The accurate assessment of forest damage is important basis for the forest post-disaster recovery process and ecosystem management. This study evaluates the spatial distribution of damaged forest and its damaged sever...The accurate assessment of forest damage is important basis for the forest post-disaster recovery process and ecosystem management. This study evaluates the spatial distribution of damaged forest and its damaged severity caused by ice-snow disaster that occurred in southern China during January 10 to February 2 in 2008. The moderate-resolution imaging spectroradiometer(MODIS)13 Q1 products are used, which include two vegetation indices data of NDVI(Normalized Difference Vegetation Index) and EVI(Enhanced Vegetation Index). Furtherly, after Quality Screening(QS) and Savizky-Golay(S-G) filtering of MODIS 13 Q1 data, four evaluation indices are obtained, which are NDVI with QS(QSNDVI), EVI with QS(QSEVI), NDVI with S-G filtering(SGNDVI) and EVI with S-G filtering(SGEVI). The study provides a new way of firstly determining the threshold for each image pixel for damaged forest evaluation, by computing the pre-disaster reference value and change threshold with vegetation index from remote sensing data. Results show obvious improvement with the new way for forest damage evaluation, evaluation result of forest damage is much close to the field survey data with standard error of only 0.95 and 1/3 less than the result that evaluated from other threshold method. Comparatively, the QSNDVI shows better performance than other three indices on evaluating forest damages. The evaluated result with QSNDVI shows that the severe, moderate, mild damaged rates of Southern China forests are 47.33%, 34.15%, 18.52%, respectively. By analyzing the influence of topographic and meteorological factors on forest-vegetation damage, we found that the precipitation on freezing days has greater impact on forest-vegetation damage, which is regarded as the most important factor. This study could be a scientific and reliable reference for evaluating the forest damages from ice-snow frozen disasters.展开更多
用1951—2008年58 a 1月10日—2月2日1 000 hPa高度场逐日NCEP/NCAR再分析格点资料,求得逐日蒙古高压的强度P和中心位置λc、c指数,用其对"0801南方雪灾"期间蒙古高压的中期演变过程进行统计分析。结果表明,2008年1月10日—...用1951—2008年58 a 1月10日—2月2日1 000 hPa高度场逐日NCEP/NCAR再分析格点资料,求得逐日蒙古高压的强度P和中心位置λc、c指数,用其对"0801南方雪灾"期间蒙古高压的中期演变过程进行统计分析。结果表明,2008年1月10日—2月2日蒙古高压强度P和中心所在纬度φc出现了连续4次振荡,它们与我国南方降温、降水振荡过程准同步。由P、(λc,c)给出的综合动态图上蒙古高压4次活动过程也很明显地与降温、降水中期过程一一对应。分析表明2008年1月10日—2月2日蒙古高压的这一中期演变特征,是1951年以来仅有的一次。因此,可以认为,在充沛水汽供应条件下蒙古高压强而连续的爆发是导致"0801南方雪灾"产生的直接环流成因。展开更多
基金Under the auspices of National Key Research and Development Program of China(No.2017YFA0604804)Advanced Scientific Research Projects of Chinese Academy of Sciences(No.QYZDY-SSW-DQC007-34)+1 种基金National Natural Science Foundation of China(No.41301607)Innovation Project of LREIS(State Key Laboratory of Resources and Environmental Information System)of Chinese Academy of Sciences(No.O88RAA02YA)
文摘The accurate assessment of forest damage is important basis for the forest post-disaster recovery process and ecosystem management. This study evaluates the spatial distribution of damaged forest and its damaged severity caused by ice-snow disaster that occurred in southern China during January 10 to February 2 in 2008. The moderate-resolution imaging spectroradiometer(MODIS)13 Q1 products are used, which include two vegetation indices data of NDVI(Normalized Difference Vegetation Index) and EVI(Enhanced Vegetation Index). Furtherly, after Quality Screening(QS) and Savizky-Golay(S-G) filtering of MODIS 13 Q1 data, four evaluation indices are obtained, which are NDVI with QS(QSNDVI), EVI with QS(QSEVI), NDVI with S-G filtering(SGNDVI) and EVI with S-G filtering(SGEVI). The study provides a new way of firstly determining the threshold for each image pixel for damaged forest evaluation, by computing the pre-disaster reference value and change threshold with vegetation index from remote sensing data. Results show obvious improvement with the new way for forest damage evaluation, evaluation result of forest damage is much close to the field survey data with standard error of only 0.95 and 1/3 less than the result that evaluated from other threshold method. Comparatively, the QSNDVI shows better performance than other three indices on evaluating forest damages. The evaluated result with QSNDVI shows that the severe, moderate, mild damaged rates of Southern China forests are 47.33%, 34.15%, 18.52%, respectively. By analyzing the influence of topographic and meteorological factors on forest-vegetation damage, we found that the precipitation on freezing days has greater impact on forest-vegetation damage, which is regarded as the most important factor. This study could be a scientific and reliable reference for evaluating the forest damages from ice-snow frozen disasters.
文摘用1951—2008年58 a 1月10日—2月2日1 000 hPa高度场逐日NCEP/NCAR再分析格点资料,求得逐日蒙古高压的强度P和中心位置λc、c指数,用其对"0801南方雪灾"期间蒙古高压的中期演变过程进行统计分析。结果表明,2008年1月10日—2月2日蒙古高压强度P和中心所在纬度φc出现了连续4次振荡,它们与我国南方降温、降水振荡过程准同步。由P、(λc,c)给出的综合动态图上蒙古高压4次活动过程也很明显地与降温、降水中期过程一一对应。分析表明2008年1月10日—2月2日蒙古高压的这一中期演变特征,是1951年以来仅有的一次。因此,可以认为,在充沛水汽供应条件下蒙古高压强而连续的爆发是导致"0801南方雪灾"产生的直接环流成因。