In this study,zircon U-Pb dating of volcanic rocks from the Zhongba ophiolite of the Yarlung Zangbo Suture Zone(YZSZ)in southern Xizang(Tibet)yielded an age of 247±3 Ma.According to whole rock geochemical and Sr-...In this study,zircon U-Pb dating of volcanic rocks from the Zhongba ophiolite of the Yarlung Zangbo Suture Zone(YZSZ)in southern Xizang(Tibet)yielded an age of 247±3 Ma.According to whole rock geochemical and Sr-NdPb isotopic data,the Early Triassic samples could be divided into two groups:Group 1 with P-MORB affinity,showing initial^(87)Sr/^(86)Sr ratios of 0.70253–0.70602,ε_(Nd)(t)values of 4.2–5.3,(^(206)Pb/^(204)Pb)_(t)ratios of 16.353–18.222,(^(207)Pb/^(204)Pb)_(t)ratios of 15.454–15.564,and(^(208)Pb/^(204)Pb)_(t)ratios of 35.665–38.136;Group 2 with OIB affinity,showing initial^(87)Sr/^(86)Sr ratios of 0.70249–0.70513,ε_(Nd)(t)values of 4.4–4.9,(^(206)Pb/^(204)Pb)_(t)ratios of 17.140–18.328,(^(207)Pb/^(204)Pb)_(t)ratios of 15.491–15.575,and(^(208)Pb/^(204)Pb)_(t)ratios of 36.051–38.247.Group 2 rocks formed by partial melting of the mantle source enriched by a former plume,and assimilated continental crustal material during melt ascension.The formation of Group 1 rocks corresponds to the mixing of OIB melts,with the same components as Group 2 and N-MORBs.The Zhongba Early Triassic rocks belong to the continental margin type ophiolite and formed in the continental–oceanic transition zone during the initial opening of the Neo-Tethys in southern Xizang(Tibet).展开更多
Composite analyses were performed in this study to reveal the difference in spring precipitation over southern China during multiyear La Ni?a events during 1901 to 2015. It was found that there is significantly below-...Composite analyses were performed in this study to reveal the difference in spring precipitation over southern China during multiyear La Ni?a events during 1901 to 2015. It was found that there is significantly below-normal precipitation during the first boreal spring, but above-normal precipitation during the second year. The difference in spring precipitation over southern China is correlative to the variation in western North Pacific anomalous cyclone(WNPC), which can in turn be attributed to the different sea surface temperature anomaly(SSTA) over the Tropical Pacific. The remote forcing of negative SSTA in the equatorial central and eastern Pacific and the local air-sea interaction in the western North Pacific are the usual causes of WNPC formation and maintenance.SSTA in the first spring is stronger than those in the second spring. As a result, the intensity of WNPC in the first year is stronger, which is more likely to reduce the moisture in southern China by changing the moisture transport, leading to prolonged precipitation deficits over southern China. However, the tropical SSTA signals in the second year are too weak to induce the formation and maintenance of WNPC and the below-normal precipitation over southern China. Thus, the variation in tropical SSTA signals between two consecutive springs during multiyear La Ni?a events leads to obvious differences in the spatial pattern of precipitation anomaly in southern China by causing the different WNPC response.展开更多
Ancient Yunnan was one of the most significant regions along China’s ancient“Southern Silk Road.”During the Nanzhao period(738–902)of the late Tang Dynasty,Yunnan’s silk-weaving industry underwent a qualitative l...Ancient Yunnan was one of the most significant regions along China’s ancient“Southern Silk Road.”During the Nanzhao period(738–902)of the late Tang Dynasty,Yunnan’s silk-weaving industry underwent a qualitative leap as skilled silk craftsmen from the Bashu area migrated to Yunnan and introduced mulberry planting,silkworm breeding,and advanced silk-weaving techniques from Sichuan to the region.Consequently,people in Yunnan gradually acquired expertise in brocade weaving and embroidery.Many even mastered complex silk-weaving techniques.The development and progress of the silk-weaving industry in the ancient Yunnan region were intricately linked to the economic function and value of silk as both a commodity and currency along the“Southern Silk Road.”The local government in ancient Yunnan was greatly motivated by the economic interests brought by the development of silk-related industries and recognized the significance of developing the local silk industry.They even initiated a campaign to capture skilled silk craftsmen from Sichuan,aiming to foster the growth of the silk-weaving industry in Yunnan.After years of dedicated efforts from the local government in ancient Yunnan,the region emerged as a significant hub for silk production along China’s ancient“Southern Silk Road.”Despite the devastation caused by the wars in other parts of the country,Yunnan’s silk industry continued to thrive and provide ample silk products to sustain trade along this renowned route.In the contemporary era,amidst the decline of the silk-weaving industry in eastern China,Yunnan has proposed an industrial development strategy known as“relocating the silk-weaving industry from east to west.”This involves introducing advanced silk production techniques from the eastern regions into Yunnan to enhance and enrich its local silk industry,thereby establishing it as a traditional national sector and securing a competitive position within the global silk market.The historical experience of Yunnan’s silk industry demonstrated that economic development opportunities can only be seized through proactive endeavors rather than passive anticipation.The modern Yunnan silk industry,which upholds its historical traditions,continues to actively engage in international high-end technical cooperation,thus ensuring the enduring vitality of the ancient“Southern Silk Road.”展开更多
The major and trace elemental compositions of clinopyroxene from basalt were used to characterize the nature of the primitive magma and structural environment beneath the southern Okinawa Trough(SOT),which is an initi...The major and trace elemental compositions of clinopyroxene from basalt were used to characterize the nature of the primitive magma and structural environment beneath the southern Okinawa Trough(SOT),which is an initial back-arc basin at a continental margin.The clinopyroxenes in the basalt were augite with variable Mg^(#)contents(73.37-78.22).The regular variations in major oxide contents(i.e.,CaO,FeO,TiO_(2),and Cr)with decreasing Mg#implied that the clinopyroxenes evolved from being enriched in Mg,Ca,and Cr to being enriched in Fe and Ti.The clinopyroxenes had relatively low rare earth element concentrations(7.51×10^(-6) to 12.68×10^(-6))and negative Eu anomalies(δEu=0.67-0.95).The Kd_(cpx) values of clinopyroxenes(0.2-0.26),which were used to examine whether the clinopyroxene was equilibrated with its host basalt,demonstrate that these clinopyroxene phenocrysts were not captured crystals but were instead produced by crystallization differentiation of the magma.The calculated clinopyroxene crystallization temperatures showed a narrow range of 990-1061℃,and their crystallization pressures ranged from 2.0 to 3.2 kbar.The geochemistry features of these clinopyroxenes indicated that the parent magma belonged to the subalkaline tholeiitic magma series and suggested that the magma experienced crystallization differentiation of olivine,plagioclase,and clinopyroxene,where the crystallization of plagioclase occurred earlier than that of clinopyroxene.Combined with geophysical data,this research on primitive magma and its crystallization differentiation from clinopyroxene indicates that the SOT is in the stage of‘seafloor spreading’and that basaltic rocks produced from tholeiitic magma represent the generation of oceanic crust.展开更多
Large-scale rock-ice avalanches resulting from the interaction of tectonics and climate are characterized with high mobility,huge volumes of sediment,and rapid denudation,being a major agent of landscape evolution in ...Large-scale rock-ice avalanches resulting from the interaction of tectonics and climate are characterized with high mobility,huge volumes of sediment,and rapid denudation,being a major agent of landscape evolution in high altitude mountainous regions.Specifically,the extreme glaciated slope failures often transform into extraordinarily large and mobile debris flows,resulting in disastrous consequences such as sedimentation and desertification.Due to a dearth of on-site observation data and experimental data collection,our comprehension of the geomorphic and kinematic characteristics of rock-ice avalanches remains poor.Here we report a cluster of ancient rock-ice avalanches spreading along the Chomolhari range of the China-Bhutan Himalayas.By integrating remote sensing image interpretation with detailed field investigations,we demonstrate the geomorphic and sedimentary characteristics of four events among the avalanches.The estimated volumes of the four are 23.73 Mm³,39.69 Mm³,38.43 Mm³,and 38.25 Mm³,respectively.The presence of pre-existing moraines or alluvial fans constrained their movement,resulting in deposition features such as marginal digitated lobes at higher elevations and large depressed areas in the interior.Applying the Savage-Hutter theory,we calculate the basal friction angle and travel angle of these ancient rock-ice avalanches that are both less than 10°,affirming the similarity of these avalanches in the study area to those occurring in other regions.Our study significantly contributes to understanding the geomorphic and kinematic characteristics of rock-ice avalanches in high-altitude mountainous regions,providing valuable insights into their response to the disproportionate growth of Himalayan peaks.展开更多
