1 Introduction Voluminous Mesozoic magmatic rocks containing abundant Au-Mo polymetallic mineralization resources are developed in the Xiaoqinling-Xiong’ershan district of the southern margin of the North China Crato...1 Introduction Voluminous Mesozoic magmatic rocks containing abundant Au-Mo polymetallic mineralization resources are developed in the Xiaoqinling-Xiong’ershan district of the southern margin of the North China Craton(NCC).展开更多
Objective Indosinian magmatic rocks mainly locate in west Qinling Orogen, which are, however, extremely rare in east Qingling Orogen (Lu Xinxiang, 2000; Zhang Guowei et al., 2001; Guo Xianqing et al., 2017). The Zh...Objective Indosinian magmatic rocks mainly locate in west Qinling Orogen, which are, however, extremely rare in east Qingling Orogen (Lu Xinxiang, 2000; Zhang Guowei et al., 2001; Guo Xianqing et al., 2017). The Zhifang Huangzhuang (ZH) area in south Songxian County is located in the southern margin of the North China Craton (Fig. l a), which is an important lndosinian alkaline magmatic occurrence including 32 syenite bodies and syenitic dykes in east Qinling Orogen. There are five syenite bodes in the ZH area, i.e., the Lang'aogou, Mogou, Longtou, Jiaogou and Wusanggou from west to east (Fig. l b).展开更多
The Paleoproterozoic Xiong’er Group is composed of mafic to felsic volcanic rocks and minor sedimentary rocks,distributed along the southern margin of the North China craton(NCC).It is a key marker for regional
Gold is commonly associated with arsenic in As-rich pyrite or arsenopyrite in a variety types of gold deposit,such as sediment-hosted gold deposits,epithermal Au-Ag deposits,Au-rich VMS deposits,and mesothermal lode g...Gold is commonly associated with arsenic in As-rich pyrite or arsenopyrite in a variety types of gold deposit,such as sediment-hosted gold deposits,epithermal Au-Ag deposits,Au-rich VMS deposits,and mesothermal lode gold deposits(Ciobanu and Cook,2002;Pals et al.展开更多
Late Mesozoic granitic magmatism(158–112 Ma) are widespread in the southern margin of the North China Craton(NCC), contemporary with many world-class Mo-Au-Ag-Pb-Zn polymetallic deposits. There are abrupt changes in ...Late Mesozoic granitic magmatism(158–112 Ma) are widespread in the southern margin of the North China Craton(NCC), contemporary with many world-class Mo-Au-Ag-Pb-Zn polymetallic deposits. There are abrupt changes in the elements and isotopic compositions of these granites at about 127 Ma. The early stage(158–128 Ma) granites show slightly or no negative Eu anomalies, large ion lithophile elements enriched and heavy REE depleted(such as Y and Yb), belonging to typical I-type granite. The late stage(126–112 Ma) granites are characterized by A-type and/or highly fractionated I-type granite, with higher contents of SiO2, K2 O, Y, Yb and Rb/Sr ratio and lower contents of Sr, δEu value and Sr/Y ratio than that of the early-stage granites.Moreover, the whole rock Nd and Hf isotopic compositions of the granites younger than 127 Ma show more depleted than those of the older one. The two stages of Late Mesozoic granites were derived from a source region of the ancient basement of the southern margin of the NCC incorporated the mantle material. The late stage(126–112 Ma) granites contain more fractions of mantle material with depleted isotopic composition than the early ones. The granites record evidence for a strong crust-mantle interaction. They formed in an intracontinental extensional setting which was related to lithospheric thinning and asthenospheric upwelling in this region, which was possibly caused by westward subduction of the Paleo-Pacific plate. 127 Ma is an critical period of the transformation of the tectonic regime.展开更多
Late Carboniferous fossils(such as Boultonia? sp., Tabulata, and spiriferoid specimens with smooth shells), bioclastic material(such as crinoid stems and sponge fragments), and Late Ordovician microfossils of the cono...Late Carboniferous fossils(such as Boultonia? sp., Tabulata, and spiriferoid specimens with smooth shells), bioclastic material(such as crinoid stems and sponge fragments), and Late Ordovician microfossils of the conodont Belodina have been discovered in the lower part of the strata typically referred to as the Neoproterozoic on the boundary of the provinces of Anhui and Henan in the southern margin of the North China Block. These findings prove that the strata contain macrofossils belonging to the Late Carboniferous, which belonged to a carbonate debris flow deposit that was formed under a carbonate slope environment. The conodont fossils might belong to a detrital deposit. Thus, it is possible to reset the stratigraphic sequences and tectonic attributes belonging to the North Huaiyang tectonic belt and limit the Shouxian fault to the boundary between the Dabie Orogen and North China Block.展开更多
1 Introduction The Wulong glomerophyric diorite porphyry has an extremely peculiar texture with plagioclase phenocrysts clustered as flower-like glomerocrysts(Figs.1a&b),which is never discovered elsewhere of the ...1 Introduction The Wulong glomerophyric diorite porphyry has an extremely peculiar texture with plagioclase phenocrysts clustered as flower-like glomerocrysts(Figs.1a&b),which is never discovered elsewhere of the world.The展开更多
The early Mesozoic marked an important transition from collisional orogeny to post-orogenic extension at the northern margin of the North China Craton(NCC). In this study, we undertook zircon U-Pb dating and whole-roc...The early Mesozoic marked an important transition from collisional orogeny to post-orogenic extension at the northern margin of the North China Craton(NCC). In this study, we undertook zircon U-Pb dating and whole-rock majorand trace-element geochemical analyses of early Mesozoic granitic rocks in the Chifeng area to establish their geochronological framework, petrogenesis, and implications for the tectonic evolution of the eastern Central Asia Orogenic Belt(CAOB). Zircon U-Pb dating results show that these rocks were emplaced in three stages during the Triassic:(1) syenogranites during 250-248 Ma,(2) granodiorites during 244-243 Ma, and(3) monzogranites and granodiorites during 232-230 Ma. These Triassic granitoids belong to the high-K calc-alkaline series and are evolved I-type granites. They have high SiO2 and low Mg O contents with enrichments in light rare-earth elements, Zr, Hf, Rb, Th, and U, and depletions in Ba, Nb, Ta, Sr, and Eu. These geochemical data indicate that the granitoids were derived from partial melting of a lower-crustal source under relatively low-pressure conditions and subsequently underwent extensive fractional crystallization. Considering both the geochemical data and regional geological information, we propose that the 250-248 Ma syenogranites were emplaced in an extensional environment linked to slab break-off after closure of the Paleo-Asian Ocean(PAO) along the Solonker-Xra Moron-Changchun suture zone. The 244-243 Ma granodiorites were formed in a compressional orogenic setting during collision between the Erguna-Xing’an-Songliao composite block and the NCC. The 232-230 Ma granodiorites and monzogranites were emplaced during the transition from compressional orogeny to post-orogenic extension. Overall, the early Mesozoic tectonic evolution of the Chifeng area can be divided into three main stages:(1) closure of the Paleo-Asian Ocean and extension related to slab break-off during the Early Triassic;(2) continuous collisional compression during the Middle Triassic after closure of the PAO;and(3) post-orogenic extension during the Late Triassic, most probably due to lithospheric delamination after amalgamation of the Erguna-Xing’an-Songliao composite block and the NCC.展开更多
