The South Sichuan is one of the areas in China famous for Danxia Landform. Danxia Landform in the South Sichuan is characterized by wide distribution and square shaped hills. However, there is no systematic research o...The South Sichuan is one of the areas in China famous for Danxia Landform. Danxia Landform in the South Sichuan is characterized by wide distribution and square shaped hills. However, there is no systematic research on the genesis of those Danxia Landforms at present. Based on the study of spatial distribution and the genesis of the Danxia Landforms in the South Sichuan, we discovered that the lithostratigraphy, regional tectonic, crustal uplift and external forces contribute together to the formation of the Danxia Landform. On the basis of learning the development experiences from famous scenic spots and the updated national policies and regulations, proposals were made to boost the development of Danxia Landform resources in the South Sichuan by excavating its historic, cultural, natural and scientific connotation in the form of educational tourism.展开更多
The formation and distribution of fractures are controlled by paleotectonic stress field, and their preservative status and effects on development are dominated by the modern stress field. Since Triassic, it has exper...The formation and distribution of fractures are controlled by paleotectonic stress field, and their preservative status and effects on development are dominated by the modern stress field. Since Triassic, it has experienced four tectonic movements and developed four sets of tectonic fractures in the extra low-permeability sandstone reservoir at the south of western Sichuan depression. The strikes of fractures are in the S-N, NE-SW, E-W, and NW-SE directions respectively. At the end of Triassic, under the horizontal compression tectonic stress field, for which the maximum principal stress direction was NW.SE, the fractures were well developed near the S-N faults and at the end of NE-SW faults, because of their stress concentration. At the end of Cretaceous, in the horizontal compression stress fields of the NE-SW direction, the stress was obviously lower near the NE-SW faults, thus, fractures mainly developed near the S-N faults. At the end of Neogene-Early Pleistocene, under the horizontal compression tectonic stress fields of E-W direction, stress concentrated near the NE-SW faults and fractures developed at these places, especially at the end of the NE-SE faults, the cross positions of NE-SW, and S-N faults. Therefore, fractures developed mostly near S-N faults and NE-SW faults. At the cross positions of the above two sets of faults, the degree of development of the fractures was the highest. Under the modern stress field of the NW-SE direction, the NW-SE fractures were mainly the seepage ones with tensional state, the best connectivity, the widest aperture, the highest permeability, and the minimum opening pressure.展开更多
"Continuous" tight gas reservoirs are those reservoirs which develop in widespread tight sandstones with a continuous distribution of natural gas. In this paper, we summarize the geological features of the source ro..."Continuous" tight gas reservoirs are those reservoirs which develop in widespread tight sandstones with a continuous distribution of natural gas. In this paper, we summarize the geological features of the source rocks and "'continuous" tight gas reservoirs in the Xujiahe Formation of the middle- south transition region, Sichuan Basin. The source rocks of the Xul Member and reservoir rocks of the Xu2 Member are thick (Xul Member: 40 m, Xu2 Member: 120 m) and are distributed continuously in this study area. The results of drilled wells show that the widespread sandstone reservoirs of the Xu2 Member are charged with natural gas. Therefore, the natural gas reservoirs of the Xu2 Member in the middle-south transition region are "continuous" tight gas reservoirs. The accumulation of "continuous" tight gas reservoirs is controlled by an adequate driving force of the pressure differences between source rocks and reservoirs, which is demonstrated by a "one-dimensional" physical simulation experiment. In this simulation, the natural gas of"continuous" tight gas reservoirs moves tbrward with no preferential petroleum migration pathways (PPMP), and the natural gas saturation of"continuous" tight gas reservoirs is higher than that of conventional reservoirs.展开更多
