Notable differences in the structural characteristics and evolution of three adjacent sub-sags,i.e.,the Wenchang sub-sags A,B,and C,on the downthrown side of the Zhu IlI South Fault in the Wenchang Sag,are significant...Notable differences in the structural characteristics and evolution of three adjacent sub-sags,i.e.,the Wenchang sub-sags A,B,and C,on the downthrown side of the Zhu IlI South Fault in the Wenchang Sag,are significant as they affect the formation and distribution of the oil and gas in these three sub-sags.However,the differences in their tectonic evolutions and formation mechanisms have not yet been adequately explained.In this paper,stress analysis,equilibrium profiles,and paleogeomorphic restora-tion,are used to investigate the dynamic settings,formation mechanisms,and influencing factors of the structural deformation related to the formation of the Wenchang Sag based on interpretation of seismic data.The results of the stress analysis suggest clockwise deflection of the regional tensile stress direction from a WNW-ESE trend during the Early Paleocene to NW-SE and NNW-SSE trends during the Eocene,to a nearly N-S trend during the Oligocene,and finally to a NNE-SSW trend during the Miocene.This clockwise rotation of the regional tensile stress direction led to the formation of a dextral strike-slip stress component parallel to the NE-trending Zhu I South Fault.This strike-slip stress component formed a releasing bend in sub-sag A,and may be associated with the continuous subsidence of a thick sedimentary layer in sub-sag A.It also created a restraining bend in sub-sag B,which underwent multiple structural inversions during its extension and subsidence and has a relatively s mall sedimentary thick-ness.The double restraining bend in sub-sag C is considered to have been strongly uplifted and eroded in response to this strike-slip stress component.Four obvious structural inversions in sub-sag B are iden-tified in this paper.These structural inversions correspond to the last four regional tectonic movements.This interpretation suggests that the formation of the structural inversions was likely related to the strong tensile stress and the small intersection angle between the direction of the regional tensile stress and the pre-existing boundary fault.The rotation of the tensile stress direction was responsible for the strike-slip movement on the pre-existing boundary fault and the formation of the releasing bend and restraining bend,which controlled the structural evolutions of the sub-sags.This reasonably explains the differential tectonic evolution of these three sub-sags in the Wenchang Sag,and provides a crucial idea forstructuralanalysisof similarbasins.展开更多
The relationships between crustal stretching and thinning,basin structure and petroleum geology in Baiyun deep-water area were analyzed using large area 3D seismic,gravity,magnetic,ocean bottom seismic(OBS),deep-water...The relationships between crustal stretching and thinning,basin structure and petroleum geology in Baiyun deep-water area were analyzed using large area 3D seismic,gravity,magnetic,ocean bottom seismic(OBS),deep-water exploration wells and integrated ocean drilling program(IODP).During the early syn-rifting period,deep-water area was a half-graben controlled by high angle faults influenced by the brittle extension of upper crust.In the mid syn-rifting period,this area was a broad-deep fault depression controlled by detachment faults undergone brittle-ductile deformation and differentiated extension in the crust.In the late syn-rifting period,this area experienced fault-sag transition due to saucer-shaped rheology change dominated by crustal ductile deformation.A broad-deep fault depression controlled by the large detachment faults penetrating through the crust is an important feature of deep-water basin.The study suggests that the broad-deep Baiyun sag provides great accommodation space for the development of massive deltaic-lacustrine deposition system and hydrocarbon source rocks.The differentiated lithospheric thinning also resulted in the different thermal subsidence during post-rifting period,and then controlled the development of continental shelf break and deep-water reservoir sedimentary environment.The high heat flow background caused by the strong thinning of lithosphere and the rise of mantle source resulted in particularities in the reservoir diagenesis,hydrocarbon generation process and accumulation of deep-water area in northern South China Sea.展开更多
