Effective source-load prediction and reasonable dispatching are crucial to realize the economic and reliable operations of integrated energy systems(IESs).They can overcome the challenges introduced by the uncertainti...Effective source-load prediction and reasonable dispatching are crucial to realize the economic and reliable operations of integrated energy systems(IESs).They can overcome the challenges introduced by the uncertainties of new energies and various types of loads in the IES.Accordingly,a robust optimal dispatching method for the IES based on a robust economic model predictive control(REMPC)strategy considering source-load power interval prediction is proposed.First,an operation model of the IES is established,and an interval prediction model based on the bidirectional long short-term memory network optimized by beetle antenna search and bootstrap is formulated and applied to predict the photovoltaic power and the cooling,heating,and electrical loads.Then,an optimal dispatching scheme based on REMPC is devised for the IES.The source-load interval prediction results are used to improve the robustness of the REPMC and reduce the influence of source-load uncertainties on dispatching.An actual IES case is selected to conduct simulations;the results show that compared with other prediction techniques,the proposed method has higher prediction interval coverage probability and prediction interval normalized averaged width.Moreover,the operational cost of the IES is decreased by the REMPC strategy.With the devised dispatching scheme,the ability of the IES to handle the dispatching risk caused by prediction errors is enhanced.Improved dispatching robustness and operational economy are also achieved.展开更多
To optimize peaking operation when high proportion new energy accesses to power grid,evaluation indexes are proposed which simultaneously consider wind-solar complementation and source-load coupling.A typical wind-sol...To optimize peaking operation when high proportion new energy accesses to power grid,evaluation indexes are proposed which simultaneously consider wind-solar complementation and source-load coupling.A typical wind-solar power output scene model based on peaking demand is established which has anti-peaking characteristic.This model uses balancing scenes and key scenes with probability distribution based on improved Latin hypercube sampling(LHS)algorithm and scene reduction technology to illustrate the influence of wind-solar on peaking demand.Based on this,a peak shaving operation optimization model of high proportion new energy power generation is established.The various operating indexes after optimization in multi-scene peaking are calculated,and the ability of power grid peaking operation is compared whth that considering wind-solar complementation and source-load coupling.Finally,a case of high proportion new energy verifies the feasibility and validity of the proposed operation strategy.展开更多
Due to the phenomenon of abandoning wind power and photo voltage(PV)power in the“Three Northern Areas”in China,this paper presents an optimal strategy for coordinating and dispatching“source-load”in power system b...Due to the phenomenon of abandoning wind power and photo voltage(PV)power in the“Three Northern Areas”in China,this paper presents an optimal strategy for coordinating and dispatching“source-load”in power system based on multiple time scales.On the basis of the analysis of the uncertainty of wind power and PV power as well as the characteristics of load side resource dispatching,the optimal model of coordinating and dispatching“source-load”in power system based on multiple time scales is established.It can simultaneously and effectively dispatch conventional generators,wind plant,PV power station,pumped-storage power station and load side resources by optimally using three time scales:day-ahead,intra-day and real-time.According to the latest predicted information of wind power,PV power and load,the original generation schedule can be rolled and amended by using the corresponding time scale.The effectiveness of the model can be verified by a real system.The simulation results show that the proposed model can make full use of“source-load”resources to improve the ability to consume wind power and PV power of the grid-connected system.展开更多
To better reduce the carbon emissions of a park-integrated energy system(PIES),optimize the comprehensive operating cost,and smooth the load curve,a source-load flexible response model based on the comprehensive evalu...To better reduce the carbon emissions of a park-integrated energy system(PIES),optimize the comprehensive operating cost,and smooth the load curve,a source-load flexible response model based on the comprehensive evaluation index is proposed.Firstly,a source-load flexible response model is proposed under the stepped carbon trading mechanism;the organic Rankine cycle is introduced into the source-side to construct a flexible response model with traditional combined heat and power(CHP)unit and electric boiler to realize the flexible response of CHP to load;and the load-side categorizes loads into transferable,interruptible,and substitutable loads according to the load characteristics and establishes a comprehensive demand response model.Secondly,the analytic network process(ANP)considers the linkages between indicators and allows decision-makers to consider the interactions of elements in a complex dynamic system,resulting in more realistic indicator assignment values.Considering the economy,energy efficiency,and environment,the PIES optimization operation model based on the ANP comprehensive evaluation index is constructed to optimize the system operation comprehensively.Finally,the CPLEX solver inMATLABwas employed to solve the problem.The results of the example showthat the source-load flexible response model proposed in this paper reduces the operating cost of the system by 29.90%,improves the comprehensive utilization rate by 15.00%,and reduces the carbon emission by 26.98%,which effectively enhances the system’s economy and low carbon,and the comprehensive evaluation index based on the ANP reaches 0.95,which takes into account the economy,energy efficiency,and the environment,and is more superior than the single evaluation index.展开更多