NCEP/NCAR data are utilized to analyze an extreme flood year(1998) and an extreme dry year(2006) in the Sichuan-Chongqing region(SCR) and the results are as follows. The positive divergence of South Asia High(SAH) is ...NCEP/NCAR data are utilized to analyze an extreme flood year(1998) and an extreme dry year(2006) in the Sichuan-Chongqing region(SCR) and the results are as follows. The positive divergence of South Asia High(SAH) is stronger in the flood year; the position of the ridge line of SAH is southward compared with the annual average; Western Pacific Subtropical High(WPSH) extends westward and its ridge line is southward. In the drought year, the positive divergence of SAH is weaker, its ridge line is northward, and the position of WPSH is also northward. As shown in the dynamics, in drought(flood) years, negative(positive) vorticity advection in the upper atmosphere can cause the atmosphere to ascend(descend), and anomalous circulation of SAH displays divergence(convergence), and anomalous circulation of the lower atmosphere shows convergence(divergence). Thermal structure of the atmosphere shows that there is warm(cold) temperature advection in the lower atmosphere, and the vertical distribution of diabetic heating causes SAH's local circulation to display convergence(divergence) and affects vertical motion of the lower atmosphere circulation eventually. To some extent, the two extreme years in the SCR is closely related to the vertical motion of atmosphere circulation and the variation of such vertical motion is caused by differences of interactions between SAH and lower atmosphere circulations.展开更多
利用1961—2022年四川155个国家气象站逐日气温、降水资料和NCEP/NCAR再分析资料等,对2022年四川持续高温干旱事件特征及成因进行分析。结果表明:2022年夏季四川出现极端高温干旱天气,全省平均气温、最高气温、高温日数均突破历史同期极...利用1961—2022年四川155个国家气象站逐日气温、降水资料和NCEP/NCAR再分析资料等,对2022年四川持续高温干旱事件特征及成因进行分析。结果表明:2022年夏季四川出现极端高温干旱天气,全省平均气温、最高气温、高温日数均突破历史同期极值,73.0%的站点出现重旱及以上旱情,为1961年以来最严重高温伏旱天气气候事件。南亚高压北跳东进,异常偏强偏北,500 h Pa青藏高压发展东移,或西太平洋副热带高压加强西伸北抬,与南亚高压叠加,形成稳定正压结构控制四川,是造成高温干旱的主要原因。亚洲中纬度地区盛行纬向环流,伊朗高压、青藏高压和西太平洋副热带高压打通形成高压带,盛行下沉辐散气流,阻挡中高纬冷空气南下和低纬暖湿气流北上,导致四川地区降水异常偏少,是高温干旱的间接原因。展开更多
文摘The South Sichuan is one of the areas in China famous for Danxia Landform. Danxia Landform in the South Sichuan is characterized by wide distribution and square shaped hills. However, there is no systematic research on the genesis of those Danxia Landforms at present. Based on the study of spatial distribution and the genesis of the Danxia Landforms in the South Sichuan, we discovered that the lithostratigraphy, regional tectonic, crustal uplift and external forces contribute together to the formation of the Danxia Landform. On the basis of learning the development experiences from famous scenic spots and the updated national policies and regulations, proposals were made to boost the development of Danxia Landform resources in the South Sichuan by excavating its historic, cultural, natural and scientific connotation in the form of educational tourism.
基金This paper is financially supported by the National Natural Science Foundation of China (No. 40572080)the China National Petroleum Corporation (CNPC) Petroleum Science and Technology Innovation Foundation (No.05E7026)
文摘The formation and distribution of fractures are controlled by paleotectonic stress field, and their preservative status and effects on development are dominated by the modern stress field. Since Triassic, it has experienced four tectonic movements and developed four sets of tectonic fractures in the extra low-permeability sandstone reservoir at the south of western Sichuan depression. The strikes of fractures are in the S-N, NE-SW, E-W, and NW-SE directions respectively. At the end of Triassic, under the horizontal compression tectonic stress field, for which the maximum principal stress direction was NW.SE, the fractures were well developed near the S-N faults and at the end of NE-SW faults, because of their stress concentration. At the end of Cretaceous, in the horizontal compression stress fields of the NE-SW direction, the stress was obviously lower near the NE-SW faults, thus, fractures mainly developed near the S-N faults. At the end of Neogene-Early Pleistocene, under the horizontal compression tectonic stress fields of E-W direction, stress concentrated near the NE-SW faults and fractures developed at these places, especially at the end of the NE-SE faults, the cross positions of NE-SW, and S-N faults. Therefore, fractures developed mostly near S-N faults and NE-SW faults. At the cross positions of the above two sets of faults, the degree of development of the fractures was the highest. Under the modern stress field of the NW-SE direction, the NW-SE fractures were mainly the seepage ones with tensional state, the best connectivity, the widest aperture, the highest permeability, and the minimum opening pressure.