The pre-Eocene history of the region around the present South China Sea is not well known. New multi-channel seismic profiles provide valuable insights into the probable Mesozoic history of this region. Detailed struc...The pre-Eocene history of the region around the present South China Sea is not well known. New multi-channel seismic profiles provide valuable insights into the probable Mesozoic history of this region. Detailed structural and stratigraphic interpretations of the multi-channel seismic profiles, calibrated with relevant drilling and dredging data, show major Mesozoic structural features. A structural restoration was done to remove the Cenozoic tectonic influence and calculate the Mesozoic tectonic compression ratios. The results indicate that two groups of compressive stress with diametrically opposite orientations, S(S)E– N(N)W and N(N)W–S(S)E, were active during the Mesozoic. The compression ratio values gradually decrease from north to south and from west to east in each stress orientation. The phenomena may be related to the opening of the proto-South China Sea(then located in south of the Nansha block) and the rate at which the Nansha block drifted northward in the late Jurassic to late Cretaceous. The Nansha block drifted northward until it collided and sutured with the southern China margin. The opening of the present South China Sea may be related to this suture zone, which was a tectonic zone of weakness.展开更多
The late Cenozoic geomorphic features and geochronologic data of the Zhingfang River catchment in the Yuntaishan World Geopark are studied. Several quarternary geochronologic methods, including electron spin resonance...The late Cenozoic geomorphic features and geochronologic data of the Zhingfang River catchment in the Yuntaishan World Geopark are studied. Several quarternary geochronologic methods, including electron spin resonance (ESR), optically stimulated luminescence (OSL), thermo-luminescence (TL) and U-series are presented in this paper. The results suggest that there are two planation surfaces, named as the Taihang surface which is a peneplain of Taihang stage formed during Oligocene or Oligocene to early-middle Miocene period, and Tang-hien surface which is a mature wide valley of Tang-hien stage formed during late Miocene-Pliocene or Piiocene-early Pleistocene period and probably ended prior to 2.2-2.6 Ma based on ESR dating. After the Tang-hien stage, the incision and aggradation of the river formed six stream terraces with heights of 3-5 m, 8-12 m, 22-24 m, 28-38 m, 50-62 m and 80-85 m above the river bottom, respectively. The dating results of the alluvium sediments suggest that these terraces were formed during Holocene, 20-23 ka B.P., 110-120 ka B.P., 200-240 ka B.P., 840-1200 ka B.P. or ~450 ka B.P. and 1600-1800 ka B.P. or -1100 ka B.P., respectively. These results indicate that episodic incision of the river, which controls the formation of the scenery in the Yuntaishan World Geopark, was mainly influenced by the periodic dry-wet climate change during late Cenozoic mountain uplift.展开更多
The North China Craton (NCC) is one of the largest blocks composing the continent. Different types of continental margins well developed around the NCC, along with lots of metallogenic systems of different metals and ...The North China Craton (NCC) is one of the largest blocks composing the continent. Different types of continental margins well developed around the NCC, along with lots of metallogenic systems of different metals and different times. Based on the study on the structural evolution of the NCC, the authors made a new division of tectonic units of the NCC. Through an analysis of the data of 1:25000 geochemical survey on stream sediments, regional geochemical features of main ore-forming elements including Au, Ag, Cu, Pb, Zn, W, Ni, Co and Mo of the NCC are discussed in the paper. Then different metallogenic systems and their forming processes and geodynamics are discussed in detail. At last, temporal and spatial distribution regularities are summarized and ten favorable ore-control factors on the paleocontinental margins are put forward, including (1) abundance of ore sources; (2) rendezvous of ore-forming fluids; (3) high thermo-dynamic anomaly; (4) remarkable Earth crust-mantle interaction; (5) cluster of macroscopic structures and their long activities; (6) diversity of ore-forming environments; (7) long geohistory; (8) multiforms of critical transitional ore-forming mechanisms; (9) multi-staged and superimposed ore-formation; and (10) suitable preservation condition.展开更多
The late Neoarchean metamorphosed volcanic rocks in the southern Liaoning Terrane(SLT) of the eastern North China Craton(NCC) are mainly composed of amphibolites and felsic gneisses and can be chemically classified as...The late Neoarchean metamorphosed volcanic rocks in the southern Liaoning Terrane(SLT) of the eastern North China Craton(NCC) are mainly composed of amphibolites and felsic gneisses and can be chemically classified as basalt(Group#1),basaltic andesite(Group#2),dacite(Group#3) and rhyodacite(Group#4).LA-ICP-MS zircon U-Th-Pb dating reveals that they formed at ~2.53-2.51 Ga.Group#1 samples are characterized by approximately flat chondrite-normalized rare earth element(REE) patterns with low(La/Yb)_N ratios and a narrow range of(Hf/Sm)N ratios,and their magmatic precursors were generated by partial melting of a depleted mantle wedge weakly metasomatized by subducted slab fluids.Compared to Group#1 samples,Group#2 samples display strongly fractionated REE patterns with higher(La/Yb)_N ratios and more scattered(Hf/Sm)N ratios,indicative of a depleted mantle wedge that had been intensely metasomatized by slab-derived melts and fluids.Group#3 samples are characterized by high MgO and transition trace element concentrations and fractionated REE patterns,which resemble typical high-Si adakites,and the magmatic precursors were derived from partial melting of a subducted oceanic slab.Group#4 samples have the highest SiO_2 and the lowest MgO and transition trace element contents,and were derived from partial melting of basaltic rocks at lower crust levels.Integrating these tholeiitic to calcalkaline volcanic rocks with the mass of contemporaneous dioritic-tonalitic-trondhjemitic-granodioritic gneisses,the late Neoarchean volcanic rocks in the SLT were most likely produced in an active continental margin.Furthermore,the affinities in lithological assemblages,metamorphism and tectonic regime among SLT,eastern Hebei to western Liaoning Terrane(EH-WLT),northern Liaoning to southern Jilin Terrane(NL-SJT),AnshanBenxi continental nucleus(ABN) and Yishui complex(YSC) collectively indicate that an integral and much larger continental block had been formed in the late Neoarchean and the craton-scale lateral accretion was a dominantly geodynamic mechanism in the eastern NCC.展开更多