The characteristics of low permeability reservoirs and distribution of sweet spots in the Oligocene Zhuhai Formation of Wenchang A sag, Pearl River Basin were investigated by core observation and thin section analysis...The characteristics of low permeability reservoirs and distribution of sweet spots in the Oligocene Zhuhai Formation of Wenchang A sag, Pearl River Basin were investigated by core observation and thin section analysis. The study results show that there develop the fine, medium and coarse sandstone reservoirs of tidal flat–fan delta facies, which are of mostly low permeability and locally medium permeability. There are two kinds of pore evolution patterns: oil charging first and densification later, the reservoirs featuring this pattern are mainly in the third member of Zhuhai Formation between the south fault zone and the sixth fault zone, and the pattern of densification first and gas charging later is widespread across the study area. Strong compaction and local calcium cementation are the key factors causing low permeability of the reservoirs in the Zhuhai Formation. Thick and coarse grain sand sedimentary body is the precondition to form "sweet spot" reservoirs. Weak compaction and cementation, dissolution, early hydrocarbon filling and authigenic chlorite coating are the main factors controlling formation of "sweet spot" reservoir. It is predicted that there develop between the south fault and sixth fault zones the Class Ⅰ "sweet spot" in medium compaction zone, Class Ⅱ "sweet spot" in nearly strong compaction zone, Class Ⅲ "sweet spot" reservoir in the nearly strong to strong compaction zone with oil charging at early stage, and Class IV "sweet spot" reservoir in the strong compaction and authigenic chlorite coating protection zone in the sixth fault zone.展开更多
The Miocene epoch marks the most crucial period during the Cenozoic cooling trend, characterized by the Middle Miocene Climatic Optimum(MMCO) and a series of short–lived cooling events(Miocene isotope events).To unde...The Miocene epoch marks the most crucial period during the Cenozoic cooling trend, characterized by the Middle Miocene Climatic Optimum(MMCO) and a series of short–lived cooling events(Miocene isotope events).To understand the paleoenvironmental evolution along the shallow water shelf in the South China Sea during the Miocene, the benthic foraminiferal assemblage and total organic carbon content(TOC) were analyzed at Hole LF14 located in the Lufeng Sag, northern South China Sea. Three benthic foraminiferal assemblages(e.g., the Uvigerina spp. assemblage, the Cibicides spp. assemblage, and the Cibicidoides spp. assemblage), corresponding to different watermass conditions, were recognized based on Q–mode factor analysis. Early studies suggested that Hole LF14 was deposited under semienclosed bay, middle to outer shelf or even upper bathyal environment during ~18.7–4.53 Ma. The dominant Uvigerina spp. assemblage was characterized by low diversity and shallow infaunal to infaunal species, indicating a warm, low–oxygenation and eutrophic conditions since the Early Miocene to MMCO(~18.7–14.24 Ma). An abrupt sea level drop and significant faunal changes were recorded during 14.24–13.41 Ma, suggesting development of the East Antarctic Ice Sheets, which resulted in a drop of sea level and change in benthic foraminiferal assemblages along the shallow water shelf. Beyond the Uvigerina spp.assemblage, the Cibicides spp. assemblage became important during the middle–late Middle Miocene(14.24–11.54 Ma). This assemblage was dominated by epifaunal species with relative high diversity, suggesting high–energy, high–oxygenation and oligotrophic conditions with episodic supply of organic food. The dominant Cibicidoides spp. assemblage with high diversity, indicates a mesotrophic conditions with relative high–oxygen content during the Late Miocene to Pliocene(11.54–4.53 Ma). The appearance and continuous occurrence of Ammonia spp. and Pseudorotalia spp. since 10.02 Ma, may reflect the influence of the Kuroshio Current.展开更多
Deepwater oil and gas exploration has become a global hotspot in recent years and the study of the deep waters of marginal seas is an important frontier research area.The South China Sea(SCS)is a typical marginal sea ...Deepwater oil and gas exploration has become a global hotspot in recent years and the study of the deep waters of marginal seas is an important frontier research area.The South China Sea(SCS)is a typical marginal sea that includes Paleo SCS and New SCS tectonic cycles.The latter includes continental marginal rifting,intercontinental oceanic expansion and oceanic shrinking,which controlled the evolution of basins,and the generation,migration and accumulation of hydrocarbons in the deepwater basins on the continental margin of the northern SCS.In the Paleogene,the basins rifted along the margin of the continent and were filled mainly with sediments in marine-continental transitional environments.In the Neogene–Quaternary,due to thermal subsidence,neritic-abyssal facies sediments from the passive continental margin of the SCS mainly filled the basins.The source rocks include mainly Oligocene coal-bearing deltaic and marine mudstones,which were heated by multiple events with high geothermal temperature and terrestrial heat flow,resulting in the generation of gas and oil.The faults,diapirs and sandstones controlled the migration of hydrocarbons that accumulated principally in a large canyon channel,a continental deepwater fan,and a shelf-margin delta.展开更多
