Fish biomass is a critical component of fishery stock assessment and management and it is often estimated from ocean primary production(OPP). However, the relationship between the biomass of a fish stock and OPP is ...Fish biomass is a critical component of fishery stock assessment and management and it is often estimated from ocean primary production(OPP). However, the relationship between the biomass of a fish stock and OPP is always complicated due to a variety of trophic controls in the ecosystem. In this paper, we examine the quantitative relationship between the biomass of chub mackerel(Scomber japonicus) and net primary production(NPP) in the southern East China Sea(SECS), using catch and effort data from the Chinese mainland large light-purse seine fishery logbook and NPP derived from remote sensing. We further discuss the mechanisms of trophic control in regulating this relationship. The results show a significant non-linear relationship exists between standardized CPUE(Catch-Per-Unit-Effort) and NPP(P〈0.05). This relationship can be described by a convex parabolic curve, where the biomass of chub mackerel increases with NPP to a maximum and then decreases when the NPP exceeds this point. The results imply that the ecosystem in the SECS is subject to complex trophic controls. We speculate that the change in abundance of key species at intermediate trophic levels and/or interspecific competition might contribute to this complex relationship.展开更多
In this paper, two sets of gravity and magnetic data were used to study the tectonics of the southern East China Sea and Ryukyu trench-arc system: one data set was from the 'Geological-geophysical map series of Chin...In this paper, two sets of gravity and magnetic data were used to study the tectonics of the southern East China Sea and Ryukyu trench-arc system: one data set was from the 'Geological-geophysical map series of China Seas and adjacent areas' database and the other was newly collected by R/VKexue Ⅲ in 2011. Magnetic and gravity data were reorganized and processed using the software MMDP, MGDP and RGIS. In addition to the description of the anomaly patterns in different areas, deep and shallow structure studies were performed by using several kinds of calculation, including a spectrum analysis, upward-continuation of the Bouguer anomaly and horizontal derivatives of the total-field magnetic anomaly. The depth of the Moho and magnetic basement were calculated. Based on the above work, several controversial tectonic problems were discussed. Compared to the shelf area and Ryukyu Arc, the Okinawa Trough has an obviously thinned crust, with the thinnest area having thickness less than 14km in the southern part. The Taiwan-Sinzi belt, which terminates to the south by the NW-SE trending Miyako fault belt, contains the relic volcanic arc formed by the splitting of the paleo Ryukyu volcanic arc as a result of the opening of the Okinawa Trough. As an important tectonic boundary, the strike-slip type Miyako fault belt extends northwestward into the shelf area and consists of several discontinuous segments. A forearc terrace composed of an exotic terrane collided with the Ryukyu Arc following the subduction of the Philippine Sea Plate. Mesozoic strata of varying thicknesses exist beneath the Cenozoic strata in the shelf basin and significantly influence the magnetic pattern of this area. The gravity and magnetic data support the existence of a Great East China Sea, which suggests that the entire southern East China Sea shelf area was a basin in the Mesozoic without alternatively arranged uplifts and depressions, and might have extended southwestward and connected with the northern South China Sea shelf basin.展开更多
Basin-mountain coupling is a key issue for basin formation and evolution. The analysis of basin-mountain coupling process, as well as quantitative or semiquantitative restoration of prototype basin and the evolution o...Basin-mountain coupling is a key issue for basin formation and evolution. The analysis of basin-mountain coupling process, as well as quantitative or semiquantitative restoration of prototype basin and the evolution of continental margin, can be used to interpret the geological process of basin-range conversion and reconstruct early prototype basins, which is a difficult and leadin~ scientific oroblem of basin research.展开更多