The Hadamiao granodiorite,located on the northern margin of the North China platform and acting as the country rock of gold deposits in the Hadamiao region,was formed in the same age and similar tectonic settings with...The Hadamiao granodiorite,located on the northern margin of the North China platform and acting as the country rock of gold deposits in the Hadamiao region,was formed in the same age and similar tectonic settings with the Hadamiao gold deposit and the large-scale Bilihe gold deposit in the same area.By using the LA-ICP-MS method,the U-Pb age obtained is 267±1.3 Ma,which represents the crystallized age of the granodiorite,and that of the xenolithic zircon is 442.8±5 Ma. Base on the main elements,it exhibits the features of calc-alkaline to high-potassium calc-alkaline series,low silicon,and quasi-aluminous I-type granites,and with high magnesium(Mg~#=0.45-0.57) and high sodium contents(Na_2O/K_2O=0.98-2.29).The SREE values(81.6-110.15 ppm) are relatively low,the fractionations between LREE and HREE are obvious,showing a right-inclined dispersion in the REE distribution diagram.Compared with the primitive mantle,the rock is relatively rich in LREE(La and Ce),LILE(K,Sr,and Th),and intensively depleted in HFSE(Ti,P,Nb and Ta).The ratios of Sr/Y and(La/Yb)_N and the contents of Rb,Nb and Y are relatively low,the Sr values are high (436.35-567.26 ppm),and the Yb contents of most samples are low(1.25-1.8),which indicate the features of typical continental margin arc and adakitic rocks.According to the values ofε_(Nd)(t)(-2.4 to +0.2) and I_(Sr)(0.7028-0.7083),and variations of the La/Sm ratios,the Hadamiao granodiorite was formed from mixing of the thickened molten lower crust and the mantle wedge substances.The rock was related to the southward subduction and accretion of the Paleo-Asia Ocean in the Late Paleozoic, being Late Paleozoic magma of the continental margin arc formed on the basement of the Early Paleozoic accretion complexes,and showing a trend of turning into adakitic rocks,which indicates their great metallogenic(Au) potential.展开更多
The evolution of shale reservoirs is mainly related to two functions:mechanical compaction controlled by ground stress and chemical compaction controlled by thermal effect.Thermal simulation experiments were conducted...The evolution of shale reservoirs is mainly related to two functions:mechanical compaction controlled by ground stress and chemical compaction controlled by thermal effect.Thermal simulation experiments were conducted to simulate the chemical compaction of marine-continental transitional shale,and X-ray diffraction(XRD),CO2 adsorption,N2 adsorption and high-pressure mercury injection(MIP)were then used to characterize shale diagenesis and porosity.Moreover,simulations of mechanical compaction adhering to mathematical models were performed,and a shale compaction model was proposed considering clay content and kaolinite proportions.The advantage of this model is that the change in shale compressibility,which is caused by the transformation of clay minerals during thermal evolution,may be considered.The combination of the thermal simulation and compaction model may depict the interactions between chemical and mechanical compaction.Such interactions may then express the pore evolution of shale in actual conditions of formation.Accordingly,the obtained results demonstrated that shales having low kaolinite possess higher porosity at the same burial depth and clay mineral content,proving that other clay minerals such as illite-smectite mixed layers(I/S)and illite are conducive to the development of pores.Shales possessing a high clay mineral content have a higher porosity in shallow layers(<3500 m)and a lower porosity in deep layers(>3500 m).Both the amount and location of the increase in porosity differ at different geothermal gradients.High geothermal gradients favor the preservation of high porosity in shale at an appropriate Ro.The pore evolution of the marine-continental transitional shale is divided into five stages.Stage 2 possesses an Ro of 1.0%-1.6%and has high porosity along with a high specific surface area.Stage 3 has an Ro of 1.6%-2.0%and contains a higher porosity with a low specific surface area.Finally,Stage 4 has an Ro of 2.0%-2.9%with a low porosity and high specific surface area.展开更多
The Sidingheishan mafic-ultramafic intrusion is located in the eastern part of the Northern Tianshan Mountain, along the southern margin of the Central Asian Orogenic Belt in northern Xinjiang autonomous region of Chi...The Sidingheishan mafic-ultramafic intrusion is located in the eastern part of the Northern Tianshan Mountain, along the southern margin of the Central Asian Orogenic Belt in northern Xinjiang autonomous region of China. The Sidingheishan intrusion is mainly composed of wehrlite, olivine websterite, olivine gabbro, gabbro and hornblende gabbro. At least two pulses of magma were involved in the formation of the intrusion. The first pulse of magma produced an olivine-free unit and the second pulse produced an olivine-bearing unit. The magmas intruded the Devonian granites and granodiorites.An age of 351.4±5.8 Ma(Early Carboniferous) for the Sidingheishan intrusion has been determined by U-Pb SHRIMP analysis of zircon grains separated from the olivine gabbro unit. A U-Pb age of 359.2±6.4 Ma from the gabbro unit has been obtained by LA-ICP-MS. Olivine of the Sidingheishan intrusion reaches 82.52 mole% Fo and 1414 ppm Ni. On the basis of olivine-liquid equilibria, it has been calculated that the MgO and FeO included in the parental magma of a wehrlite sample were approximately10.43 wt% and 13.14 wt%, respectively. The Sidingheishan intrusive rocks are characterized by moderate enrichments in Th and Sm, slight enrichments in light REE, and depletions in Nb, Ta, Zr and Hf. The εNd(t) values in the rock units vary from +6.70 to +9.64, and initial87Sr/86Sr ratios range between 0.7035 and0.7042. Initial206Pb/204Pb,207Pb/204Pb and208Pb/204Pb values fall in the ranges of 17.23-17.91,15.45-15.54 and 37.54-38.09 respectively. These characteristics are collectively similar to the Heishan intrusion and the Early Carboniferous subduction related volcanic rocks in the Santanghu Basin, North Tianshan and Beishan area. The low(La/Gd)PMvalues between 0.26 and 1.77 indicate that the magma of the Sidingheishan intrusion was most likely derived from a depleted spinel-peridotite mantle.(Th/Nb)PMratios from 0.59 to 20.25 indicate contamination of the parental magma in the upper crust.Crystallization modeling methods suggest that the parental magma of the Sidingheishan intrusion was generated by flush melting of the asthenosphere and subsequently there was about 10 vol%contamination from a granitic melt. This was followed by about 5 vol% assimilation of upper crustal rocks. Thus, the high-Mg basaltic parental magma of Sidingheishan intrusion is interpreted to have formed from partial melting of the asthenosphere during the break-off of a subducted slab.展开更多