The small muddy areas developed in the southern Shandong Peninsula have attracted increasing attention from researchers because of complex changes in sediment sources driven by sea-level fluctuations and land-sea inte...The small muddy areas developed in the southern Shandong Peninsula have attracted increasing attention from researchers because of complex changes in sediment sources driven by sea-level fluctuations and land-sea interactions since the late Pleistocene.This study investigates the evolution of sediment sources and their responses to environmental changes since the late Pleistocene,using core WHZK01 collected from the nearshore muddy area in southern Weihai for rare earth element(REE)analysis.In doing so,this work highlights the changing patterns of material sources and the primary control factors.The results reveal that the sedimentary deposits in core WHZK01 exhibit distinct terrestrial characteristics.Discriminant function analysis(F_(D))and source discrimination dia-grams both suggest that the primary sources of these deposits are the Yellow River and adjacent small and medium-sized rivers,although the sources vary among different sedimentary units.Furthermore,the DU3 layer(17.82-25.10 m)displays typical riverine sedimentation,dominated by terrestrial detrital input,primarily from the local rivers,namely the Huanglei and Muzhu Rivers.The material in the DU2 layer(14.91-17.82 m)is mainly influenced by a mixture of the Qinglong and Yellow Rivers.The DU1 layer(0-14.91 m)is influenced by sea-level changes during the Holocene,with the Yellow River being the primary source,although there is also some input from local rivers.The changes in sea level during the Holocene and the input of Yellow River material carried by the coastal currents of the Yellow Sea are identified as the main controlling factors for the changes in material sources in the study area since the late Pleistocene,with small and mediumsized rivers also exerting some influence on the material sources.The above mentioned findings not only contribute to a better understanding of the source-sink systems of the Yellow River and adjacent small and mediumsized rivers but also deepen our understanding of the late Quaternary land-sea interactions in the Shandong Peninsula.展开更多
Six hydrothermal sediment samples were collected from the Xunmei and Tongguan hydrothermal fields along the southern Mid-Atlantic Ridge during the China Ocean Cruise DY46 in 2017.Sulfides and oxides in the samples wer...Six hydrothermal sediment samples were collected from the Xunmei and Tongguan hydrothermal fields along the southern Mid-Atlantic Ridge during the China Ocean Cruise DY46 in 2017.Sulfides and oxides in the samples were separated,and Cu and Zn isotope compositions were analyzed.Results show that the ranges ofδ^(65)Cu values of the bulk sediments,sulfides,and oxides were 0.36‰-2.46‰,-0.21‰-1.10‰,and 0.68‰-1.52‰,respectively.Theδ^(65)Cu values of sulfides in four samples(46II-14,46II-30,46III-06,and 46II-09)were relatively low(-0.21‰-0.50‰),corresponding to theδ^(65)Cu values of sulfides from inactive old hydrothermal chimneys in northern Mid-Atlantic Ridge(n MAR),suggesting that the sulfides in the sediments were originated from collapsed dead chimney mainly.While theδ^(65)Cu values of the other two samples(46III-02 and 46III-08)were relatively high(1.10‰-0.96‰),corresponding to theδ^(65)Cu values for active hydrothermal chimneys sulfides in n MAR,which indicated that the sulfides in these two samples might mainly come from sulfide particles settled from active hydrothermal plume.Because of the high density of sulfide particles,they tended to settle near the hydrothermal vents first.Therefore,highδ^(65)Cu values of sulfides in 46III-02 and 46III-08 implied that undiscovered active hydrothermal vents near the sampling positions of 46III-02 in the Xunmei hydrothermal field and 46III-08 in the Tongguan hydrothermal field.Theδ^(66)Zn values of hydrothermal sediments and sulfides ranged 0.11‰-0.43‰and 0.29‰-0.67‰,respectively.In the four samples from the Xunmei hydrothermal field,a positive correlation was found between the distance of the sampling position from sulfide mineralized spot and the Zn isotopic ratio,showing that the greater the distance from the mineralized spot,the heavier the Zn isotope composition as seen in two samples(46II-30 and 46II-14)of the Xunmei-3 spot.This result aligned with the findings of Wilkinson et al.(2005)and Baumgartner et al.(2023),suggesting that the lower the Zn isotope composition,the closer it is to the hydrothermal vent.However,in the Xunmei hydrothermal field,the Zn isotope composition in the other two samples(46III-02and 46III-06)showed the opposite trend.This indicated that there might be an active hydrothermal vent near the sampling location of sample 46III-02.This observation aligned with the Cu isotope analysis results.This study showed that Cu-Zn isotopes are good indicators for understanding the formation mechanisms of hydrothermal sediments and for locating active hydrothermal vents.展开更多
Long-chain alkenones(LCAs)have been widely used as important biomarkers in palaeoceanographic studies.However,the commonly used LCAs proxies are mainly based on C_(37) alkenones,and it is still lack of the studies abo...Long-chain alkenones(LCAs)have been widely used as important biomarkers in palaeoceanographic studies.However,the commonly used LCAs proxies are mainly based on C_(37) alkenones,and it is still lack of the studies about the distribution and in-dications of LCAs with different chain lengths other than C_(37) alkenones.Here,the composition and distribution of LCAs were ana-lyzed in surface sediments from the southern Yellow Sea(SYS)and a sedimentary core(A02-C)from the central Yellow Sea(YS)mud area.The results showed that C_(37),C_(38) and C_(39) alkenones were the major LCAs in surface sediments of the SYS,and the relative contents of C_(38:2)Et,C_(37:2)Me,C_(37:3)Me,C_(38:2)Me,C_(38:3)Et,C_(38:3)Me,C_(39:2)Et and C_(39:3)Et were 18.3%-59.8%,22.6%-41.2%,7.4%-23.0%,6.6%-15.4%,3.8%-13.3%,3.6%-8.7%,2.8%-6.0% and 0.7%-3.0%,respectively.Then the relationships of U_(38Me)^(K)-U_(38Et)^(K) and U_(37)^(K')-U_(38)^(K)Et indicate that LCAs are mainly derived from Emiliania huxleyi(E.huxleyi).High ratios of total C_(37) alkenones to total C_(38) alkenones(K_(37)/K_(38))(1-1.2)were found in the central SYS,corresponding to the relatively high abundance of E.huxleyi;while low ratios of K_(37)/K_(38)(0.7-0.9)were observed at nearshore area of the SYS where Gephyrocapsa oceanica(G.oceanica)has rela-tively high abundance.The spatial distribution of K_(37)/K_(38) ratio is also consistent with that of coccolithophores nannofossil in the sediments.In addition,K_(37)/K_(38) ratio in core A02-C varied from 0.7 to 1.1 with a gradual decreasing trend during the past 5.5 kyr.This suggests that the relative abundance of E.huxleyi decreased gradually,caused by the changes in the Yellow Sea Warm Current(YSWC)and the East Asian Winter Monsoon(EAWM)during this period.展开更多
Garnet is a primary mineral in skarn deposits and plays a significant role in recording copious mineralization and metallogenic information.This study systematically investigates the geochemistry and geochronology of ...Garnet is a primary mineral in skarn deposits and plays a significant role in recording copious mineralization and metallogenic information.This study systematically investigates the geochemistry and geochronology of garnet and zircon in the Dafang Au-Pb-Zn-Ag deposit,which represents prominent gold mineralization in southern Hunan,China.Garnet samples with distinct zoning patterns and compositional variations were identified using various analytical techniques,including Backscattered Electron(BSE)imaging,Cathodoluminescence(CL)response,textural characterization,and analysis of rare-earth elements(REE),major contents,and trace element compositions.The garnet was dated U-Pb dating,which yielded a lower intercept age of 161.06±1.93 Ma.This age is older than the underlying granodiorite porphyry,which has a concordia age of 155.13±0.95 Ma determined by zircon U-Pb dating.These results suggest that the gold mineralization may be related to the concealed granite.Two groups of garnet changed from depleted Al garnet to enriched Al garnet,and the rare earth element(REE)patterns of these groups were converted from light REE(LREE)-enriched and heavy REE(HREE)-depleted with positive europium(Eu)anomalies to medium REE(MREE)-enriched from core to rim zoning.The different REE patterns of garnet in various zones may be attributed to changes in the fluid environment and late superposition alteration.The development of distal skarn in the southern Hunan could be a significant indicator for identifying gold mineralization.展开更多