Clarifying eukaryotic microbial spatial distribution patterns and their determinants is an important idea in ecological research.However,information on the distribution patterns of eukaryotic microbial community struc...Clarifying eukaryotic microbial spatial distribution patterns and their determinants is an important idea in ecological research.However,information on the distribution patterns of eukaryotic microbial community structures(EMCSs)within oceans remains unclear.In this study,surface water samples from the southern East China Sea(SECS)were collected to investigate the spatiotemporal variation in EMCSs by using 18S rRNA high-throughput sequencing technology and the impact of this variation on Pseudosciaena crocea during the breeding season.The results indicated that the distribution patterns of the eukaryotic microbial community structure were different among the Sansha Bay,Mindong and Wentai reserves and the offshore East China Sea.In addition,there were notable potential effects of EMCSs on fishery activities.The variation partitioning analysis showed the environmental and spatial factors caused 53.4%of the variation in the EMCSs,indicating that spatially structured environmental factors were the key determinants of the EMCSs spatial heterogeneity in the SECS and may have contributed to the general distribution of P.crocea.In addition,all the environmental factors were the main factors driving the distribution of eukaryotic microbes except for total phosphorus.Furthermore,it was noted some phytoplankton such as Poterioochromonas and Rhizophydium of fungi in Sansha Bay can effectively prevent Cyanobacteria blooms.Chrysophyceae are natural high-quality baits for juvenile fish distributed in Sansha Bay,Mindong and Wentai reserves.This study provides a part of the insight into potential eukaryotic community distributions in large water bodies and how they are affected by environmental factors.展开更多
By using the data of Summer and Winter 1987, Spring and Autumn 1988 obtained by the R/V " Shijian" during the China-Japan Joint Research Program on Kuroshio, the paper makes an analysis and research on the w...By using the data of Summer and Winter 1987, Spring and Autumn 1988 obtained by the R/V " Shijian" during the China-Japan Joint Research Program on Kuroshio, the paper makes an analysis and research on the water type distribution and its variations in the studied sea area. Trie results of which are mainly as follows: (1) The Class IV mixing water whose property is similar to that of the continental coastal water is located in the northeast sea area, along the coast of the continent in autumn and winter while extending to the open sea in spring and summer. (2) The boundary between the Kuroshio water and the shelf mixing water (called the left boundary of the Kroshio water) is approximately located in between the 100m and 200m isobaths in various seasons and various layers, and mostly near the 200m isobath. In the sea area northeast of Taiwan, the Kuroshio water is to the west most in spring and then in winter. In summer, it is to the east most while, in autumn, it is in between its positions in summer展开更多
On the basis of the hydrographic data obtained from June 17 to 25, 1999 on board R/V Eardo , Korea (hereafter'the second cruise'), the circulation in the southern Huanghai Sea and East China Sea is computed b...On the basis of the hydrographic data obtained from June 17 to 25, 1999 on board R/V Eardo , Korea (hereafter'the second cruise'), the circulation in the southern Huanghai Sea and East China Sea is computed by using the modified inverse method. The comparison between the two computed results in the first cruise, which was carried out from June 4 to 19, 1999 on board R/V Xiangyanghong 14, China, and in the second cruise is made. The following results have been obtained. (1) Part of the Kuroshio flows northward through the eastern part of Section E, and its volume transport(VT) is about 6.2×106 m3/s,and its maximum velocity is about 93 cm/s.This shows that most of the Kuroshio flows northward through the region east of Section E.The VT of the offshore branch of Taiwan Warm Current west of the Kuroshio through Section E is about 0.4×106 m3/s. (2) There is the following variability between these two cruises, whose time difference is about two weeks:① The position of the Kuroshio in the second cruise is slightly more east than that in the first cruise; ②The high-density water (HDW) with a cold water occurs in the region south of Cheju Island between 125°30' and 127°E at Sections D and C. The circulation in the region of HDW is cyclonic. Comparing the position of HDW during the second cruise with that during the first cruise,it is found that its position in the second cruise moves slightly northward.