The northern margin of the North China Craton(NCC)contains widespread Permian magmatic rocks,but the origin of these rocks remains controversial.This uncertainty hampers us from better understanding of tectonic framew...The northern margin of the North China Craton(NCC)contains widespread Permian magmatic rocks,but the origin of these rocks remains controversial.This uncertainty hampers us from better understanding of tectonic framework and evolution of the eastern Paleo-Asian Ocean,particularly with respect to its final-stage subduction and closure time.To address these questions,this study presents petrological,zircon U-Pb geochronological,whole-rock geochemical and in situ zircon Hf isotopic data for these Permian mafic intrusions in the northern margin of the NCC.Precise zircon U-Pb dating results indicate that these mafic intrusions were emplaced in the Middle Permian(ca.260 Ma).Geochemically,the studied mafic intrusions have high MgO and transition metals element contents,with high Mg^(#) values,indicating a mantle origin.These mafic intrusions are characterized by enrichments in large ion lithophile elements(LILEs;e.g.,Rb,Ba,and K)and light rare earth elements(LREEs),and depletions in high field strength elements(HFSEs;e.g.,Nb,Ta,and Ti)and heavy rare earth elements(HREEs),indicating that they were formed in a subduction-related setting.These geochemical features,together with zircon ε_(Hf)(t)values(-1.1 to+11.2),indicate that their parental magmas were derived from partial melting of heterogeneous mantle wedge metasomatized by subduction-related fluids,with the contributions of slab sediments.The studied mafic intrusions also show wide range of major and trace elements contents,and variable Mg^(#) values,Eu and Sr anomalies,suggesting that their parental magmas had undergone variable degrees of fractional crystallization.Together with the E-W trending Permian continental arc along the northern margin of the NCC,we confirm that the generation of the Middle Permian mafic intrusions was related to southward subduction of the Paleo-Asian oceanic lithosphere beneath the NCC and the Paleo-Asian Ocean had not closed prior to the Middle Permian.展开更多
The Yuxi (豫西) fold-thrust fracture belt is part of the gigantic fold-thrust fracture belt that extends NW in the southern North China plate. The contents of major elements of tectonites were analyzed by ICP-AES. T...The Yuxi (豫西) fold-thrust fracture belt is part of the gigantic fold-thrust fracture belt that extends NW in the southern North China plate. The contents of major elements of tectonites were analyzed by ICP-AES. The analysis of chemical compositions and new stress minerals indicates: extending from the surrounding country rocks to the center of the fracture belt, the Fe2O3 content gradually increases while the FeO content gradually decreases; regular increase, decrease or peak changes are shown for chemical compositions like SiO2, Al2O3, Fe2O3, MgO, CaO, FeO, loss on ignition, TIO:, K2O, Na2 O, etc.. New stress minerals are developed for the south branch and few for the north branch. The characteristics of chemical compositions and new stress minerals of the thrust fracture demonstrate that the fracture belt has undergone a process from a closed reducing environmental system to a relatively open. oxidizing environmental system, andcompressive fractures have resulted from compression in the late stages of evolution, and the dynamothermal metamorphism and thrusting intensities are different between the south and north branches of the belt, which is strong for the south branch but relatively weak for the north branch.展开更多
Several stratigraphic breaks and unconformities exist in the Mesoproterozoic successions in the northern margin of the North China Block. Geologic characters and spatial distributions of five of these un- conformities...Several stratigraphic breaks and unconformities exist in the Mesoproterozoic successions in the northern margin of the North China Block. Geologic characters and spatial distributions of five of these un- conformities, which have resulted from different geological processes, have been studied. The uncon- formity beneath the Dahongyu Formation is interpreted as a breakup unconformity, representing the time of transition from continental rift to passive continental margin. The unconformities beneath the Gaoyuzhuang and the Yangzhuang formations are considered to be the consequence of regional eustatic fluctuations, leading to the exposure of highlands in passive margins during low sea-level stands and transgressive deposition on coastal regions during high sea-level stands. The unconformity atop the Tieling Formation might be caused by uplift due to contractional deformation in a back-arc setting, whereas the uplift after the deposition of the Xiamaling Formation might be attributed to a continental collision event. It is assumed that the occurrences of these unconformities in the Mesoproterozoic successions in the northern margin of the North China Block had a close bearing on the assemblage and breakup of the Columbia and Rodinia supercontinents.展开更多
In this study,the relationship between the North Atlantic Oscillation (NAO) in winter (DecemberFebruary) and the precipitation over southem China (SCP) in the following spring (March-May) was investigated.Resu...In this study,the relationship between the North Atlantic Oscillation (NAO) in winter (DecemberFebruary) and the precipitation over southem China (SCP) in the following spring (March-May) was investigated.Results showed an interdecadal change,from strong to weak connection,in their connection.Before the early 1980s,they were highly correlated,with a strong (weak) winter NAO followed by an increased (decreased) spring SCP.However,after the early 1980s,their relationship was weakened significantly.This unstable relationship may be linked to the climatological change of East Asian jet.Before the early 1980s,the wave train along the Asian jet propagated the NAO signal eastward to East Asia and affected local upper-tropospheric atmospheric circulation.A strong NAO in winter led to an anomalous anticyclonic circulation at the south side of 30°N in East Asia in spring,resulting in an increase of SCP.In contrast,after the early 1980s,the wave train pattern along the Asian jet extended eastward due to strengthening of the climatological East Asian jet.Correspondingly,the NAO-related East Asian atmospheric circulations in the upper troposphere shifted eastward,thereby weakening the linkage between the spring SCP and the winter NAO.展开更多
The Precambrian basement rocks in the Bengbu and neighboring areas, located at the southeastern margin of the North China Craton, occur as granulite terrains and xenoliths in the Mesozoic dioritic porphyry.