To explain the recent three-year La Niña event from 2020 to 2022,which has caused catastrophic weather events worldwide,Fasullo et al.(2023)demonstrated that the increase in biomass aerosol resulting from the 201...To explain the recent three-year La Niña event from 2020 to 2022,which has caused catastrophic weather events worldwide,Fasullo et al.(2023)demonstrated that the increase in biomass aerosol resulting from the 2019-20 Australian wildfire season could have triggered this multi-year La Niña.Here,we present compelling evidence from paleo-proxies,utilizing a substantial sample size of 26 volcanic eruptions in the Southern Hemisphere(SH),to support the hypothesis that ocean cooling in the SH can lead to a multi-year La Niña event.This research highlights the importance of focusing on the Southern Ocean,as current climate models struggle to accurately simulate the Pacific response driven by the Southern Ocean.展开更多
This work evaluates the performances of climate models in simulating the Southern Ocean(SO)sea surface temperature(SST)by a large ensemble from phases 5 and 6 of the Coupled Model Intercomparison Project(CMIP5 and CMI...This work evaluates the performances of climate models in simulating the Southern Ocean(SO)sea surface temperature(SST)by a large ensemble from phases 5 and 6 of the Coupled Model Intercomparison Project(CMIP5 and CMIP6).By combining models from the same community sharing highly similar SO SST biases and eliminating the effect of global-mean biases on local SST biases,the results reveal that the ensemble-mean SO SST bias at 70°-30°S decreases from 0.38℃ in CMIP5 to 0.28℃ in CMIP6,together with increased intermodel consistency.The dominant mode of the intermodel variations in the zonal-mean SST biases is characterized as a meridional uniform warm bias pattern,explaining 79.1% of the intermodel variance and exhibiting positive principal values for most models.The ocean mixed layer heat budget further demonstrates that the SST biases at 70°-50°S primarily result from the excessive summertime heating effect from surface net heat flux.The biases in surface net heat flux south of 50°S are largely impacted by surface shortwave radiation from cloud and clear sky components at different latitudes.North of 50°S,the underestimated westerlies reduce the northward Ekman transport and hence northward cold advection in models,leading to warm SST biases year-round.In addition,the westerly biases are primarily traced back to the atmosphere-alone model simulations forced by the observed SST and sea ice.These results disclose the thermal origin at the high latitude and dynamical origin at the low latitude of the SO SST biases and underscore the significance of the deficiencies of atmospheric models in producing the SO SST biases.展开更多
The mechanical influences involved in the interaction between the Antarctic sea ice and ocean surface current(OSC)on the subpolar Southern Ocean have been systematically investigated for the first time by conducting t...The mechanical influences involved in the interaction between the Antarctic sea ice and ocean surface current(OSC)on the subpolar Southern Ocean have been systematically investigated for the first time by conducting two simulations that include and exclude the OSC in the calculation of the ice-ocean stress(IOS), using an eddy-permitting coupled ocean-sea ice global model. By comparing the results of these two experiments, significant increases of 5%, 27%, and 24%, were found in the subpolar Southern Ocean when excluding the OSC in the IOS calculation for the ocean surface stress,upwelling, and downwelling, respectively. Excluding the OSC in the IOS calculation also visibly strengthens the total mechanical energy input to the OSC by about 16%, and increases the eddy kinetic energy and mean kinetic energy by about38% and 12%, respectively. Moreover, the response of the meridional overturning circulation in the Southern Ocean yields respective increases of about 16% and 15% for the upper and lower branches;and the subpolar gyres are also found to considerably intensify, by about 12%, 11%, and 11% in the Weddell Gyre, the Ross Gyre, and the Australian-Antarctic Gyre, respectively. The strengthened ocean circulations and Ekman pumping result in a warmer sea surface temperature(SST), and hence an incremental surface heat loss. The increased sea ice drift and warm SST lead to an expansion of the sea ice area and a reduction of sea ice volume. These results emphasize the importance of OSCs in the air-sea-ice interactions on the global ocean circulations and the mass balance of Antarctic ice shelves, and this component may become more significant as the rapid change of Antarctic sea ice.展开更多
The Fengcheng Formation is a crucial source rock and the primary reservoir for oil accumulation in the Mahu Sag.Crude oils are distributed throughout the Fengcheng Formation,ranging from the edge to the interior of th...The Fengcheng Formation is a crucial source rock and the primary reservoir for oil accumulation in the Mahu Sag.Crude oils are distributed throughout the Fengcheng Formation,ranging from the edge to the interior of the sag in the southern Mahu Sag.These crude oils originate from in-situ source rocks in shallowly buried areas and the inner deep sag.During migration,the crude oil from the inner deep sag affects the source rocks close to carrier beds,leading to changes in the organic geochemical characteristics of the source rocks.These changes might alter source rock evaluations and oil-source correlation.Based on data such as total organic carbon(TOC),Rock-Eval pyrolysis of source rocks,and gas chromatography-mass spectrometry(GC-MS)of the saturated fraction,and considering the geological characteristics of the study area,we define the identification characteristics of source rock affected by migrated hydrocarbons and establish the various patterns of influence that migrated hydrocarbons have on the source rock of the Fengcheng Formation in the southern Mahu Sag.The source rocks of the Fengcheng Formation are mostly fair to good,containing mainly Type II organic matter and being thermally mature enough to generate oil.Source rocks affected by migrated hydrocarbons exhibit relatively high hydrocarbon contents(S1/TOC>110 mg HC/g TOC,Extract/TOC>30%,HC:hydrocarbon),relatively low Rock-Eval Tmax values,and relatively high tricyclic terpane contents with a descending and mountain-shaped distribution.Furthermore,biomarker composition parameters indicate a higher thermal maturity than in-situ source rocks.Through a comparison of the extract biomarker fingerprints of adjacent reservoirs and mudstones in different boreholes,three types of influence patterns of migrated hydrocarbons are identified:the edge-influence of thin sandstone-thick mudstone,the mixed-influence of sandstone-mudstone interbedded,and the full-influence of thick sandstone-thin mudstone.This finding reminds us that the influence of migrated hydrocarbons must be considered when evaluating source rocks and conducting oil-source correlation.展开更多
The Southern Highland Fold and Thrust Belt(SHFTB),the boundary of the Australian plate and the New Guinea Highland block,significantly contributes to the convergent deformation along the plate bound-ary.However,due to...The Southern Highland Fold and Thrust Belt(SHFTB),the boundary of the Australian plate and the New Guinea Highland block,significantly contributes to the convergent deformation along the plate bound-ary.However,due to the lack of observation data,the detailed slip pattern of the SHFTB and the orogenic mechanism beneath the New Guinea Highlands remains controversial.On 25 February 2018,the M_(w)7.5 Papua New Guinea(PNG)earthquake struck the southeastern segment of the SHFTB.The detailed rupture characteristics of this event is significant for further clarifying the inter-seismic slip pattern along the SHFTB.Here,the coseismic deformation field of this earthquake was obtained using high-resolution ALOS-2 satellite images.We find that the 2018 M_(w)7.5 PNG earthquake ruptured a large-scaled fault(SHFTB)extending to the lower crust(deeper than 20 km)beneath the New Guinea Highlands,with a dip angle of 24°.The slips on the fault plane are equivalent to moment magnitudes of M_(w)7.51.Three major asperities with thrust-dominated slip of up to 3.94 m are detected on the fault plane.This finding implies that the slip pattern on the eastern segment of the SHFTB is dominated by thrust,rather than with significant sinistral movement,as previously reported.The tectonic deformation across the New Guinea Highlands is possibly concentrated on the large-scale fault SHFTB and primarily controls the intra-continental orogeny in the central Papua New Guinea.展开更多