(3) The cold and uniform mixing layer occurs in the layer from the 30 m level to the bottom of the middle part of Section A and in the layer from the 20 m level to the bottom of the middle part of Section B,respectively.They are both the southern part of the Huanghai Sea Cold Water Mass (HSCWM). (4) There are higher temperature and lower density with a weaker anticyclonic circulation in the southwestern part of the computed region.Its center is located at the westernmost point of Section E.展开更多
Synoptic features in/around thermal fronts and cross-frontal heat fluxes in the southern Huanghai./Yellow Sea and East China Sea (HES) were examined using the data collected from four airborne expendable bathythermo...Synoptic features in/around thermal fronts and cross-frontal heat fluxes in the southern Huanghai./Yellow Sea and East China Sea (HES) were examined using the data collected from four airborne expendable bathythermograph surveys with horizontal approxmately 35 km and vertical 1 m(from the surface to 400 m deep) spacings. Since the fronts are strongly affected by HES current system, the synoptic thermal features in/around them represent the interaction of currents with surrounding water masses. These features can not be obtained from climatological data. The identified thermal features are listed as follows : ( 1 ) multiple boundaries of cold water, asymmetric thermocline intrusion, locally-split front by homogeneous water of approxmately 18 ℃, and mergence of the front by the Taiwan Warm Current in/around summertime southern Cheju - Changjiang/Yangtze front and Tsushima front; (2) springtime frontal eddy-like feature around Tsushima front; (3) year-round cyclonic meandering and summertime temperature-inversion at the bottom of the surface mixed layer in Cheju - Tsushima front; and (4) multistructure of Kuroshio front. In the Kuroshio front the mean variance of vertical temperature gradient is an order of degree smaller than that in other HES fronts. The southern Cheju- Changjiang front and Cheju -Tsushima front are connected with each other in the summer with comparable cross-frontal temperature gradient. However, cross-frontal heat flux and lateral eddy diffusivity are stronger in the southern Cheju - Changjiang front. The cross-frontal heat exchange is the largest in the mixing zone between the modified Huanghai Sea bottom cold water and the Tsushima Warm Current, which is attributable to enhanced thermocline intrusions.展开更多
Distributions and sea-to-air fluxes of five kinds of volatile halocarbons(VHCs) were studied in the southern Yellow Sea(SYS) and the East China Sea(ECS) in November 2007. The results showed that the concentratio...Distributions and sea-to-air fluxes of five kinds of volatile halocarbons(VHCs) were studied in the southern Yellow Sea(SYS) and the East China Sea(ECS) in November 2007. The results showed that the concentrations of 1,1,1-trichloroethane(C2H3Cl3), 1,1-dichloroethene(C2H2Cl2), 1,1,2-trichloroethene(C2HCl3), trichloromethane(CHCl3) and tetrachloromethane(CCl4) in the surface water were 0.31–4.81, 2.75–21.3, 1.21–17.1, 5.02–233 and 0.045–4.47 pmol/L, respectively, with the average values of 1.89, 12.20, 6.93, 60.90 and 0.33 pmol/L. On the whole, the horizontal distributions of C2H3Cl3, C2H2Cl2 and CCl4 were affected mainly by anthropogenic activities, while C2HCl3 and CHCl3 were influenced by biological factors as well as anthropogenic activities. In the study area, the concentrations of VHCs(except C2HCl3) exhibited a decreasing trend from inshore to offshore sites, with the higher values occurring in the coastal waters. The sea-to-air fluxes of C2H3Cl3, C2HCl3, CHCl3 and CCl4 were calculated to be-56.00–(-5.68),-7.31–123.42, 148.00–1 309.31 and-83.32–(-1.53) nmol/(m2·d), respectively, with the average values of-6.77, 17.14, 183.38 and-21.27 nmol/(m2·d). Our data showed that the SYS and ECS in autumn was a sink for C2H3Cl3 and CCl4, while it was a source for C2HCl3 and CHCl3 in the atmosphere.展开更多