An equivalent source-load MTDC system including DC voltage control units,power control units and interconnected DC lines is considered in this paper,which can be regarded as a generic structure of low-voltage DC micro...An equivalent source-load MTDC system including DC voltage control units,power control units and interconnected DC lines is considered in this paper,which can be regarded as a generic structure of low-voltage DC microgrids,mediumvoltage DC distribution systems or HVDC transmission systems with a common DC bus.A reduced-order model is proposed with a circuit structure of a resistor,inductor and capacitor in parallel for dynamic stability analysis of the system in DC voltage control timescale.The relationship between control parameters and physical parameters of the equivalent circuit can be found,which provides an intuitive insight into the physical meaning of control parameters.Employing this model,a second-order characteristic equation is further derived to investigate system dynamic stability mechanisms in an analytical approach.As a result,the system oscillation frequency and damping are characterized in a straight forward manner,and the role of electrical and control parameters and different system-level control strategies in system dynamic stability in DC voltage control timescale is defined.The effectiveness of the proposed reduced-order model and the correctness of the theoretical analysis are verified by simulation based on PSCAD/EMTDC and an experiment based on a hardware low-voltage MTDC system platform.展开更多
To ensure the safety and reliability of the distribution network and adapt to the uncertain development of renewable energy sources and loads,a two-stage distributionally robust optimization model is proposed for the ...To ensure the safety and reliability of the distribution network and adapt to the uncertain development of renewable energy sources and loads,a two-stage distributionally robust optimization model is proposed for the active distribution network(ADN)optimization problem considering the uncertainties of the source and load in this paper.By establishing an ambiguity set to capture the uncertainties of the photovoltaic(PV)power,wind power and load,the piecewise-linear function and auxiliary parameters are introduced to help characterize the probability distribution of uncertain variables.The optimization goal of the model is to minimize the total expected cost under the worst-case distribution in the ambiguity set.The first-stage expected cost is obtained based on the predicted value of the uncertainty variable.The second-stage expected cost is based on the actual value of the uncertainty variable to solve the first-stage decision.The generalized linear decision rule approximates the two-stage optimization model,and the affine function is introduced to provide a closer approximation to the second-stage optimization model.Finally,the improved IEEE 33-node and IEEE 118-node systems are simulated and analyzed with deterministic methods,stochastic programming,and robust optimization methods to verify the feasibility and superiority of the proposed model and algorithm.展开更多
In this paper, a multi-static system working in an active way is made up of ionospheric oblique backscatter sounding system (IOBSS) and two separate receiving stations, which adopts discontinuous wave mechanism. We ...In this paper, a multi-static system working in an active way is made up of ionospheric oblique backscatter sounding system (IOBSS) and two separate receiving stations, which adopts discontinuous wave mechanism. We have advanced a new model that contains skywave condition to locate over-the-horizon targets. We use a single quasi-parabolic (QP) ionosphere model and an analytic ray-tracing program to obtain the coordinate registration (CR) index, which changes skywave group range to ground range. Also, IOBSS and other two receiving stations use this distance information to locate the target which is far away from the system. The analytic expression for the geometric dilution of precision (GDOP) under different station deployments are obtained, which shows GDOP is influenced by the system measurement precision, the stations' coordinates, and CR index. By computer simulation, we find that GDOP of isosceles right triangle deployment is smaller than that of line deployment and location precision will be improved with increasing base line length. The results indicate that this model is practicable with an acceptable range of error (less than 500 m under certain conditions in this paper).展开更多
基金supported by the National Key Research and Development Project of China(2018YFE0122200).