Eleven lithofacies and five lithofacies associations were indentified in the Miocene Zhujiang Formation on the basis of detailed core analysis. It could he determined that three depositional types developed, namely su...Eleven lithofacies and five lithofacies associations were indentified in the Miocene Zhujiang Formation on the basis of detailed core analysis. It could he determined that three depositional types developed, namely submarine fan, basin and deep-water traction current. Six microfacies were further recognized within the fan, including main channels in the inner fan, distributary channels in the middle fan, inter-channels, levees and the outer fan. The lower Zhujiang Formation, mainly sandstone associations, was inner fan and inner-middle fan deposits of the basin fan and the slope fan. The middle part, mainly mudstone associations, was outer fan deposits. With the transgression, the submarine fan was finally replaced by the basinal pelagic deposits which were dominated by mudstone associations, siltstone associations, and deep-water limestone associations. During the weak gravity flow activity, the lower channels, the middle-upper outer fans and basin deposits were strongly modified by the deep-water traction current. The identification of the deep-water traction deposition in Miocene Zhujiang Formation would be of great importance. It could be inferred that the deep- water traction current had been existing after the shelf-break formation since the Late Oligocene (23.8 Ma) in the Baiyun sag, influencing and controlling the sediment composition, the distribution, and depositional processes. It would provide great enlightenment to the paleo-oceanic current circulation in the northern South China Sea.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.9132820142006068)Shandong Special Fund of Qingdao National Laboratory of Marine Science and Technology(No.2021QNLM020001-1).
文摘Notable differences in the structural characteristics and evolution of three adjacent sub-sags,i.e.,the Wenchang sub-sags A,B,and C,on the downthrown side of the Zhu IlI South Fault in the Wenchang Sag,are significant as they affect the formation and distribution of the oil and gas in these three sub-sags.However,the differences in their tectonic evolutions and formation mechanisms have not yet been adequately explained.In this paper,stress analysis,equilibrium profiles,and paleogeomorphic restora-tion,are used to investigate the dynamic settings,formation mechanisms,and influencing factors of the structural deformation related to the formation of the Wenchang Sag based on interpretation of seismic data.The results of the stress analysis suggest clockwise deflection of the regional tensile stress direction from a WNW-ESE trend during the Early Paleocene to NW-SE and NNW-SSE trends during the Eocene,to a nearly N-S trend during the Oligocene,and finally to a NNE-SSW trend during the Miocene.This clockwise rotation of the regional tensile stress direction led to the formation of a dextral strike-slip stress component parallel to the NE-trending Zhu I South Fault.This strike-slip stress component formed a releasing bend in sub-sag A,and may be associated with the continuous subsidence of a thick sedimentary layer in sub-sag A.It also created a restraining bend in sub-sag B,which underwent multiple structural inversions during its extension and subsidence and has a relatively s mall sedimentary thick-ness.The double restraining bend in sub-sag C is considered to have been strongly uplifted and eroded in response to this strike-slip stress component.Four obvious structural inversions in sub-sag B are iden-tified in this paper.These structural inversions correspond to the last four regional tectonic movements.This interpretation suggests that the formation of the structural inversions was likely related to the strong tensile stress and the small intersection angle between the direction of the regional tensile stress and the pre-existing boundary fault.The rotation of the tensile stress direction was responsible for the strike-slip movement on the pre-existing boundary fault and the formation of the releasing bend and restraining bend,which controlled the structural evolutions of the sub-sags.This reasonably explains the differential tectonic evolution of these three sub-sags in the Wenchang Sag,and provides a crucial idea forstructuralanalysisof similarbasins.