On the basis of hydrographic data and current measurement (the mooring system, vessel-mounted ADCP and toward ADCP) data obtained in June 1999, the circulations in the southern Huanghai Sea (HS) and northern East Chin...On the basis of hydrographic data and current measurement (the mooring system, vessel-mounted ADCP and toward ADCP) data obtained in June 1999, the circulations in the southern Huanghai Sea (HS) and northern East China Sea (ECS) are computed by using the modified inverse method. The Kuroshio flows northeastward through eastern part of the investigated region and has the main core at Section PN, a northward flow at the easternmost part of Section PN, a weaker anti-cyclonic eddy between these two northward flows, and a weak cyclonic eddy at the western part of Section PN. The above current structure is one type of the current structures at Section PN in ECS. The net northward volume transport (VT) of the Kuroshio and the offshore branch of Taiwan Warm Current (TWCOB) through Section PN is about 26.2 x 10(6) m(3)/s in June 1999. The VT of the inshore branch of Taiwan Warm Current (TWCIB) through the investigated region is about 0.4 x 10(6) m(3)/s. The Taiwan Warm Current (TWC) has much effect on the currents over the continental shelf. The Huanghai Sea Coastal Current (HSCC) flows southeastward and enters into the northwestern part of investigated region, and flows to turn cyclonically, and then it flows northeastward, due to the influences of the Taiwan Warm Current and topography. There is a cyclonic eddy south of Cheju Island where the Huanghai Sea Coastal Current flows to turn cyclonically. It has the feature of high dense and cold water. The uniform and cold water is occurred in the layer from about 30 m level to the bottom between Stations C306 and C311 at the northernmost Section C3. It is a southern part of the Huanghai Sea Cold Water Mass (HSCWM).展开更多
Results from sediment trap experiments conducted in the southern South China Sea from May 2004 to March 2006 revealed significant monsoon-induced seasonal variations in flux and shell geochemistry of planktonic forami...Results from sediment trap experiments conducted in the southern South China Sea from May 2004 to March 2006 revealed significant monsoon-induced seasonal variations in flux and shell geochemistry of planktonic foraminifera. The total and species-specific fluxes showed bimodal pattern, such as those of Globigerinoides ruber, Globigerinoides sacculifer, Neoglobo-quadrina dutertrei, Globigerinita glutinata, and Globigerina bulloides. Their high values occurred in the prevailing periods of the northeast and southwest monsoons, and the low ones appeared between the monsoons. Pulleniatina obliquiloculata had high flux rates mainly during northeast monsoon, with exceptional appearance in August 2004. These fluxes changed largely in accord with those of total particle matter and organic carbon, following chlorophyll concentration and wind force. It is inferred that the biogenic particle fluxes are controlled essentially by primary productivity under the influence of East Asian monsoon in the southern SCS. Shell stable oxygen isotope and Mg/Ca data correspond with seasonal variation of sea surface temperature. Shell δ18O values are affected primarily by sea water temperature, and the δ18O changes of different-depth dwelling species indicate upper sea water temperature gradient. Besides, the low carbon isotope values occurred in the periods of East Asian monsoon in general, whereas the high ones between the monsoons. The pattern is in contrary to chlorophyll concentration change, which indicates that the variation of the carbon isotope could probably reflect the change of sea surface productivity.展开更多
海洋初级生产力决定海洋渔业资源的潜在产量,我国应用海洋初级生产力方法估算渔业资源量亦已取得不少研究成果,但海洋生态系统中的营养控制机制复杂多样,将影响海洋初级生产力与鱼类资源量的关系。本文利用中国大型灯光围网渔业在东海...海洋初级生产力决定海洋渔业资源的潜在产量,我国应用海洋初级生产力方法估算渔业资源量亦已取得不少研究成果,但海洋生态系统中的营养控制机制复杂多样,将影响海洋初级生产力与鱼类资源量的关系。本文利用中国大型灯光围网渔业在东海南部渔场的鲐鱼(Scomber japonicus)捕捞数据与海洋净初级生产力的遥感资料分析了鲐鱼资源量变化与净初级生产力的关系,探讨了其生态系统营养控制机制。研究结果表明,净初级生产力与标准化CPUE(Catch Per Unit Effort)不存在显著的线性关系(P>0.05),但呈显著非线性关系(P<0.05),且这种非线性关系表现为倒抛物线,即鲐鱼资源量随净初级生产力的增加而提高,但当净初级生产力进一步增加,鲐鱼资源量则呈下降趋势。净初级生产力与标准化CPUE呈显著的倒抛物线关系表明生态系统存在上行控制机制,但并非受该机制完全控制。种间竞争或浮游动物资源量的变动均可能引起鲐鱼资源的相对丰度与净初级生产力呈倒抛物线关系。展开更多