This study assesses the capability of a coarse-resolution ocean model to replicate the response of the Southern Ocean Meridional Overturning Circulation(MOC) to intensified westerlies,focusing on the role of the eddy ...This study assesses the capability of a coarse-resolution ocean model to replicate the response of the Southern Ocean Meridional Overturning Circulation(MOC) to intensified westerlies,focusing on the role of the eddy transfer coefficient(κ).κ is a parameter commonly used to represent the velocities induced by unresolved eddies.Our findings reveal that a stratification-dependent κ,incorporating spatiotemporal variability,leads to the most robust eddy-induced MOC response,capturing 82% of the reference eddy-resolving simulation.Decomposing the eddy-induced velocity into its vertical variation(VV) and spatial structure(SS) components unveils that the enhanced eddy compensation response primarily stems from an augmented SS term,while the introduced VV term weakens the response.Furthermore,the temporal variability of the stratification-dependent κ emerges as a key factor in enhancing the eddy compensation response to intensified westerlies.The experiment with stratification-dependent κ exhibits a more potent eddy compensation response compared to the constant κ,attributed to the structure of κ and the vertical variation of the density slope.These results underscore the critical role of accurately representing κ in capturing the response of the Southern Ocean MOC and emphasize the significance of the isopycnal slope in modulating the eddy compensation mechanism.展开更多
Antarctic coastal polynyas are biological hotspots in the Southern Ocean that support the abundance of hightrophic-level predators and are important for carbon cycling in the high-latitude oceans.In this study,we exam...Antarctic coastal polynyas are biological hotspots in the Southern Ocean that support the abundance of hightrophic-level predators and are important for carbon cycling in the high-latitude oceans.In this study,we examined the interannual variation of summertime phytoplankton biomass in the Marguerite Bay polynya(MBP)in the western Antarctic Peninsula area,and linked such variability to the Southern Annular Mode(SAM)that dominated the southern hemisphere extratropical climate variability.Combining satellite data,atmosphere reanalysis products and numerical simulations,we found that the interannual variation of summer chlorophyll-a(Chl-a)concentration in the MBP is significantly and negatively correlated with the spring SAM index,and weakly correlated with the summer SAM index.The negative relation between summer Chl-a and spring SAM is due to weaker spring vertical mixing under a more positive SAM condition,which would inhibit the supply of iron from deep layers into the surface euphotic layer.The negative relation between spring mixing and spring SAM results from greater precipitation rate over the MBP region in positive SAM phase,which leads to lower salinity in the ocean surface layer.The coupled physical-biological mechanisms between SAM and phytoplankton biomass revealed in this study is important for us to predict the future variations of phytoplankton biomasses in Antarctic polynyas under climate change.展开更多
Nitrification,a central process in the marine nitrogen cycle,produces regenerated nitrate in the euphotic zone and emits N_(2)O,a potent greenhouse gas as a by-product.The regulatory mechanisms of nitrification in the...Nitrification,a central process in the marine nitrogen cycle,produces regenerated nitrate in the euphotic zone and emits N_(2)O,a potent greenhouse gas as a by-product.The regulatory mechanisms of nitrification in the Southern Ocean,which is a critical region for CO_(2)sequestration and radiative benefits,remain poorly understood.Here,we investigated the in situ and dark nitrification rates in the upper 500 m and conducted substrate kinetics experiments across the Indian Sector in the Cosmonaut and Cooperation seas in the late austral summer.Our findings indicate that light inhibition of nitrification decreases exponentially with depth,exhibiting a light threshold of 0.53%photosynthetically active radiation.A positive relationship between dark nitrification and apparent oxygen utilization suggests a dependence on substrate availability from primary production.Importantly,an increased NH_(4)^(+) supply can act as a buffer against photo-inhibitory damage.Globally,substrate affinity(α)increases with depth and transitions from light to dark,decreases with increasing ambient NH_(4)^(+)and exhibits a latitudinal distribution,reflecting substrate utilization strategies.We also reveal that upwelling in Circumpolar Deep Water(CDW)stimulates nitrification through the introduction of potentially higher iron and deep diverse nitrifying microorganisms with higherα.We conclude that although light is the primary limiting factor for nitrification in summer,coupling between substrate availability and CDW upwelling can overcome this limitation,thereby alleviating photoinhibition by up to 45%±5.3%.展开更多
This study investigates the relationship between circulation patterns and austral summer temperature anomalies in southern Africa. The results show that the formation of continental lows tends to increase the thicknes...This study investigates the relationship between circulation patterns and austral summer temperature anomalies in southern Africa. The results show that the formation of continental lows tends to increase the thickness of the lower atmosphere. Further, the distinct variabilities of high and low pressure under the circulation types, influence air mass advection from the adjacent oceans, as well as atmospheric stability over land. Stronger anticyclonic circulation at the western branch of the Mascarene high-pressure system enhances the low-level cold air advection by southeast winds,decreases the thickness, and lowers the temperature over a majority of the land in southern Africa. Conversely, a weaker Mascarene High, coupled with enhanced cyclonic activity in the southwest Indian Ocean increases low-level warm air advection and increases temperature anomalies over vast regions in southern Africa. The ridging of a closed South Atlantic anticyclone at the southern coast of southern Africa results in colder temperatures near the tip of southern Africa due to enhanced low-level cold air advection by southeast winds. However, when the ridge is weak and westerly winds dominate the southern coast of southern Africa, these areas experience temperature increases. The northward track of the Southern Hemisphere mid-latitude cyclone, which can be linked to the negative Southern Annular Mode, reduces the temperature in the southwestern part of southern Africa. Also, during the analysis period, El Ni?o was associated with temperature increases over the central parts of southern Africa;while the positive Indian Ocean dipole was linked to a temperature increase over the northeastern, northwestern, and southwestern parts of southern Africa.展开更多
To fully exploit the technical advantages of the large-depth and high-precision artificial source electromagnetic method in the complex structure area of southern Sichuan and compensate for the shortcomings of the con...To fully exploit the technical advantages of the large-depth and high-precision artificial source electromagnetic method in the complex structure area of southern Sichuan and compensate for the shortcomings of the conventional electromagnetic method in exploration depth,precision,and accuracy,the large-depth and high-precision wide field electromagnetic method is applied to the complex structure test area of the Luochang syncline and Yuhe nose anticline in the southern Sichuan.The advantages of the wide field electromagnetic method in detecting deep,low-resistivity thin layers are demonstrated.First,on the basis of the analysis of physical property data,a geological–geoelectric model is established in the test area,and the wide field electromagnetic method is numerically simulated to analyze and evaluate the response characteristics of deep thin shale gas layers on wide field electromagnetic curves.Second,a wide field electromagnetic test is conducted in the complex structure area of southern Sichuan.After data processing and inversion imaging,apparent resistivity logging data are used for calibration to develop an apparent resistivity interpretation model suitable for the test area.On the basis of the results,the characteristics of the electrical structure change in the shallow longitudinal formation of 6 km are implemented,and the transverse electrical distribution characteristics of the deep shale gas layer are delineated.In the prediction area near the well,the subsequent data verification shows that the apparent resistivity obtained using the inversion of the wide field electromagnetic method is consistent with the trend of apparent resistivity revealed by logging,which proves that this method can effectively identify the weak response characteristics of deep shale gas formations in complex structural areas.This experiment,it is shown shows that the wide field electromagnetic method with a large depth and high precision can effectively characterize the electrical characteristics of deep,low-resistivity thin layers in complex structural areas,and a new set of low-cost evaluation technologies for shale gas target layers based on the wide field electromagnetic method is explored.展开更多
基金the National Natural Science Foundation of China(Grant Nos.91955206,41603038)Second Tibetan Plateau Scientific Expedition and Research program(Grant No.2019QZKK0803)+2 种基金Scientific Research Foundation for Advanced ScholarsWest Yunnan University of Applied Sciences(Grant No.2022RCKY0004)Yunnan Fundamental Research Projects(Grant No.202301AT070012).
