,61272511,61472046,61202082 and 61370194the Beijing Natural Science Foundation under Grant No 4152038the China Postdoctoral Science Foundation Funded Project under Grant No 2014M561826
文摘To analyze the security of two-step quantum direct communication protocol (QDCP) by using Einstein-Podolsky Rosen pair proposed by Deng et al. [Phys. Rev. A 68 (2003)042317] in collective-rotation noise channel, an excellent model of noise analysis is proposed. In the security analysis, the method of the entropy theory is introduced, and is compared with QDCP, an error rate point Qo(M : (Q0, 1.0)) is given. In different noise levels, if Eve wants to obtain the same amount of information, the error rate Q is distinguishable. The larger the noise level ~ is, the larger the error rate Q is. When the noise level ~ is lower than 11%, the high error rate is 0.153 without eavesdropping. Lastly, the security of the proposed protocol is discussed. It turns out that the quantum channel will be safe when Q 〈 0.153. Similarly, if error rate Q〉 0.153 = Q0, eavesdropping information I 〉 1, which means that there exist eavesdroppers in the quantum channel, and the quantum channel will not be safe anymore.
基金Funded by the Natural Science Foundation of China (No. 50675232)the Natural Science Foundation of CQ CSTC (2006BB3008)
文摘A dynamic finite element method combined with finite element mixed formula for contact problem is used to analyze the dynamic characteristics of gear system. Considering the stiffness excitation, error excitation and meshing shock excitation, the dynamic finite element model is established for the entire gear system which includes gears, shafts, bearings and gearbox housing. By the software of I-DEAS, the natural frequency, normal mode, dynamic time-domain response, frequency-domain response and one-third octave velocity grade structure borne noise of gear system are studied by the method of theoretical modal analysis and dynamic response analysis. The maximum values of vibration and structure borne noise are occurred at the mesh frequency of output grade gearing.
文摘The noise level of coal face by full-mechanized coal winning technology was measured in a coal mine. And then it was analyzed and evaluated using environment science, ergonomics and fussy mathematics analysis. Basis of the statistics and analysis of the measured noise level some measures, such as applying the new materials and improving the construction of the equipment, were carried out. The resuts show that they can reduce the noise level, improve the working environment and enhance the work efficiency.
基金Supported by project of Natural Science Foundation of China(No.41174097)
文摘The ground penetrating radar (GPR) detection data is a wide band signal, always disturbed by some noise, such as ambient random noise and muhiple refleetion waves. The noise affects the target identification of underground medium seriously. A method based on principal component analysis (PCA) was proposed to ex- tract the target signal and remove the uncorrelated noise. According to the correlation of signal, the authors get the eigenvalues and corresponding eigenvectors by decomposing the covariance matrix of GPR data and make linear transformation for the GPR data to get the principal components (PCs). The lower-order PCs stand h^r the strong correlated target signals of the raw data, and the higher-order ones present the uneorrelated noise. Thus the authors can extract the target signal and filter uncorrelated noise effectively by the PCA. This method was demonstrated on real ultra-wideband through-wall radar data and simulated GPR data. Both of the results show that the PCA method can effectively extract the GPR target signal and remove the uncorrelated noise.
基金supported by National Natural Science Foundation of China (Grant No. 50875085, Grant No. 50605021, and Grant No. 51075150)Guangdong Provincial Natural Science Foundation of China (Grant No. 91510641010000320)
文摘As a discrete spectrum correction method, the Fourier transform (FT) continuous zoom analysis method is widely used in vibration signal analysis, but little effort had been made on this method's anti-noise performance. It is widely believed that the analysis accuracy of the method can be substantially improved by increasing the zoom multiple, however, with the zoom multiple increases, the frequency estimation accuracy may decline sometimes in practices. Aiming at the problems above, this paper analyzes the sources of frequency estimation error when a harmonic signal mixed with and without noise is processed using the FT continuous zoom analysis. According to the characteristics that the local maximum of the zoom spectrum may be wrongly selected when the signal is corrupted with noise, the number of wrongly selected spectrum lines is deduced under different signal-to-noise ratio and local zoom multiple, and then the maximum frequency estimation error is given accordingly. The validity of the presented analysis is confirmed by simulations results. The frequency estimation accuracy of this method will not improve any more under the influence of noise, and there is a best zoom multiple, when the zoom multiple is larger than the best zoom multiple; the maximum frequency estimation error will fluctuate back and forth. The best zoom multiple curves under different signal-to-noise ratios given provide a theoretical basis for the choice of the appropriate zoom multiples of the FT continuous zoom analysis method in engineering applications.
基金supported by the National 863 Projects under Grant No. 2007AA03Z415.
文摘A distributed feedback fiber laser (DFB FL) sensor system with ultra-high resolution is described. The sensor is made by writing distributed feedback structures into a high gain active fiber, and the system employs an unbalanced Michelson interferometer to translate laser wavelength shifts induced by weak measurands into phase shifts. A digital phase generated carrier demodulation scheme is introduced to achieve ultra-high resolution interrogation. A detailed noise analysis of the system is presented, and it is shown that the system resolution is limited by the frequency noise of the DFB FL.