基金The Industrialization Project of National Development and Reform Commission under contract No.2159999the Shanghai Universities First-class Disciplines Project(Fisheries)The National High-tech Industrialization Project of Remote Sensing System Development for High Resolution Ocean Satellite and Demonstration Application
文摘Fish biomass is a critical component of fishery stock assessment and management and it is often estimated from ocean primary production(OPP). However, the relationship between the biomass of a fish stock and OPP is always complicated due to a variety of trophic controls in the ecosystem. In this paper, we examine the quantitative relationship between the biomass of chub mackerel(Scomber japonicus) and net primary production(NPP) in the southern East China Sea(SECS), using catch and effort data from the Chinese mainland large light-purse seine fishery logbook and NPP derived from remote sensing. We further discuss the mechanisms of trophic control in regulating this relationship. The results show a significant non-linear relationship exists between standardized CPUE(Catch-Per-Unit-Effort) and NPP(P〈0.05). This relationship can be described by a convex parabolic curve, where the biomass of chub mackerel increases with NPP to a maximum and then decreases when the NPP exceeds this point. The results imply that the ecosystem in the SECS is subject to complex trophic controls. We speculate that the change in abundance of key species at intermediate trophic levels and/or interspecific competition might contribute to this complex relationship.
基金funded by the National Key Basic Research Program of China (973 ProgramGrant No.2013CB429701)National Natural Science Foundations of China (Grant Nos.41206050 and 41202081)
文摘In this paper, two sets of gravity and magnetic data were used to study the tectonics of the southern East China Sea and Ryukyu trench-arc system: one data set was from the 'Geological-geophysical map series of China Seas and adjacent areas' database and the other was newly collected by R/VKexue Ⅲ in 2011. Magnetic and gravity data were reorganized and processed using the software MMDP, MGDP and RGIS. In addition to the description of the anomaly patterns in different areas, deep and shallow structure studies were performed by using several kinds of calculation, including a spectrum analysis, upward-continuation of the Bouguer anomaly and horizontal derivatives of the total-field magnetic anomaly. The depth of the Moho and magnetic basement were calculated. Based on the above work, several controversial tectonic problems were discussed. Compared to the shelf area and Ryukyu Arc, the Okinawa Trough has an obviously thinned crust, with the thinnest area having thickness less than 14km in the southern part. The Taiwan-Sinzi belt, which terminates to the south by the NW-SE trending Miyako fault belt, contains the relic volcanic arc formed by the splitting of the paleo Ryukyu volcanic arc as a result of the opening of the Okinawa Trough. As an important tectonic boundary, the strike-slip type Miyako fault belt extends northwestward into the shelf area and consists of several discontinuous segments. A forearc terrace composed of an exotic terrane collided with the Ryukyu Arc following the subduction of the Philippine Sea Plate. Mesozoic strata of varying thicknesses exist beneath the Cenozoic strata in the shelf basin and significantly influence the magnetic pattern of this area. The gravity and magnetic data support the existence of a Great East China Sea, which suggests that the entire southern East China Sea shelf area was a basin in the Mesozoic without alternatively arranged uplifts and depressions, and might have extended southwestward and connected with the northern South China Sea shelf basin.
基金supported by the National Science Foundation of China(grant No.41476053)the China Geological Project(grants No.GZH201400214 and DD20160153)
文摘Basin-mountain coupling is a key issue for basin formation and evolution. The analysis of basin-mountain coupling process, as well as quantitative or semiquantitative restoration of prototype basin and the evolution of continental margin, can be used to interpret the geological process of basin-range conversion and reconstruct early prototype basins, which is a difficult and leadin~ scientific oroblem of basin research.