基金Supported by the Science and Technology Project of CNOOC Ltd.(YXKY-2012-SHENHAI-01)China National Science and Technology Major Project(2011ZX05025-003+1 种基金 2016ZX05026-003)the National Natural Science Foundation of China(91128207)
文摘The relationships between crustal stretching and thinning,basin structure and petroleum geology in Baiyun deep-water area were analyzed using large area 3D seismic,gravity,magnetic,ocean bottom seismic(OBS),deep-water exploration wells and integrated ocean drilling program(IODP).During the early syn-rifting period,deep-water area was a half-graben controlled by high angle faults influenced by the brittle extension of upper crust.In the mid syn-rifting period,this area was a broad-deep fault depression controlled by detachment faults undergone brittle-ductile deformation and differentiated extension in the crust.In the late syn-rifting period,this area experienced fault-sag transition due to saucer-shaped rheology change dominated by crustal ductile deformation.A broad-deep fault depression controlled by the large detachment faults penetrating through the crust is an important feature of deep-water basin.The study suggests that the broad-deep Baiyun sag provides great accommodation space for the development of massive deltaic-lacustrine deposition system and hydrocarbon source rocks.The differentiated lithospheric thinning also resulted in the different thermal subsidence during post-rifting period,and then controlled the development of continental shelf break and deep-water reservoir sedimentary environment.The high heat flow background caused by the strong thinning of lithosphere and the rise of mantle source resulted in particularities in the reservoir diagenesis,hydrocarbon generation process and accumulation of deep-water area in northern South China Sea.
基金Supported by the China National Science and Technology Major Project(2016ZX05024-006)Research Project of China National Offshore Oil Corporation(CNOOC-KJ125ZDXM07LTD02ZJ11)
文摘The characteristics of low permeability reservoirs and distribution of sweet spots in the Oligocene Zhuhai Formation of Wenchang A sag, Pearl River Basin were investigated by core observation and thin section analysis. The study results show that there develop the fine, medium and coarse sandstone reservoirs of tidal flat–fan delta facies, which are of mostly low permeability and locally medium permeability. There are two kinds of pore evolution patterns: oil charging first and densification later, the reservoirs featuring this pattern are mainly in the third member of Zhuhai Formation between the south fault zone and the sixth fault zone, and the pattern of densification first and gas charging later is widespread across the study area. Strong compaction and local calcium cementation are the key factors causing low permeability of the reservoirs in the Zhuhai Formation. Thick and coarse grain sand sedimentary body is the precondition to form "sweet spot" reservoirs. Weak compaction and cementation, dissolution, early hydrocarbon filling and authigenic chlorite coating are the main factors controlling formation of "sweet spot" reservoir. It is predicted that there develop between the south fault and sixth fault zones the Class Ⅰ "sweet spot" in medium compaction zone, Class Ⅱ "sweet spot" in nearly strong compaction zone, Class Ⅲ "sweet spot" reservoir in the nearly strong to strong compaction zone with oil charging at early stage, and Class IV "sweet spot" reservoir in the strong compaction and authigenic chlorite coating protection zone in the sixth fault zone.