文摘Effective source-load prediction and reasonable dispatching are crucial to realize the economic and reliable operations of integrated energy systems(IESs).They can overcome the challenges introduced by the uncertainties of new energies and various types of loads in the IES.Accordingly,a robust optimal dispatching method for the IES based on a robust economic model predictive control(REMPC)strategy considering source-load power interval prediction is proposed.First,an operation model of the IES is established,and an interval prediction model based on the bidirectional long short-term memory network optimized by beetle antenna search and bootstrap is formulated and applied to predict the photovoltaic power and the cooling,heating,and electrical loads.Then,an optimal dispatching scheme based on REMPC is devised for the IES.The source-load interval prediction results are used to improve the robustness of the REPMC and reduce the influence of source-load uncertainties on dispatching.An actual IES case is selected to conduct simulations;the results show that compared with other prediction techniques,the proposed method has higher prediction interval coverage probability and prediction interval normalized averaged width.Moreover,the operational cost of the IES is decreased by the REMPC strategy.With the devised dispatching scheme,the ability of the IES to handle the dispatching risk caused by prediction errors is enhanced.Improved dispatching robustness and operational economy are also achieved.
基金Youth Science and Technology Fund Project of Gansu Province(No.18JR3RA011)Major Projects in Gansu Province(No.17ZD2GA010)+1 种基金Science and Technology Projects Funding of State Grid Corporation(No.522727160001)Science and Technology Projects of State Grid Gansu Electric Power Company(No.52272716000K)
文摘To optimize peaking operation when high proportion new energy accesses to power grid,evaluation indexes are proposed which simultaneously consider wind-solar complementation and source-load coupling.A typical wind-solar power output scene model based on peaking demand is established which has anti-peaking characteristic.This model uses balancing scenes and key scenes with probability distribution based on improved Latin hypercube sampling(LHS)algorithm and scene reduction technology to illustrate the influence of wind-solar on peaking demand.Based on this,a peak shaving operation optimization model of high proportion new energy power generation is established.The various operating indexes after optimization in multi-scene peaking are calculated,and the ability of power grid peaking operation is compared whth that considering wind-solar complementation and source-load coupling.Finally,a case of high proportion new energy verifies the feasibility and validity of the proposed operation strategy.
基金Major Projects of Gansu Province(No.17ZD2GA010)Power Company Technology Projects of State Grid Corporation in Gansu Province(No.52272716000K)
文摘Due to the phenomenon of abandoning wind power and photo voltage(PV)power in the“Three Northern Areas”in China,this paper presents an optimal strategy for coordinating and dispatching“source-load”in power system based on multiple time scales.On the basis of the analysis of the uncertainty of wind power and PV power as well as the characteristics of load side resource dispatching,the optimal model of coordinating and dispatching“source-load”in power system based on multiple time scales is established.It can simultaneously and effectively dispatch conventional generators,wind plant,PV power station,pumped-storage power station and load side resources by optimally using three time scales:day-ahead,intra-day and real-time.According to the latest predicted information of wind power,PV power and load,the original generation schedule can be rolled and amended by using the corresponding time scale.The effectiveness of the model can be verified by a real system.The simulation results show that the proposed model can make full use of“source-load”resources to improve the ability to consume wind power and PV power of the grid-connected system.