基金the National Key Research and Development Program of China(No.2018 YFC1406300)the Natural Science Foundation of Zhejiang Province(No.LQ20C190003)+2 种基金the Department of Education Scientifific Research Project of Zhejiang Province(No.Y201839309)the Natural Science Foundation of Ningbo(Nos.2019A610421 and 2019A610443)the K.C.Wong Magna Fund in Ningbo University。
文摘Clarifying eukaryotic microbial spatial distribution patterns and their determinants is an important idea in ecological research.However,information on the distribution patterns of eukaryotic microbial community structures(EMCSs)within oceans remains unclear.In this study,surface water samples from the southern East China Sea(SECS)were collected to investigate the spatiotemporal variation in EMCSs by using 18S rRNA high-throughput sequencing technology and the impact of this variation on Pseudosciaena crocea during the breeding season.The results indicated that the distribution patterns of the eukaryotic microbial community structure were different among the Sansha Bay,Mindong and Wentai reserves and the offshore East China Sea.In addition,there were notable potential effects of EMCSs on fishery activities.The variation partitioning analysis showed the environmental and spatial factors caused 53.4%of the variation in the EMCSs,indicating that spatially structured environmental factors were the key determinants of the EMCSs spatial heterogeneity in the SECS and may have contributed to the general distribution of P.crocea.In addition,all the environmental factors were the main factors driving the distribution of eukaryotic microbes except for total phosphorus.Furthermore,it was noted some phytoplankton such as Poterioochromonas and Rhizophydium of fungi in Sansha Bay can effectively prevent Cyanobacteria blooms.Chrysophyceae are natural high-quality baits for juvenile fish distributed in Sansha Bay,Mindong and Wentai reserves.This study provides a part of the insight into potential eukaryotic community distributions in large water bodies and how they are affected by environmental factors.
基金This is a project funded by the National Natural Science Fund numbered 4957275
文摘By using the data of Summer and Winter 1987, Spring and Autumn 1988 obtained by the R/V " Shijian" during the China-Japan Joint Research Program on Kuroshio, the paper makes an analysis and research on the water type distribution and its variations in the studied sea area. Trie results of which are mainly as follows: (1) The Class IV mixing water whose property is similar to that of the continental coastal water is located in the northeast sea area, along the coast of the continent in autumn and winter while extending to the open sea in spring and summer. (2) The boundary between the Kuroshio water and the shelf mixing water (called the left boundary of the Kroshio water) is approximately located in between the 100m and 200m isobaths in various seasons and various layers, and mostly near the 200m isobath. In the sea area northeast of Taiwan, the Kuroshio water is to the west most in spring and then in winter. In summer, it is to the east most while, in autumn, it is in between its positions in summer
基金This work is supported by the National Natural Sci-ence Foundation of China under contract No.401 76007 and 49736200the Major State Basic Research Pro-gram of China under contract No.G 1999043802.
文摘On the basis of the hydrographic data obtained from June 17 to 25, 1999 on board R/V Eardo , Korea (hereafter'the second cruise'), the circulation in the southern Huanghai Sea and East China Sea is computed by using the modified inverse method. The comparison between the two computed results in the first cruise, which was carried out from June 4 to 19, 1999 on board R/V Xiangyanghong 14, China, and in the second cruise is made. The following results have been obtained. (1) Part of the Kuroshio flows northward through the eastern part of Section E, and its volume transport(VT) is about 6.2×106 m3/s,and its maximum velocity is about 93 cm/s.This shows that most of the Kuroshio flows northward through the region east of Section E.The VT of the offshore branch of Taiwan Warm Current west of the Kuroshio through Section E is about 0.4×106 m3/s. (2) There is the following variability between these two cruises, whose time difference is about two weeks:① The position of the Kuroshio in the second cruise is slightly more east than that in the first cruise; ②The high-density water (HDW) with a cold water occurs in the region south of Cheju Island between 125°30' and 127°E at Sections D and C. The circulation in the region of HDW is cyclonic. Comparing the position of HDW during the second cruise with that during the first cruise,it is found that its position in the second cruise moves slightly northward.(3) The cold and uniform mixing layer occurs in the layer from the 30 m level to the bottom of the middle part of Section A and in the layer from the 20 m level to the bottom of the middle part of Section B,respectively.They are both the southern part of the Huanghai Sea Cold Water Mass (HSCWM). (4) There are higher temperature and lower density with a weaker anticyclonic circulation in the southwestern part of the computed region.Its center is located at the westernmost point of Section E.