基金The National Natural Science Foundation of China under contract No.91328201
文摘The Miocene epoch marks the most crucial period during the Cenozoic cooling trend, characterized by the Middle Miocene Climatic Optimum(MMCO) and a series of short–lived cooling events(Miocene isotope events).To understand the paleoenvironmental evolution along the shallow water shelf in the South China Sea during the Miocene, the benthic foraminiferal assemblage and total organic carbon content(TOC) were analyzed at Hole LF14 located in the Lufeng Sag, northern South China Sea. Three benthic foraminiferal assemblages(e.g., the Uvigerina spp. assemblage, the Cibicides spp. assemblage, and the Cibicidoides spp. assemblage), corresponding to different watermass conditions, were recognized based on Q–mode factor analysis. Early studies suggested that Hole LF14 was deposited under semienclosed bay, middle to outer shelf or even upper bathyal environment during ~18.7–4.53 Ma. The dominant Uvigerina spp. assemblage was characterized by low diversity and shallow infaunal to infaunal species, indicating a warm, low–oxygenation and eutrophic conditions since the Early Miocene to MMCO(~18.7–14.24 Ma). An abrupt sea level drop and significant faunal changes were recorded during 14.24–13.41 Ma, suggesting development of the East Antarctic Ice Sheets, which resulted in a drop of sea level and change in benthic foraminiferal assemblages along the shallow water shelf. Beyond the Uvigerina spp.assemblage, the Cibicides spp. assemblage became important during the middle–late Middle Miocene(14.24–11.54 Ma). This assemblage was dominated by epifaunal species with relative high diversity, suggesting high–energy, high–oxygenation and oligotrophic conditions with episodic supply of organic food. The dominant Cibicidoides spp. assemblage with high diversity, indicates a mesotrophic conditions with relative high–oxygen content during the Late Miocene to Pliocene(11.54–4.53 Ma). The appearance and continuous occurrence of Ammonia spp. and Pseudorotalia spp. since 10.02 Ma, may reflect the influence of the Kuroshio Current.
基金supported by the National Science and Technology Major Project(Grant nos.2016ZX05026,2016ZX05026–007–007)the National Natural Science Foundation of China(Grant nos.91528303,41502127)+1 种基金the Opening Foundation of State Key Laboratory of Continental Dynamics,Northwest University,the Natural Science Basic Research Plan in Shaanxi Province of China(Grant No.2017JM4013)the Scientific Team Foundation of Department of Geology,Northwest University,Xi’an。
文摘Deepwater oil and gas exploration has become a global hotspot in recent years and the study of the deep waters of marginal seas is an important frontier research area.The South China Sea(SCS)is a typical marginal sea that includes Paleo SCS and New SCS tectonic cycles.The latter includes continental marginal rifting,intercontinental oceanic expansion and oceanic shrinking,which controlled the evolution of basins,and the generation,migration and accumulation of hydrocarbons in the deepwater basins on the continental margin of the northern SCS.In the Paleogene,the basins rifted along the margin of the continent and were filled mainly with sediments in marine-continental transitional environments.In the Neogene–Quaternary,due to thermal subsidence,neritic-abyssal facies sediments from the passive continental margin of the SCS mainly filled the basins.The source rocks include mainly Oligocene coal-bearing deltaic and marine mudstones,which were heated by multiple events with high geothermal temperature and terrestrial heat flow,resulting in the generation of gas and oil.The faults,diapirs and sandstones controlled the migration of hydrocarbons that accumulated principally in a large canyon channel,a continental deepwater fan,and a shelf-margin delta.
基金granted by the National Science and Technology Major Project of the Ministry of Science and Technology of China(Grant No.2008ZX05056-02-02)
文摘Eleven lithofacies and five lithofacies associations were indentified in the Miocene Zhujiang Formation on the basis of detailed core analysis. It could he determined that three depositional types developed, namely submarine fan, basin and deep-water traction current. Six microfacies were further recognized within the fan, including main channels in the inner fan, distributary channels in the middle fan, inter-channels, levees and the outer fan. The lower Zhujiang Formation, mainly sandstone associations, was inner fan and inner-middle fan deposits of the basin fan and the slope fan. The middle part, mainly mudstone associations, was outer fan deposits. With the transgression, the submarine fan was finally replaced by the basinal pelagic deposits which were dominated by mudstone associations, siltstone associations, and deep-water limestone associations. During the weak gravity flow activity, the lower channels, the middle-upper outer fans and basin deposits were strongly modified by the deep-water traction current. The identification of the deep-water traction deposition in Miocene Zhujiang Formation would be of great importance. It could be inferred that the deep- water traction current had been existing after the shelf-break formation since the Late Oligocene (23.8 Ma) in the Baiyun sag, influencing and controlling the sediment composition, the distribution, and depositional processes. It would provide great enlightenment to the paleo-oceanic current circulation in the northern South China Sea.