基金supported by the NSFC (41373039)the DREAM project of MOST, China (2016YFC0600403)
文摘1 Introduction Voluminous Mesozoic magmatic rocks containing abundant Au-Mo polymetallic mineralization resources are developed in the Xiaoqinling-Xiong’ershan district of the southern margin of the North China Craton(NCC).
基金supported by the National Nature Science Foundation of China(grant No.U1504405)
文摘Objective Indosinian magmatic rocks mainly locate in west Qinling Orogen, which are, however, extremely rare in east Qingling Orogen (Lu Xinxiang, 2000; Zhang Guowei et al., 2001; Guo Xianqing et al., 2017). The Zhifang Huangzhuang (ZH) area in south Songxian County is located in the southern margin of the North China Craton (Fig. l a), which is an important lndosinian alkaline magmatic occurrence including 32 syenite bodies and syenitic dykes in east Qinling Orogen. There are five syenite bodes in the ZH area, i.e., the Lang'aogou, Mogou, Longtou, Jiaogou and Wusanggou from west to east (Fig. l b).
文摘The Paleoproterozoic Xiong’er Group is composed of mafic to felsic volcanic rocks and minor sedimentary rocks,distributed along the southern margin of the North China craton(NCC).It is a key marker for regional
基金supported by the Natural Science Foundation of China(grants 9081400440821061)the 111 Project(B07039)
文摘Gold is commonly associated with arsenic in As-rich pyrite or arsenopyrite in a variety types of gold deposit,such as sediment-hosted gold deposits,epithermal Au-Ag deposits,Au-rich VMS deposits,and mesothermal lode gold deposits(Ciobanu and Cook,2002;Pals et al.
基金supported by the National Key Research and Development Program of China(Grant No.2016YFC0600106)the National Natural Science Foundation of China(Grant Nos.41402047&41373046)
文摘Late Mesozoic granitic magmatism(158–112 Ma) are widespread in the southern margin of the North China Craton(NCC), contemporary with many world-class Mo-Au-Ag-Pb-Zn polymetallic deposits. There are abrupt changes in the elements and isotopic compositions of these granites at about 127 Ma. The early stage(158–128 Ma) granites show slightly or no negative Eu anomalies, large ion lithophile elements enriched and heavy REE depleted(such as Y and Yb), belonging to typical I-type granite. The late stage(126–112 Ma) granites are characterized by A-type and/or highly fractionated I-type granite, with higher contents of SiO2, K2 O, Y, Yb and Rb/Sr ratio and lower contents of Sr, δEu value and Sr/Y ratio than that of the early-stage granites.Moreover, the whole rock Nd and Hf isotopic compositions of the granites younger than 127 Ma show more depleted than those of the older one. The two stages of Late Mesozoic granites were derived from a source region of the ancient basement of the southern margin of the NCC incorporated the mantle material. The late stage(126–112 Ma) granites contain more fractions of mantle material with depleted isotopic composition than the early ones. The granites record evidence for a strong crust-mantle interaction. They formed in an intracontinental extensional setting which was related to lithospheric thinning and asthenospheric upwelling in this region, which was possibly caused by westward subduction of the Paleo-Pacific plate. 127 Ma is an critical period of the transformation of the tectonic regime.
基金supported by funds from the China Geological Survey(12120113094300)the National Natural Science Foundation of China(40972082 and 41172097)
文摘Late Carboniferous fossils(such as Boultonia? sp., Tabulata, and spiriferoid specimens with smooth shells), bioclastic material(such as crinoid stems and sponge fragments), and Late Ordovician microfossils of the conodont Belodina have been discovered in the lower part of the strata typically referred to as the Neoproterozoic on the boundary of the provinces of Anhui and Henan in the southern margin of the North China Block. These findings prove that the strata contain macrofossils belonging to the Late Carboniferous, which belonged to a carbonate debris flow deposit that was formed under a carbonate slope environment. The conodont fossils might belong to a detrital deposit. Thus, it is possible to reset the stratigraphic sequences and tectonic attributes belonging to the North Huaiyang tectonic belt and limit the Shouxian fault to the boundary between the Dabie Orogen and North China Block.
基金financially supported by the National Natural Science Foundation of China(No.41502046,41530211 and 41272079)
文摘1 Introduction The Wulong glomerophyric diorite porphyry has an extremely peculiar texture with plagioclase phenocrysts clustered as flower-like glomerocrysts(Figs.1a&b),which is never discovered elsewhere of the world.The
基金financially supported by the National Key Research and Development Program (Grant Nos. 2018YFC0603804)the China Geological Survey (Grants DD20190042, DD20190039 and DD20160048-05)
文摘The early Mesozoic marked an important transition from collisional orogeny to post-orogenic extension at the northern margin of the North China Craton(NCC). In this study, we undertook zircon U-Pb dating and whole-rock majorand trace-element geochemical analyses of early Mesozoic granitic rocks in the Chifeng area to establish their geochronological framework, petrogenesis, and implications for the tectonic evolution of the eastern Central Asia Orogenic Belt(CAOB). Zircon U-Pb dating results show that these rocks were emplaced in three stages during the Triassic:(1) syenogranites during 250-248 Ma,(2) granodiorites during 244-243 Ma, and(3) monzogranites and granodiorites during 232-230 Ma. These Triassic granitoids belong to the high-K calc-alkaline series and are evolved I-type granites. They have high SiO2 and low Mg O contents with enrichments in light rare-earth elements, Zr, Hf, Rb, Th, and U, and depletions in Ba, Nb, Ta, Sr, and Eu. These geochemical data indicate that the granitoids were derived from partial melting of a lower-crustal source under relatively low-pressure conditions and subsequently underwent extensive fractional crystallization. Considering both the geochemical data and regional geological information, we propose that the 250-248 Ma syenogranites were emplaced in an extensional environment linked to slab break-off after closure of the Paleo-Asian Ocean(PAO) along the Solonker-Xra Moron-Changchun suture zone. The 244-243 Ma granodiorites were formed in a compressional orogenic setting during collision between the Erguna-Xing’an-Songliao composite block and the NCC. The 232-230 Ma granodiorites and monzogranites were emplaced during the transition from compressional orogeny to post-orogenic extension. Overall, the early Mesozoic tectonic evolution of the Chifeng area can be divided into three main stages:(1) closure of the Paleo-Asian Ocean and extension related to slab break-off during the Early Triassic;(2) continuous collisional compression during the Middle Triassic after closure of the PAO;and(3) post-orogenic extension during the Late Triassic, most probably due to lithospheric delamination after amalgamation of the Erguna-Xing’an-Songliao composite block and the NCC.