文摘In this study,zircon U-Pb dating of volcanic rocks from the Zhongba ophiolite of the Yarlung Zangbo Suture Zone(YZSZ)in southern Xizang(Tibet)yielded an age of 247±3 Ma.According to whole rock geochemical and Sr-NdPb isotopic data,the Early Triassic samples could be divided into two groups:Group 1 with P-MORB affinity,showing initial^(87)Sr/^(86)Sr ratios of 0.70253–0.70602,ε_(Nd)(t)values of 4.2–5.3,(^(206)Pb/^(204)Pb)_(t)ratios of 16.353–18.222,(^(207)Pb/^(204)Pb)_(t)ratios of 15.454–15.564,and(^(208)Pb/^(204)Pb)_(t)ratios of 35.665–38.136;Group 2 with OIB affinity,showing initial^(87)Sr/^(86)Sr ratios of 0.70249–0.70513,ε_(Nd)(t)values of 4.4–4.9,(^(206)Pb/^(204)Pb)_(t)ratios of 17.140–18.328,(^(207)Pb/^(204)Pb)_(t)ratios of 15.491–15.575,and(^(208)Pb/^(204)Pb)_(t)ratios of 36.051–38.247.Group 2 rocks formed by partial melting of the mantle source enriched by a former plume,and assimilated continental crustal material during melt ascension.The formation of Group 1 rocks corresponds to the mixing of OIB melts,with the same components as Group 2 and N-MORBs.The Zhongba Early Triassic rocks belong to the continental margin type ophiolite and formed in the continental–oceanic transition zone during the initial opening of the Neo-Tethys in southern Xizang(Tibet).
基金The National Natural Science Foundation of China under contract Nos 41576029, 41976221 and 42030410the National Key Research and Development Program of China under contract No. 2019YFA0606702the Startup Foundation for Introducing Talent of Nanjing University of Information Science and Technology。
文摘Composite analyses were performed in this study to reveal the difference in spring precipitation over southern China during multiyear La Ni?a events during 1901 to 2015. It was found that there is significantly below-normal precipitation during the first boreal spring, but above-normal precipitation during the second year. The difference in spring precipitation over southern China is correlative to the variation in western North Pacific anomalous cyclone(WNPC), which can in turn be attributed to the different sea surface temperature anomaly(SSTA) over the Tropical Pacific. The remote forcing of negative SSTA in the equatorial central and eastern Pacific and the local air-sea interaction in the western North Pacific are the usual causes of WNPC formation and maintenance.SSTA in the first spring is stronger than those in the second spring. As a result, the intensity of WNPC in the first year is stronger, which is more likely to reduce the moisture in southern China by changing the moisture transport, leading to prolonged precipitation deficits over southern China. However, the tropical SSTA signals in the second year are too weak to induce the formation and maintenance of WNPC and the below-normal precipitation over southern China. Thus, the variation in tropical SSTA signals between two consecutive springs during multiyear La Ni?a events leads to obvious differences in the spatial pattern of precipitation anomaly in southern China by causing the different WNPC response.
文摘Ancient Yunnan was one of the most significant regions along China’s ancient“Southern Silk Road.”During the Nanzhao period(738–902)of the late Tang Dynasty,Yunnan’s silk-weaving industry underwent a qualitative leap as skilled silk craftsmen from the Bashu area migrated to Yunnan and introduced mulberry planting,silkworm breeding,and advanced silk-weaving techniques from Sichuan to the region.Consequently,people in Yunnan gradually acquired expertise in brocade weaving and embroidery.Many even mastered complex silk-weaving techniques.The development and progress of the silk-weaving industry in the ancient Yunnan region were intricately linked to the economic function and value of silk as both a commodity and currency along the“Southern Silk Road.”The local government in ancient Yunnan was greatly motivated by the economic interests brought by the development of silk-related industries and recognized the significance of developing the local silk industry.They even initiated a campaign to capture skilled silk craftsmen from Sichuan,aiming to foster the growth of the silk-weaving industry in Yunnan.After years of dedicated efforts from the local government in ancient Yunnan,the region emerged as a significant hub for silk production along China’s ancient“Southern Silk Road.”Despite the devastation caused by the wars in other parts of the country,Yunnan’s silk industry continued to thrive and provide ample silk products to sustain trade along this renowned route.In the contemporary era,amidst the decline of the silk-weaving industry in eastern China,Yunnan has proposed an industrial development strategy known as“relocating the silk-weaving industry from east to west.”This involves introducing advanced silk production techniques from the eastern regions into Yunnan to enhance and enrich its local silk industry,thereby establishing it as a traditional national sector and securing a competitive position within the global silk market.The historical experience of Yunnan’s silk industry demonstrated that economic development opportunities can only be seized through proactive endeavors rather than passive anticipation.The modern Yunnan silk industry,which upholds its historical traditions,continues to actively engage in international high-end technical cooperation,thus ensuring the enduring vitality of the ancient“Southern Silk Road.”
基金supported by the National Natural Science Foundation of China(No.42276085)the National Basic Research Program of China(No.2013CB429702).
文摘The major and trace elemental compositions of clinopyroxene from basalt were used to characterize the nature of the primitive magma and structural environment beneath the southern Okinawa Trough(SOT),which is an initial back-arc basin at a continental margin.The clinopyroxenes in the basalt were augite with variable Mg^(#)contents(73.37-78.22).The regular variations in major oxide contents(i.e.,CaO,FeO,TiO_(2),and Cr)with decreasing Mg#implied that the clinopyroxenes evolved from being enriched in Mg,Ca,and Cr to being enriched in Fe and Ti.The clinopyroxenes had relatively low rare earth element concentrations(7.51×10^(-6) to 12.68×10^(-6))and negative Eu anomalies(δEu=0.67-0.95).The Kd_(cpx) values of clinopyroxenes(0.2-0.26),which were used to examine whether the clinopyroxene was equilibrated with its host basalt,demonstrate that these clinopyroxene phenocrysts were not captured crystals but were instead produced by crystallization differentiation of the magma.The calculated clinopyroxene crystallization temperatures showed a narrow range of 990-1061℃,and their crystallization pressures ranged from 2.0 to 3.2 kbar.The geochemistry features of these clinopyroxenes indicated that the parent magma belonged to the subalkaline tholeiitic magma series and suggested that the magma experienced crystallization differentiation of olivine,plagioclase,and clinopyroxene,where the crystallization of plagioclase occurred earlier than that of clinopyroxene.Combined with geophysical data,this research on primitive magma and its crystallization differentiation from clinopyroxene indicates that the SOT is in the stage of‘seafloor spreading’and that basaltic rocks produced from tholeiitic magma represent the generation of oceanic crust.
基金funded by the Second Tibetan Plateau Scientific Expedition and Research Program(2019QZKK0902)the National Natural Science Foundation of China(91747207,41790434)。
文摘Large-scale rock-ice avalanches resulting from the interaction of tectonics and climate are characterized with high mobility,huge volumes of sediment,and rapid denudation,being a major agent of landscape evolution in high altitude mountainous regions.Specifically,the extreme glaciated slope failures often transform into extraordinarily large and mobile debris flows,resulting in disastrous consequences such as sedimentation and desertification.Due to a dearth of on-site observation data and experimental data collection,our comprehension of the geomorphic and kinematic characteristics of rock-ice avalanches remains poor.Here we report a cluster of ancient rock-ice avalanches spreading along the Chomolhari range of the China-Bhutan Himalayas.By integrating remote sensing image interpretation with detailed field investigations,we demonstrate the geomorphic and sedimentary characteristics of four events among the avalanches.The estimated volumes of the four are 23.73 Mm³,39.69 Mm³,38.43 Mm³,and 38.25 Mm³,respectively.The presence of pre-existing moraines or alluvial fans constrained their movement,resulting in deposition features such as marginal digitated lobes at higher elevations and large depressed areas in the interior.Applying the Savage-Hutter theory,we calculate the basal friction angle and travel angle of these ancient rock-ice avalanches that are both less than 10°,affirming the similarity of these avalanches in the study area to those occurring in other regions.Our study significantly contributes to understanding the geomorphic and kinematic characteristics of rock-ice avalanches in high-altitude mountainous regions,providing valuable insights into their response to the disproportionate growth of Himalayan peaks.