基金The Naval Oceanographic Office,Office of Naval Research,and Naval Postgraduate School
文摘Synoptic features in/around thermal fronts and cross-frontal heat fluxes in the southern Huanghai./Yellow Sea and East China Sea (HES) were examined using the data collected from four airborne expendable bathythermograph surveys with horizontal approxmately 35 km and vertical 1 m(from the surface to 400 m deep) spacings. Since the fronts are strongly affected by HES current system, the synoptic thermal features in/around them represent the interaction of currents with surrounding water masses. These features can not be obtained from climatological data. The identified thermal features are listed as follows : ( 1 ) multiple boundaries of cold water, asymmetric thermocline intrusion, locally-split front by homogeneous water of approxmately 18 ℃, and mergence of the front by the Taiwan Warm Current in/around summertime southern Cheju - Changjiang/Yangtze front and Tsushima front; (2) springtime frontal eddy-like feature around Tsushima front; (3) year-round cyclonic meandering and summertime temperature-inversion at the bottom of the surface mixed layer in Cheju - Tsushima front; and (4) multistructure of Kuroshio front. In the Kuroshio front the mean variance of vertical temperature gradient is an order of degree smaller than that in other HES fronts. The southern Cheju- Changjiang front and Cheju -Tsushima front are connected with each other in the summer with comparable cross-frontal temperature gradient. However, cross-frontal heat flux and lateral eddy diffusivity are stronger in the southern Cheju - Changjiang front. The cross-frontal heat exchange is the largest in the mixing zone between the modified Huanghai Sea bottom cold water and the Tsushima Warm Current, which is attributable to enhanced thermocline intrusions.
基金The National Natural Science Foundation of China under contract Nos 41320104008 and 40776039the National Natural Science Foundation for Creative Research Groups under contract No.41221004+1 种基金the Changjiang Scholars Program,Ministry of Education of Chinathe"Taishan Scholar"Special Research Fund of Shandong Province,China
文摘Distributions and sea-to-air fluxes of five kinds of volatile halocarbons(VHCs) were studied in the southern Yellow Sea(SYS) and the East China Sea(ECS) in November 2007. The results showed that the concentrations of 1,1,1-trichloroethane(C2H3Cl3), 1,1-dichloroethene(C2H2Cl2), 1,1,2-trichloroethene(C2HCl3), trichloromethane(CHCl3) and tetrachloromethane(CCl4) in the surface water were 0.31–4.81, 2.75–21.3, 1.21–17.1, 5.02–233 and 0.045–4.47 pmol/L, respectively, with the average values of 1.89, 12.20, 6.93, 60.90 and 0.33 pmol/L. On the whole, the horizontal distributions of C2H3Cl3, C2H2Cl2 and CCl4 were affected mainly by anthropogenic activities, while C2HCl3 and CHCl3 were influenced by biological factors as well as anthropogenic activities. In the study area, the concentrations of VHCs(except C2HCl3) exhibited a decreasing trend from inshore to offshore sites, with the higher values occurring in the coastal waters. The sea-to-air fluxes of C2H3Cl3, C2HCl3, CHCl3 and CCl4 were calculated to be-56.00–(-5.68),-7.31–123.42, 148.00–1 309.31 and-83.32–(-1.53) nmol/(m2·d), respectively, with the average values of-6.77, 17.14, 183.38 and-21.27 nmol/(m2·d). Our data showed that the SYS and ECS in autumn was a sink for C2H3Cl3 and CCl4, while it was a source for C2HCl3 and CHCl3 in the atmosphere.
基金National Natural Science Foundation of China under contract No. 40176007Major State Basic Research Program of China under contract No.G 1999043802.