基金supported by the National Natural Science Foundation of China(Nos.41476039,91328205,415760 68 and 41606080)
文摘The pre-Eocene history of the region around the present South China Sea is not well known. New multi-channel seismic profiles provide valuable insights into the probable Mesozoic history of this region. Detailed structural and stratigraphic interpretations of the multi-channel seismic profiles, calibrated with relevant drilling and dredging data, show major Mesozoic structural features. A structural restoration was done to remove the Cenozoic tectonic influence and calculate the Mesozoic tectonic compression ratios. The results indicate that two groups of compressive stress with diametrically opposite orientations, S(S)E– N(N)W and N(N)W–S(S)E, were active during the Mesozoic. The compression ratio values gradually decrease from north to south and from west to east in each stress orientation. The phenomena may be related to the opening of the proto-South China Sea(then located in south of the Nansha block) and the rate at which the Nansha block drifted northward in the late Jurassic to late Cretaceous. The Nansha block drifted northward until it collided and sutured with the southern China margin. The opening of the present South China Sea may be related to this suture zone, which was a tectonic zone of weakness.
基金the work of "Study of the geo-scientific settings of geo-tourist landscapes in Yuntaishan World Geopark",and supported by the Department of International Cooperation of Ministry of Science and Technology of China. (Grant No. 2006DFA21320)the Science Foundation of institute of geomechanics, CAGS (Grant No. DZLXJK200706) the National Natural Science Foundation of China (Grant No. 40501006)
文摘The late Cenozoic geomorphic features and geochronologic data of the Zhingfang River catchment in the Yuntaishan World Geopark are studied. Several quarternary geochronologic methods, including electron spin resonance (ESR), optically stimulated luminescence (OSL), thermo-luminescence (TL) and U-series are presented in this paper. The results suggest that there are two planation surfaces, named as the Taihang surface which is a peneplain of Taihang stage formed during Oligocene or Oligocene to early-middle Miocene period, and Tang-hien surface which is a mature wide valley of Tang-hien stage formed during late Miocene-Pliocene or Piiocene-early Pleistocene period and probably ended prior to 2.2-2.6 Ma based on ESR dating. After the Tang-hien stage, the incision and aggradation of the river formed six stream terraces with heights of 3-5 m, 8-12 m, 22-24 m, 28-38 m, 50-62 m and 80-85 m above the river bottom, respectively. The dating results of the alluvium sediments suggest that these terraces were formed during Holocene, 20-23 ka B.P., 110-120 ka B.P., 200-240 ka B.P., 840-1200 ka B.P. or ~450 ka B.P. and 1600-1800 ka B.P. or -1100 ka B.P., respectively. These results indicate that episodic incision of the river, which controls the formation of the scenery in the Yuntaishan World Geopark, was mainly influenced by the periodic dry-wet climate change during late Cenozoic mountain uplift.
基金the Key ProgramNational Natural Science Foundation of China(No.40234051) National Key Program of Basic Research(No.2001CB409807).
文摘The North China Craton (NCC) is one of the largest blocks composing the continent. Different types of continental margins well developed around the NCC, along with lots of metallogenic systems of different metals and different times. Based on the study on the structural evolution of the NCC, the authors made a new division of tectonic units of the NCC. Through an analysis of the data of 1:25000 geochemical survey on stream sediments, regional geochemical features of main ore-forming elements including Au, Ag, Cu, Pb, Zn, W, Ni, Co and Mo of the NCC are discussed in the paper. Then different metallogenic systems and their forming processes and geodynamics are discussed in detail. At last, temporal and spatial distribution regularities are summarized and ten favorable ore-control factors on the paleocontinental margins are put forward, including (1) abundance of ore sources; (2) rendezvous of ore-forming fluids; (3) high thermo-dynamic anomaly; (4) remarkable Earth crust-mantle interaction; (5) cluster of macroscopic structures and their long activities; (6) diversity of ore-forming environments; (7) long geohistory; (8) multiforms of critical transitional ore-forming mechanisms; (9) multi-staged and superimposed ore-formation; and (10) suitable preservation condition.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.41530207 and 41772188)。
文摘The late Neoarchean metamorphosed volcanic rocks in the southern Liaoning Terrane(SLT) of the eastern North China Craton(NCC) are mainly composed of amphibolites and felsic gneisses and can be chemically classified as basalt(Group#1),basaltic andesite(Group#2),dacite(Group#3) and rhyodacite(Group#4).LA-ICP-MS zircon U-Th-Pb dating reveals that they formed at ~2.53-2.51 Ga.Group#1 samples are characterized by approximately flat chondrite-normalized rare earth element(REE) patterns with low(La/Yb)_N ratios and a narrow range of(Hf/Sm)N ratios,and their magmatic precursors were generated by partial melting of a depleted mantle wedge weakly metasomatized by subducted slab fluids.Compared to Group#1 samples,Group#2 samples display strongly fractionated REE patterns with higher(La/Yb)_N ratios and more scattered(Hf/Sm)N ratios,indicative of a depleted mantle wedge that had been intensely metasomatized by slab-derived melts and fluids.Group#3 samples are characterized by high MgO and transition trace element concentrations and fractionated REE patterns,which resemble typical high-Si adakites,and the magmatic precursors were derived from partial melting of a subducted oceanic slab.Group#4 samples have the highest SiO_2 and the lowest MgO and transition trace element contents,and were derived from partial melting of basaltic rocks at lower crust levels.Integrating these tholeiitic to calcalkaline volcanic rocks with the mass of contemporaneous dioritic-tonalitic-trondhjemitic-granodioritic gneisses,the late Neoarchean volcanic rocks in the SLT were most likely produced in an active continental margin.Furthermore,the affinities in lithological assemblages,metamorphism and tectonic regime among SLT,eastern Hebei to western Liaoning Terrane(EH-WLT),northern Liaoning to southern Jilin Terrane(NL-SJT),AnshanBenxi continental nucleus(ABN) and Yishui complex(YSC) collectively indicate that an integral and much larger continental block had been formed in the late Neoarchean and the craton-scale lateral accretion was a dominantly geodynamic mechanism in the eastern NCC.