基金supported by the Natural Science Foundation of Shandong Province(No.ZR2022MD114)the Project of Global Earth Observation on Asian Delta and Estuary Corresponding to Anthropogenic Impacts and Climate Changes(No.2019YFE0127200).
文摘The small muddy areas developed in the southern Shandong Peninsula have attracted increasing attention from researchers because of complex changes in sediment sources driven by sea-level fluctuations and land-sea interactions since the late Pleistocene.This study investigates the evolution of sediment sources and their responses to environmental changes since the late Pleistocene,using core WHZK01 collected from the nearshore muddy area in southern Weihai for rare earth element(REE)analysis.In doing so,this work highlights the changing patterns of material sources and the primary control factors.The results reveal that the sedimentary deposits in core WHZK01 exhibit distinct terrestrial characteristics.Discriminant function analysis(F_(D))and source discrimination dia-grams both suggest that the primary sources of these deposits are the Yellow River and adjacent small and medium-sized rivers,although the sources vary among different sedimentary units.Furthermore,the DU3 layer(17.82-25.10 m)displays typical riverine sedimentation,dominated by terrestrial detrital input,primarily from the local rivers,namely the Huanglei and Muzhu Rivers.The material in the DU2 layer(14.91-17.82 m)is mainly influenced by a mixture of the Qinglong and Yellow Rivers.The DU1 layer(0-14.91 m)is influenced by sea-level changes during the Holocene,with the Yellow River being the primary source,although there is also some input from local rivers.The changes in sea level during the Holocene and the input of Yellow River material carried by the coastal currents of the Yellow Sea are identified as the main controlling factors for the changes in material sources in the study area since the late Pleistocene,with small and mediumsized rivers also exerting some influence on the material sources.The above mentioned findings not only contribute to a better understanding of the source-sink systems of the Yellow River and adjacent small and mediumsized rivers but also deepen our understanding of the late Quaternary land-sea interactions in the Shandong Peninsula.
基金Supported by the National Natural Science Foundation of China(No.42106080)the Laboratory for Marine Geology+2 种基金China Ocean Mineral Resources R&D Association Project(No.DY135-S2-2-03)the Natural Science Foundation of Shandong Province(No.ZR2020QD074)the Talents Research Start-up Funding Project of Ludong University。
文摘Six hydrothermal sediment samples were collected from the Xunmei and Tongguan hydrothermal fields along the southern Mid-Atlantic Ridge during the China Ocean Cruise DY46 in 2017.Sulfides and oxides in the samples were separated,and Cu and Zn isotope compositions were analyzed.Results show that the ranges ofδ^(65)Cu values of the bulk sediments,sulfides,and oxides were 0.36‰-2.46‰,-0.21‰-1.10‰,and 0.68‰-1.52‰,respectively.Theδ^(65)Cu values of sulfides in four samples(46II-14,46II-30,46III-06,and 46II-09)were relatively low(-0.21‰-0.50‰),corresponding to theδ^(65)Cu values of sulfides from inactive old hydrothermal chimneys in northern Mid-Atlantic Ridge(n MAR),suggesting that the sulfides in the sediments were originated from collapsed dead chimney mainly.While theδ^(65)Cu values of the other two samples(46III-02 and 46III-08)were relatively high(1.10‰-0.96‰),corresponding to theδ^(65)Cu values for active hydrothermal chimneys sulfides in n MAR,which indicated that the sulfides in these two samples might mainly come from sulfide particles settled from active hydrothermal plume.Because of the high density of sulfide particles,they tended to settle near the hydrothermal vents first.Therefore,highδ^(65)Cu values of sulfides in 46III-02 and 46III-08 implied that undiscovered active hydrothermal vents near the sampling positions of 46III-02 in the Xunmei hydrothermal field and 46III-08 in the Tongguan hydrothermal field.Theδ^(66)Zn values of hydrothermal sediments and sulfides ranged 0.11‰-0.43‰and 0.29‰-0.67‰,respectively.In the four samples from the Xunmei hydrothermal field,a positive correlation was found between the distance of the sampling position from sulfide mineralized spot and the Zn isotopic ratio,showing that the greater the distance from the mineralized spot,the heavier the Zn isotope composition as seen in two samples(46II-30 and 46II-14)of the Xunmei-3 spot.This result aligned with the findings of Wilkinson et al.(2005)and Baumgartner et al.(2023),suggesting that the lower the Zn isotope composition,the closer it is to the hydrothermal vent.However,in the Xunmei hydrothermal field,the Zn isotope composition in the other two samples(46III-02and 46III-06)showed the opposite trend.This indicated that there might be an active hydrothermal vent near the sampling location of sample 46III-02.This observation aligned with the Cu isotope analysis results.This study showed that Cu-Zn isotopes are good indicators for understanding the formation mechanisms of hydrothermal sediments and for locating active hydrothermal vents.
基金funded by the National Natural Science Foundation of China(Nos.41876073,92058207)the National Basic Research Program of China(973 Program No.2010CB428901).
文摘Long-chain alkenones(LCAs)have been widely used as important biomarkers in palaeoceanographic studies.However,the commonly used LCAs proxies are mainly based on C_(37) alkenones,and it is still lack of the studies about the distribution and in-dications of LCAs with different chain lengths other than C_(37) alkenones.Here,the composition and distribution of LCAs were ana-lyzed in surface sediments from the southern Yellow Sea(SYS)and a sedimentary core(A02-C)from the central Yellow Sea(YS)mud area.The results showed that C_(37),C_(38) and C_(39) alkenones were the major LCAs in surface sediments of the SYS,and the relative contents of C_(38:2)Et,C_(37:2)Me,C_(37:3)Me,C_(38:2)Me,C_(38:3)Et,C_(38:3)Me,C_(39:2)Et and C_(39:3)Et were 18.3%-59.8%,22.6%-41.2%,7.4%-23.0%,6.6%-15.4%,3.8%-13.3%,3.6%-8.7%,2.8%-6.0% and 0.7%-3.0%,respectively.Then the relationships of U_(38Me)^(K)-U_(38Et)^(K) and U_(37)^(K')-U_(38)^(K)Et indicate that LCAs are mainly derived from Emiliania huxleyi(E.huxleyi).High ratios of total C_(37) alkenones to total C_(38) alkenones(K_(37)/K_(38))(1-1.2)were found in the central SYS,corresponding to the relatively high abundance of E.huxleyi;while low ratios of K_(37)/K_(38)(0.7-0.9)were observed at nearshore area of the SYS where Gephyrocapsa oceanica(G.oceanica)has rela-tively high abundance.The spatial distribution of K_(37)/K_(38) ratio is also consistent with that of coccolithophores nannofossil in the sediments.In addition,K_(37)/K_(38) ratio in core A02-C varied from 0.7 to 1.1 with a gradual decreasing trend during the past 5.5 kyr.This suggests that the relative abundance of E.huxleyi decreased gradually,caused by the changes in the Yellow Sea Warm Current(YSWC)and the East Asian Winter Monsoon(EAWM)during this period.
基金financially supported by the National Key Research and Development Plan(Grant No.2023YFC2906801)。
文摘Garnet is a primary mineral in skarn deposits and plays a significant role in recording copious mineralization and metallogenic information.This study systematically investigates the geochemistry and geochronology of garnet and zircon in the Dafang Au-Pb-Zn-Ag deposit,which represents prominent gold mineralization in southern Hunan,China.Garnet samples with distinct zoning patterns and compositional variations were identified using various analytical techniques,including Backscattered Electron(BSE)imaging,Cathodoluminescence(CL)response,textural characterization,and analysis of rare-earth elements(REE),major contents,and trace element compositions.The garnet was dated U-Pb dating,which yielded a lower intercept age of 161.06±1.93 Ma.This age is older than the underlying granodiorite porphyry,which has a concordia age of 155.13±0.95 Ma determined by zircon U-Pb dating.These results suggest that the gold mineralization may be related to the concealed granite.Two groups of garnet changed from depleted Al garnet to enriched Al garnet,and the rare earth element(REE)patterns of these groups were converted from light REE(LREE)-enriched and heavy REE(HREE)-depleted with positive europium(Eu)anomalies to medium REE(MREE)-enriched from core to rim zoning.The different REE patterns of garnet in various zones may be attributed to changes in the fluid environment and late superposition alteration.The development of distal skarn in the southern Hunan could be a significant indicator for identifying gold mineralization.