文摘On the basis of hydrographic data and current measurement (the mooring system, vessel-mounted ADCP and toward ADCP) data obtained in June 1999, the circulations in the southern Huanghai Sea (HS) and northern East China Sea (ECS) are computed by using the modified inverse method. The Kuroshio flows northeastward through eastern part of the investigated region and has the main core at Section PN, a northward flow at the easternmost part of Section PN, a weaker anti-cyclonic eddy between these two northward flows, and a weak cyclonic eddy at the western part of Section PN. The above current structure is one type of the current structures at Section PN in ECS. The net northward volume transport (VT) of the Kuroshio and the offshore branch of Taiwan Warm Current (TWCOB) through Section PN is about 26.2 x 10(6) m(3)/s in June 1999. The VT of the inshore branch of Taiwan Warm Current (TWCIB) through the investigated region is about 0.4 x 10(6) m(3)/s. The Taiwan Warm Current (TWC) has much effect on the currents over the continental shelf. The Huanghai Sea Coastal Current (HSCC) flows southeastward and enters into the northwestern part of investigated region, and flows to turn cyclonically, and then it flows northeastward, due to the influences of the Taiwan Warm Current and topography. There is a cyclonic eddy south of Cheju Island where the Huanghai Sea Coastal Current flows to turn cyclonically. It has the feature of high dense and cold water. The uniform and cold water is occurred in the layer from about 30 m level to the bottom between Stations C306 and C311 at the northernmost Section C3. It is a southern part of the Huanghai Sea Cold Water Mass (HSCWM).
基金supported by National Key Development Program for Fundamental Research (Grant No.2007CB815901)National Natural Science Foundation of China (Grant No.40621063)
文摘Results from sediment trap experiments conducted in the southern South China Sea from May 2004 to March 2006 revealed significant monsoon-induced seasonal variations in flux and shell geochemistry of planktonic foraminifera. The total and species-specific fluxes showed bimodal pattern, such as those of Globigerinoides ruber, Globigerinoides sacculifer, Neoglobo-quadrina dutertrei, Globigerinita glutinata, and Globigerina bulloides. Their high values occurred in the prevailing periods of the northeast and southwest monsoons, and the low ones appeared between the monsoons. Pulleniatina obliquiloculata had high flux rates mainly during northeast monsoon, with exceptional appearance in August 2004. These fluxes changed largely in accord with those of total particle matter and organic carbon, following chlorophyll concentration and wind force. It is inferred that the biogenic particle fluxes are controlled essentially by primary productivity under the influence of East Asian monsoon in the southern SCS. Shell stable oxygen isotope and Mg/Ca data correspond with seasonal variation of sea surface temperature. Shell δ18O values are affected primarily by sea water temperature, and the δ18O changes of different-depth dwelling species indicate upper sea water temperature gradient. Besides, the low carbon isotope values occurred in the periods of East Asian monsoon in general, whereas the high ones between the monsoons. The pattern is in contrary to chlorophyll concentration change, which indicates that the variation of the carbon isotope could probably reflect the change of sea surface productivity.
文摘海洋初级生产力决定海洋渔业资源的潜在产量,我国应用海洋初级生产力方法估算渔业资源量亦已取得不少研究成果,但海洋生态系统中的营养控制机制复杂多样,将影响海洋初级生产力与鱼类资源量的关系。本文利用中国大型灯光围网渔业在东海南部渔场的鲐鱼(Scomber japonicus)捕捞数据与海洋净初级生产力的遥感资料分析了鲐鱼资源量变化与净初级生产力的关系,探讨了其生态系统营养控制机制。研究结果表明,净初级生产力与标准化CPUE(Catch Per Unit Effort)不存在显著的线性关系(P>0.05),但呈显著非线性关系(P<0.05),且这种非线性关系表现为倒抛物线,即鲐鱼资源量随净初级生产力的增加而提高,但当净初级生产力进一步增加,鲐鱼资源量则呈下降趋势。净初级生产力与标准化CPUE呈显著的倒抛物线关系表明生态系统存在上行控制机制,但并非受该机制完全控制。种间竞争或浮游动物资源量的变动均可能引起鲐鱼资源的相对丰度与净初级生产力呈倒抛物线关系。