文摘The Hadamiao granodiorite,located on the northern margin of the North China platform and acting as the country rock of gold deposits in the Hadamiao region,was formed in the same age and similar tectonic settings with the Hadamiao gold deposit and the large-scale Bilihe gold deposit in the same area.By using the LA-ICP-MS method,the U-Pb age obtained is 267±1.3 Ma,which represents the crystallized age of the granodiorite,and that of the xenolithic zircon is 442.8±5 Ma. Base on the main elements,it exhibits the features of calc-alkaline to high-potassium calc-alkaline series,low silicon,and quasi-aluminous I-type granites,and with high magnesium(Mg~#=0.45-0.57) and high sodium contents(Na_2O/K_2O=0.98-2.29).The SREE values(81.6-110.15 ppm) are relatively low,the fractionations between LREE and HREE are obvious,showing a right-inclined dispersion in the REE distribution diagram.Compared with the primitive mantle,the rock is relatively rich in LREE(La and Ce),LILE(K,Sr,and Th),and intensively depleted in HFSE(Ti,P,Nb and Ta).The ratios of Sr/Y and(La/Yb)_N and the contents of Rb,Nb and Y are relatively low,the Sr values are high (436.35-567.26 ppm),and the Yb contents of most samples are low(1.25-1.8),which indicate the features of typical continental margin arc and adakitic rocks.According to the values ofε_(Nd)(t)(-2.4 to +0.2) and I_(Sr)(0.7028-0.7083),and variations of the La/Sm ratios,the Hadamiao granodiorite was formed from mixing of the thickened molten lower crust and the mantle wedge substances.The rock was related to the southward subduction and accretion of the Paleo-Asia Ocean in the Late Paleozoic, being Late Paleozoic magma of the continental margin arc formed on the basement of the Early Paleozoic accretion complexes,and showing a trend of turning into adakitic rocks,which indicates their great metallogenic(Au) potential.
文摘The evolution of shale reservoirs is mainly related to two functions:mechanical compaction controlled by ground stress and chemical compaction controlled by thermal effect.Thermal simulation experiments were conducted to simulate the chemical compaction of marine-continental transitional shale,and X-ray diffraction(XRD),CO2 adsorption,N2 adsorption and high-pressure mercury injection(MIP)were then used to characterize shale diagenesis and porosity.Moreover,simulations of mechanical compaction adhering to mathematical models were performed,and a shale compaction model was proposed considering clay content and kaolinite proportions.The advantage of this model is that the change in shale compressibility,which is caused by the transformation of clay minerals during thermal evolution,may be considered.The combination of the thermal simulation and compaction model may depict the interactions between chemical and mechanical compaction.Such interactions may then express the pore evolution of shale in actual conditions of formation.Accordingly,the obtained results demonstrated that shales having low kaolinite possess higher porosity at the same burial depth and clay mineral content,proving that other clay minerals such as illite-smectite mixed layers(I/S)and illite are conducive to the development of pores.Shales possessing a high clay mineral content have a higher porosity in shallow layers(<3500 m)and a lower porosity in deep layers(>3500 m).Both the amount and location of the increase in porosity differ at different geothermal gradients.High geothermal gradients favor the preservation of high porosity in shale at an appropriate Ro.The pore evolution of the marine-continental transitional shale is divided into five stages.Stage 2 possesses an Ro of 1.0%-1.6%and has high porosity along with a high specific surface area.Stage 3 has an Ro of 1.6%-2.0%and contains a higher porosity with a low specific surface area.Finally,Stage 4 has an Ro of 2.0%-2.9%with a low porosity and high specific surface area.
基金financially supported by the National Science Foundation of China (41402070, 41602082, 4170021021)China Geological Survey (DD20160346)
文摘The Sidingheishan mafic-ultramafic intrusion is located in the eastern part of the Northern Tianshan Mountain, along the southern margin of the Central Asian Orogenic Belt in northern Xinjiang autonomous region of China. The Sidingheishan intrusion is mainly composed of wehrlite, olivine websterite, olivine gabbro, gabbro and hornblende gabbro. At least two pulses of magma were involved in the formation of the intrusion. The first pulse of magma produced an olivine-free unit and the second pulse produced an olivine-bearing unit. The magmas intruded the Devonian granites and granodiorites.An age of 351.4±5.8 Ma(Early Carboniferous) for the Sidingheishan intrusion has been determined by U-Pb SHRIMP analysis of zircon grains separated from the olivine gabbro unit. A U-Pb age of 359.2±6.4 Ma from the gabbro unit has been obtained by LA-ICP-MS. Olivine of the Sidingheishan intrusion reaches 82.52 mole% Fo and 1414 ppm Ni. On the basis of olivine-liquid equilibria, it has been calculated that the MgO and FeO included in the parental magma of a wehrlite sample were approximately10.43 wt% and 13.14 wt%, respectively. The Sidingheishan intrusive rocks are characterized by moderate enrichments in Th and Sm, slight enrichments in light REE, and depletions in Nb, Ta, Zr and Hf. The εNd(t) values in the rock units vary from +6.70 to +9.64, and initial87Sr/86Sr ratios range between 0.7035 and0.7042. Initial206Pb/204Pb,207Pb/204Pb and208Pb/204Pb values fall in the ranges of 17.23-17.91,15.45-15.54 and 37.54-38.09 respectively. These characteristics are collectively similar to the Heishan intrusion and the Early Carboniferous subduction related volcanic rocks in the Santanghu Basin, North Tianshan and Beishan area. The low(La/Gd)PMvalues between 0.26 and 1.77 indicate that the magma of the Sidingheishan intrusion was most likely derived from a depleted spinel-peridotite mantle.(Th/Nb)PMratios from 0.59 to 20.25 indicate contamination of the parental magma in the upper crust.Crystallization modeling methods suggest that the parental magma of the Sidingheishan intrusion was generated by flush melting of the asthenosphere and subsequently there was about 10 vol%contamination from a granitic melt. This was followed by about 5 vol% assimilation of upper crustal rocks. Thus, the high-Mg basaltic parental magma of Sidingheishan intrusion is interpreted to have formed from partial melting of the asthenosphere during the break-off of a subducted slab.