基金the National Key Research and Development Program of China(Grant No.2020YFA0608803)the National Natural Science Foundation of China(Grant Nos.41975107,41875092 and 42005020).
文摘To explain the recent three-year La Niña event from 2020 to 2022,which has caused catastrophic weather events worldwide,Fasullo et al.(2023)demonstrated that the increase in biomass aerosol resulting from the 2019-20 Australian wildfire season could have triggered this multi-year La Niña.Here,we present compelling evidence from paleo-proxies,utilizing a substantial sample size of 26 volcanic eruptions in the Southern Hemisphere(SH),to support the hypothesis that ocean cooling in the SH can lead to a multi-year La Niña event.This research highlights the importance of focusing on the Southern Ocean,as current climate models struggle to accurately simulate the Pacific response driven by the Southern Ocean.
基金supported by the National Natural Science Foundation of China(Nos.42076208,42141019,41831175 and 41706026)the National Key Research and Development Program of China(No.2017YFA0604600)+1 种基金the Natural Science Foundation of Jiangsu Province(No.BK20211209)the Fundamental Research Funds for the Central Universities(Nos.B210202135 and B210201015).
文摘This work evaluates the performances of climate models in simulating the Southern Ocean(SO)sea surface temperature(SST)by a large ensemble from phases 5 and 6 of the Coupled Model Intercomparison Project(CMIP5 and CMIP6).By combining models from the same community sharing highly similar SO SST biases and eliminating the effect of global-mean biases on local SST biases,the results reveal that the ensemble-mean SO SST bias at 70°-30°S decreases from 0.38℃ in CMIP5 to 0.28℃ in CMIP6,together with increased intermodel consistency.The dominant mode of the intermodel variations in the zonal-mean SST biases is characterized as a meridional uniform warm bias pattern,explaining 79.1% of the intermodel variance and exhibiting positive principal values for most models.The ocean mixed layer heat budget further demonstrates that the SST biases at 70°-50°S primarily result from the excessive summertime heating effect from surface net heat flux.The biases in surface net heat flux south of 50°S are largely impacted by surface shortwave radiation from cloud and clear sky components at different latitudes.North of 50°S,the underestimated westerlies reduce the northward Ekman transport and hence northward cold advection in models,leading to warm SST biases year-round.In addition,the westerly biases are primarily traced back to the atmosphere-alone model simulations forced by the observed SST and sea ice.These results disclose the thermal origin at the high latitude and dynamical origin at the low latitude of the SO SST biases and underscore the significance of the deficiencies of atmospheric models in producing the SO SST biases.
基金supported by the Independent Research Foundation of Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai) (Grant No. SML2021SP306)National Natural Science Foundation of China (Grant Nos. 41941007, 41806216, 41876220, and 62177028)+2 种基金Natural Science Foundation of Jiangsu Province (Grant No. BK20211015)China Postdoctoral Science Foundation (Grant Nos. 2019T120379 and 2018M630499)the Talent start-up fund of Nanjing Xiaozhuang University (Grant No. 4172111)。
文摘The mechanical influences involved in the interaction between the Antarctic sea ice and ocean surface current(OSC)on the subpolar Southern Ocean have been systematically investigated for the first time by conducting two simulations that include and exclude the OSC in the calculation of the ice-ocean stress(IOS), using an eddy-permitting coupled ocean-sea ice global model. By comparing the results of these two experiments, significant increases of 5%, 27%, and 24%, were found in the subpolar Southern Ocean when excluding the OSC in the IOS calculation for the ocean surface stress,upwelling, and downwelling, respectively. Excluding the OSC in the IOS calculation also visibly strengthens the total mechanical energy input to the OSC by about 16%, and increases the eddy kinetic energy and mean kinetic energy by about38% and 12%, respectively. Moreover, the response of the meridional overturning circulation in the Southern Ocean yields respective increases of about 16% and 15% for the upper and lower branches;and the subpolar gyres are also found to considerably intensify, by about 12%, 11%, and 11% in the Weddell Gyre, the Ross Gyre, and the Australian-Antarctic Gyre, respectively. The strengthened ocean circulations and Ekman pumping result in a warmer sea surface temperature(SST), and hence an incremental surface heat loss. The increased sea ice drift and warm SST lead to an expansion of the sea ice area and a reduction of sea ice volume. These results emphasize the importance of OSCs in the air-sea-ice interactions on the global ocean circulations and the mass balance of Antarctic ice shelves, and this component may become more significant as the rapid change of Antarctic sea ice.
文摘The Fengcheng Formation is a crucial source rock and the primary reservoir for oil accumulation in the Mahu Sag.Crude oils are distributed throughout the Fengcheng Formation,ranging from the edge to the interior of the sag in the southern Mahu Sag.These crude oils originate from in-situ source rocks in shallowly buried areas and the inner deep sag.During migration,the crude oil from the inner deep sag affects the source rocks close to carrier beds,leading to changes in the organic geochemical characteristics of the source rocks.These changes might alter source rock evaluations and oil-source correlation.Based on data such as total organic carbon(TOC),Rock-Eval pyrolysis of source rocks,and gas chromatography-mass spectrometry(GC-MS)of the saturated fraction,and considering the geological characteristics of the study area,we define the identification characteristics of source rock affected by migrated hydrocarbons and establish the various patterns of influence that migrated hydrocarbons have on the source rock of the Fengcheng Formation in the southern Mahu Sag.The source rocks of the Fengcheng Formation are mostly fair to good,containing mainly Type II organic matter and being thermally mature enough to generate oil.Source rocks affected by migrated hydrocarbons exhibit relatively high hydrocarbon contents(S1/TOC>110 mg HC/g TOC,Extract/TOC>30%,HC:hydrocarbon),relatively low Rock-Eval Tmax values,and relatively high tricyclic terpane contents with a descending and mountain-shaped distribution.Furthermore,biomarker composition parameters indicate a higher thermal maturity than in-situ source rocks.Through a comparison of the extract biomarker fingerprints of adjacent reservoirs and mudstones in different boreholes,three types of influence patterns of migrated hydrocarbons are identified:the edge-influence of thin sandstone-thick mudstone,the mixed-influence of sandstone-mudstone interbedded,and the full-influence of thick sandstone-thin mudstone.This finding reminds us that the influence of migrated hydrocarbons must be considered when evaluating source rocks and conducting oil-source correlation.
基金funded by the Natural Science Foundation of Hubei Province(2022CFB260,2021CFB508)the National Natural Science Foundation of China(No.42074007No.42130101).
文摘The Southern Highland Fold and Thrust Belt(SHFTB),the boundary of the Australian plate and the New Guinea Highland block,significantly contributes to the convergent deformation along the plate bound-ary.However,due to the lack of observation data,the detailed slip pattern of the SHFTB and the orogenic mechanism beneath the New Guinea Highlands remains controversial.On 25 February 2018,the M_(w)7.5 Papua New Guinea(PNG)earthquake struck the southeastern segment of the SHFTB.The detailed rupture characteristics of this event is significant for further clarifying the inter-seismic slip pattern along the SHFTB.Here,the coseismic deformation field of this earthquake was obtained using high-resolution ALOS-2 satellite images.We find that the 2018 M_(w)7.5 PNG earthquake ruptured a large-scaled fault(SHFTB)extending to the lower crust(deeper than 20 km)beneath the New Guinea Highlands,with a dip angle of 24°.The slips on the fault plane are equivalent to moment magnitudes of M_(w)7.51.Three major asperities with thrust-dominated slip of up to 3.94 m are detected on the fault plane.This finding implies that the slip pattern on the eastern segment of the SHFTB is dominated by thrust,rather than with significant sinistral movement,as previously reported.The tectonic deformation across the New Guinea Highlands is possibly concentrated on the large-scale fault SHFTB and primarily controls the intra-continental orogeny in the central Papua New Guinea.