基金supported by the National Major Grant of"Accumulation Law,Key Technologies and Evaluations of the Stratigraphic Reservoirs"(No.2008ZX05000-001) from the Research Institute of Petroleum Exploration & Development,PetroChina
文摘"Continuous" tight gas reservoirs are those reservoirs which develop in widespread tight sandstones with a continuous distribution of natural gas. In this paper, we summarize the geological features of the source rocks and "'continuous" tight gas reservoirs in the Xujiahe Formation of the middle- south transition region, Sichuan Basin. The source rocks of the Xul Member and reservoir rocks of the Xu2 Member are thick (Xul Member: 40 m, Xu2 Member: 120 m) and are distributed continuously in this study area. The results of drilled wells show that the widespread sandstone reservoirs of the Xu2 Member are charged with natural gas. Therefore, the natural gas reservoirs of the Xu2 Member in the middle-south transition region are "continuous" tight gas reservoirs. The accumulation of "continuous" tight gas reservoirs is controlled by an adequate driving force of the pressure differences between source rocks and reservoirs, which is demonstrated by a "one-dimensional" physical simulation experiment. In this simulation, the natural gas of"continuous" tight gas reservoirs moves tbrward with no preferential petroleum migration pathways (PPMP), and the natural gas saturation of"continuous" tight gas reservoirs is higher than that of conventional reservoirs.
基金National Key Basic Research Development Program Project of China(2012CB417202)Key Project of National Natural Science Foundation(91337215)National Natural Science Foundation of China(41275051)
文摘NCEP/NCAR data are utilized to analyze an extreme flood year(1998) and an extreme dry year(2006) in the Sichuan-Chongqing region(SCR) and the results are as follows. The positive divergence of South Asia High(SAH) is stronger in the flood year; the position of the ridge line of SAH is southward compared with the annual average; Western Pacific Subtropical High(WPSH) extends westward and its ridge line is southward. In the drought year, the positive divergence of SAH is weaker, its ridge line is northward, and the position of WPSH is also northward. As shown in the dynamics, in drought(flood) years, negative(positive) vorticity advection in the upper atmosphere can cause the atmosphere to ascend(descend), and anomalous circulation of SAH displays divergence(convergence), and anomalous circulation of the lower atmosphere shows convergence(divergence). Thermal structure of the atmosphere shows that there is warm(cold) temperature advection in the lower atmosphere, and the vertical distribution of diabetic heating causes SAH's local circulation to display convergence(divergence) and affects vertical motion of the lower atmosphere circulation eventually. To some extent, the two extreme years in the SCR is closely related to the vertical motion of atmosphere circulation and the variation of such vertical motion is caused by differences of interactions between SAH and lower atmosphere circulations.
文摘利用1961—2022年四川155个国家气象站逐日气温、降水资料和NCEP/NCAR再分析资料等,对2022年四川持续高温干旱事件特征及成因进行分析。结果表明:2022年夏季四川出现极端高温干旱天气,全省平均气温、最高气温、高温日数均突破历史同期极值,73.0%的站点出现重旱及以上旱情,为1961年以来最严重高温伏旱天气气候事件。南亚高压北跳东进,异常偏强偏北,500 h Pa青藏高压发展东移,或西太平洋副热带高压加强西伸北抬,与南亚高压叠加,形成稳定正压结构控制四川,是造成高温干旱的主要原因。亚洲中纬度地区盛行纬向环流,伊朗高压、青藏高压和西太平洋副热带高压打通形成高压带,盛行下沉辐散气流,阻挡中高纬冷空气南下和低纬暖湿气流北上,导致四川地区降水异常偏少,是高温干旱的间接原因。