基金financially supported by the National Natural Science Foundation of China(Grant No.41872056)。
文摘The northern margin of the North China Craton(NCC)contains widespread Permian magmatic rocks,but the origin of these rocks remains controversial.This uncertainty hampers us from better understanding of tectonic framework and evolution of the eastern Paleo-Asian Ocean,particularly with respect to its final-stage subduction and closure time.To address these questions,this study presents petrological,zircon U-Pb geochronological,whole-rock geochemical and in situ zircon Hf isotopic data for these Permian mafic intrusions in the northern margin of the NCC.Precise zircon U-Pb dating results indicate that these mafic intrusions were emplaced in the Middle Permian(ca.260 Ma).Geochemically,the studied mafic intrusions have high MgO and transition metals element contents,with high Mg^(#) values,indicating a mantle origin.These mafic intrusions are characterized by enrichments in large ion lithophile elements(LILEs;e.g.,Rb,Ba,and K)and light rare earth elements(LREEs),and depletions in high field strength elements(HFSEs;e.g.,Nb,Ta,and Ti)and heavy rare earth elements(HREEs),indicating that they were formed in a subduction-related setting.These geochemical features,together with zircon ε_(Hf)(t)values(-1.1 to+11.2),indicate that their parental magmas were derived from partial melting of heterogeneous mantle wedge metasomatized by subduction-related fluids,with the contributions of slab sediments.The studied mafic intrusions also show wide range of major and trace elements contents,and variable Mg^(#) values,Eu and Sr anomalies,suggesting that their parental magmas had undergone variable degrees of fractional crystallization.Together with the E-W trending Permian continental arc along the northern margin of the NCC,we confirm that the generation of the Middle Permian mafic intrusions was related to southward subduction of the Paleo-Asian oceanic lithosphere beneath the NCC and the Paleo-Asian Ocean had not closed prior to the Middle Permian.
基金This paper is supported by the Key Basic Research Project funded by theChinese Academy of Sciences (No . KZCX2-SW-117) .
文摘The Yuxi (豫西) fold-thrust fracture belt is part of the gigantic fold-thrust fracture belt that extends NW in the southern North China plate. The contents of major elements of tectonites were analyzed by ICP-AES. The analysis of chemical compositions and new stress minerals indicates: extending from the surrounding country rocks to the center of the fracture belt, the Fe2O3 content gradually increases while the FeO content gradually decreases; regular increase, decrease or peak changes are shown for chemical compositions like SiO2, Al2O3, Fe2O3, MgO, CaO, FeO, loss on ignition, TIO:, K2O, Na2 O, etc.. New stress minerals are developed for the south branch and few for the north branch. The characteristics of chemical compositions and new stress minerals of the thrust fracture demonstrate that the fracture belt has undergone a process from a closed reducing environmental system to a relatively open. oxidizing environmental system, andcompressive fractures have resulted from compression in the late stages of evolution, and the dynamothermal metamorphism and thrusting intensities are different between the south and north branches of the belt, which is strong for the south branch but relatively weak for the north branch.
文摘Several stratigraphic breaks and unconformities exist in the Mesoproterozoic successions in the northern margin of the North China Block. Geologic characters and spatial distributions of five of these un- conformities, which have resulted from different geological processes, have been studied. The uncon- formity beneath the Dahongyu Formation is interpreted as a breakup unconformity, representing the time of transition from continental rift to passive continental margin. The unconformities beneath the Gaoyuzhuang and the Yangzhuang formations are considered to be the consequence of regional eustatic fluctuations, leading to the exposure of highlands in passive margins during low sea-level stands and transgressive deposition on coastal regions during high sea-level stands. The unconformity atop the Tieling Formation might be caused by uplift due to contractional deformation in a back-arc setting, whereas the uplift after the deposition of the Xiamaling Formation might be attributed to a continental collision event. It is assumed that the occurrences of these unconformities in the Mesoproterozoic successions in the northern margin of the North China Block had a close bearing on the assemblage and breakup of the Columbia and Rodinia supercontinents.
基金supported by the Special Fund for Public Welfare Industry (Meteorology) (GYHY201306026)the National Natural Science Foundation of China (41275078)the National Basic Research Program of China (2009CB421407)
文摘In this study,the relationship between the North Atlantic Oscillation (NAO) in winter (DecemberFebruary) and the precipitation over southem China (SCP) in the following spring (March-May) was investigated.Results showed an interdecadal change,from strong to weak connection,in their connection.Before the early 1980s,they were highly correlated,with a strong (weak) winter NAO followed by an increased (decreased) spring SCP.However,after the early 1980s,their relationship was weakened significantly.This unstable relationship may be linked to the climatological change of East Asian jet.Before the early 1980s,the wave train along the Asian jet propagated the NAO signal eastward to East Asia and affected local upper-tropospheric atmospheric circulation.A strong NAO in winter led to an anomalous anticyclonic circulation at the south side of 30°N in East Asia in spring,resulting in an increase of SCP.In contrast,after the early 1980s,the wave train pattern along the Asian jet extended eastward due to strengthening of the climatological East Asian jet.Correspondingly,the NAO-related East Asian atmospheric circulations in the upper troposphere shifted eastward,thereby weakening the linkage between the spring SCP and the winter NAO.
基金financially supported by the Ph.D Foundation of the Ministry of Education of China(grant No.20133402130008)the National Basic Research Program of China(grant No.2015CB856104)the National Natural Science Foundation of China(grant No.41273036)
文摘The Precambrian basement rocks in the Bengbu and neighboring areas, located at the southeastern margin of the North China Craton, occur as granulite terrains and xenoliths in the Mesozoic dioritic porphyry.