文摘To better reduce the carbon emissions of a park-integrated energy system(PIES),optimize the comprehensive operating cost,and smooth the load curve,a source-load flexible response model based on the comprehensive evaluation index is proposed.Firstly,a source-load flexible response model is proposed under the stepped carbon trading mechanism;the organic Rankine cycle is introduced into the source-side to construct a flexible response model with traditional combined heat and power(CHP)unit and electric boiler to realize the flexible response of CHP to load;and the load-side categorizes loads into transferable,interruptible,and substitutable loads according to the load characteristics and establishes a comprehensive demand response model.Secondly,the analytic network process(ANP)considers the linkages between indicators and allows decision-makers to consider the interactions of elements in a complex dynamic system,resulting in more realistic indicator assignment values.Considering the economy,energy efficiency,and environment,the PIES optimization operation model based on the ANP comprehensive evaluation index is constructed to optimize the system operation comprehensively.Finally,the CPLEX solver inMATLABwas employed to solve the problem.The results of the example showthat the source-load flexible response model proposed in this paper reduces the operating cost of the system by 29.90%,improves the comprehensive utilization rate by 15.00%,and reduces the carbon emission by 26.98%,which effectively enhances the system’s economy and low carbon,and the comprehensive evaluation index based on the ANP reaches 0.95,which takes into account the economy,energy efficiency,and the environment,and is more superior than the single evaluation index.
基金This work was supported in part by the National Natural Science Foundation of China under Grant No.51977142.
文摘An equivalent source-load MTDC system including DC voltage control units,power control units and interconnected DC lines is considered in this paper,which can be regarded as a generic structure of low-voltage DC microgrids,mediumvoltage DC distribution systems or HVDC transmission systems with a common DC bus.A reduced-order model is proposed with a circuit structure of a resistor,inductor and capacitor in parallel for dynamic stability analysis of the system in DC voltage control timescale.The relationship between control parameters and physical parameters of the equivalent circuit can be found,which provides an intuitive insight into the physical meaning of control parameters.Employing this model,a second-order characteristic equation is further derived to investigate system dynamic stability mechanisms in an analytical approach.As a result,the system oscillation frequency and damping are characterized in a straight forward manner,and the role of electrical and control parameters and different system-level control strategies in system dynamic stability in DC voltage control timescale is defined.The effectiveness of the proposed reduced-order model and the correctness of the theoretical analysis are verified by simulation based on PSCAD/EMTDC and an experiment based on a hardware low-voltage MTDC system platform.
基金supported by Natural Science Foundation of Beijing Municipality(No.3161002)National Key R&D Program(No.2017YFB0903300).
文摘To ensure the safety and reliability of the distribution network and adapt to the uncertain development of renewable energy sources and loads,a two-stage distributionally robust optimization model is proposed for the active distribution network(ADN)optimization problem considering the uncertainties of the source and load in this paper.By establishing an ambiguity set to capture the uncertainties of the photovoltaic(PV)power,wind power and load,the piecewise-linear function and auxiliary parameters are introduced to help characterize the probability distribution of uncertain variables.The optimization goal of the model is to minimize the total expected cost under the worst-case distribution in the ambiguity set.The first-stage expected cost is obtained based on the predicted value of the uncertainty variable.The second-stage expected cost is based on the actual value of the uncertainty variable to solve the first-stage decision.The generalized linear decision rule approximates the two-stage optimization model,and the affine function is introduced to provide a closer approximation to the second-stage optimization model.Finally,the improved IEEE 33-node and IEEE 118-node systems are simulated and analyzed with deterministic methods,stochastic programming,and robust optimization methods to verify the feasibility and superiority of the proposed model and algorithm.
基金Supported by the National High Technology Research and Development Program of China (863 Program) (2009AAXXX1302)
文摘In this paper, a multi-static system working in an active way is made up of ionospheric oblique backscatter sounding system (IOBSS) and two separate receiving stations, which adopts discontinuous wave mechanism. We have advanced a new model that contains skywave condition to locate over-the-horizon targets. We use a single quasi-parabolic (QP) ionosphere model and an analytic ray-tracing program to obtain the coordinate registration (CR) index, which changes skywave group range to ground range. Also, IOBSS and other two receiving stations use this distance information to locate the target which is far away from the system. The analytic expression for the geometric dilution of precision (GDOP) under different station deployments are obtained, which shows GDOP is influenced by the system measurement precision, the stations' coordinates, and CR index. By computer simulation, we find that GDOP of isosceles right triangle deployment is smaller than that of line deployment and location precision will be improved with increasing base line length. The results indicate that this model is practicable with an acceptable range of error (less than 500 m under certain conditions in this paper).