基金supported by the National Key R&D Program for Developing Basic Sciences(2022YFC3104802)the National Natural Science Foundation of China(Nos.42306219 and 42106020)+3 种基金the Tai Shan Scholar Pro-gram(Grant No.tstp20231237)Part of computing resources are financially supported by Laoshan Laboratory(No.LSKJ202300301)Dr.Eric P.CHASSIGNET is supported by the CAS President’s International Fellowship Initiative(PIFI)NOAA Climate Program Office MAPP Program(Award NA15OAR4310088).
文摘This study assesses the capability of a coarse-resolution ocean model to replicate the response of the Southern Ocean Meridional Overturning Circulation(MOC) to intensified westerlies,focusing on the role of the eddy transfer coefficient(κ).κ is a parameter commonly used to represent the velocities induced by unresolved eddies.Our findings reveal that a stratification-dependent κ,incorporating spatiotemporal variability,leads to the most robust eddy-induced MOC response,capturing 82% of the reference eddy-resolving simulation.Decomposing the eddy-induced velocity into its vertical variation(VV) and spatial structure(SS) components unveils that the enhanced eddy compensation response primarily stems from an augmented SS term,while the introduced VV term weakens the response.Furthermore,the temporal variability of the stratification-dependent κ emerges as a key factor in enhancing the eddy compensation response to intensified westerlies.The experiment with stratification-dependent κ exhibits a more potent eddy compensation response compared to the constant κ,attributed to the structure of κ and the vertical variation of the density slope.These results underscore the critical role of accurately representing κ in capturing the response of the Southern Ocean MOC and emphasize the significance of the isopycnal slope in modulating the eddy compensation mechanism.
基金The Key Research&Development Program of the Ministry of Science and Technology of China under contract No.2022YFC2807601the National Natural Science Foundation of China under contract Nos 41941008 and 41876221+3 种基金the Fund of Shanghai Science and Technology Committee under contract Nos 20230711100 and 21QA1404300the Impact and Response of Antarctic Seas to Climate Change funded by the Chinese Arctic and Antarctic Administration under contract No.IRASCC 1-02-01Bthe National Key Research and Development Program of China under contract No.2019YFC1509102the Shanghai Pilot Program for Basic Research—Shanghai Jiao Tong University under contract No.21TQ1400201。
文摘Antarctic coastal polynyas are biological hotspots in the Southern Ocean that support the abundance of hightrophic-level predators and are important for carbon cycling in the high-latitude oceans.In this study,we examined the interannual variation of summertime phytoplankton biomass in the Marguerite Bay polynya(MBP)in the western Antarctic Peninsula area,and linked such variability to the Southern Annular Mode(SAM)that dominated the southern hemisphere extratropical climate variability.Combining satellite data,atmosphere reanalysis products and numerical simulations,we found that the interannual variation of summer chlorophyll-a(Chl-a)concentration in the MBP is significantly and negatively correlated with the spring SAM index,and weakly correlated with the summer SAM index.The negative relation between summer Chl-a and spring SAM is due to weaker spring vertical mixing under a more positive SAM condition,which would inhibit the supply of iron from deep layers into the surface euphotic layer.The negative relation between spring mixing and spring SAM results from greater precipitation rate over the MBP region in positive SAM phase,which leads to lower salinity in the ocean surface layer.The coupled physical-biological mechanisms between SAM and phytoplankton biomass revealed in this study is important for us to predict the future variations of phytoplankton biomasses in Antarctic polynyas under climate change.
基金The National Natural Science Foundation of China under contract No.41721005the Fund of the Ministry of Natural Resources of the People’s Republic of China under contract Nos IRASCC 02-01-01 and 01-01-02C.
文摘Nitrification,a central process in the marine nitrogen cycle,produces regenerated nitrate in the euphotic zone and emits N_(2)O,a potent greenhouse gas as a by-product.The regulatory mechanisms of nitrification in the Southern Ocean,which is a critical region for CO_(2)sequestration and radiative benefits,remain poorly understood.Here,we investigated the in situ and dark nitrification rates in the upper 500 m and conducted substrate kinetics experiments across the Indian Sector in the Cosmonaut and Cooperation seas in the late austral summer.Our findings indicate that light inhibition of nitrification decreases exponentially with depth,exhibiting a light threshold of 0.53%photosynthetically active radiation.A positive relationship between dark nitrification and apparent oxygen utilization suggests a dependence on substrate availability from primary production.Importantly,an increased NH_(4)^(+) supply can act as a buffer against photo-inhibitory damage.Globally,substrate affinity(α)increases with depth and transitions from light to dark,decreases with increasing ambient NH_(4)^(+)and exhibits a latitudinal distribution,reflecting substrate utilization strategies.We also reveal that upwelling in Circumpolar Deep Water(CDW)stimulates nitrification through the introduction of potentially higher iron and deep diverse nitrifying microorganisms with higherα.We conclude that although light is the primary limiting factor for nitrification in summer,coupling between substrate availability and CDW upwelling can overcome this limitation,thereby alleviating photoinhibition by up to 45%±5.3%.
文摘This study investigates the relationship between circulation patterns and austral summer temperature anomalies in southern Africa. The results show that the formation of continental lows tends to increase the thickness of the lower atmosphere. Further, the distinct variabilities of high and low pressure under the circulation types, influence air mass advection from the adjacent oceans, as well as atmospheric stability over land. Stronger anticyclonic circulation at the western branch of the Mascarene high-pressure system enhances the low-level cold air advection by southeast winds,decreases the thickness, and lowers the temperature over a majority of the land in southern Africa. Conversely, a weaker Mascarene High, coupled with enhanced cyclonic activity in the southwest Indian Ocean increases low-level warm air advection and increases temperature anomalies over vast regions in southern Africa. The ridging of a closed South Atlantic anticyclone at the southern coast of southern Africa results in colder temperatures near the tip of southern Africa due to enhanced low-level cold air advection by southeast winds. However, when the ridge is weak and westerly winds dominate the southern coast of southern Africa, these areas experience temperature increases. The northward track of the Southern Hemisphere mid-latitude cyclone, which can be linked to the negative Southern Annular Mode, reduces the temperature in the southwestern part of southern Africa. Also, during the analysis period, El Ni?o was associated with temperature increases over the central parts of southern Africa;while the positive Indian Ocean dipole was linked to a temperature increase over the northeastern, northwestern, and southwestern parts of southern Africa.
文摘To fully exploit the technical advantages of the large-depth and high-precision artificial source electromagnetic method in the complex structure area of southern Sichuan and compensate for the shortcomings of the conventional electromagnetic method in exploration depth,precision,and accuracy,the large-depth and high-precision wide field electromagnetic method is applied to the complex structure test area of the Luochang syncline and Yuhe nose anticline in the southern Sichuan.The advantages of the wide field electromagnetic method in detecting deep,low-resistivity thin layers are demonstrated.First,on the basis of the analysis of physical property data,a geological–geoelectric model is established in the test area,and the wide field electromagnetic method is numerically simulated to analyze and evaluate the response characteristics of deep thin shale gas layers on wide field electromagnetic curves.Second,a wide field electromagnetic test is conducted in the complex structure area of southern Sichuan.After data processing and inversion imaging,apparent resistivity logging data are used for calibration to develop an apparent resistivity interpretation model suitable for the test area.On the basis of the results,the characteristics of the electrical structure change in the shallow longitudinal formation of 6 km are implemented,and the transverse electrical distribution characteristics of the deep shale gas layer are delineated.In the prediction area near the well,the subsequent data verification shows that the apparent resistivity obtained using the inversion of the wide field electromagnetic method is consistent with the trend of apparent resistivity revealed by logging,which proves that this method can effectively identify the weak response characteristics of deep shale gas formations in complex structural areas.This experiment,it is shown shows that the wide field electromagnetic method with a large depth and high precision can effectively characterize the electrical characteristics of deep,low-resistivity thin layers in complex structural areas,and a new set of low-cost evaluation technologies for shale gas target layers based on the wide field electromagnetic method is explored.