The Solar wind Magnetosphere Ionosphere Link Explorer(SMILE)Soft X-ray Imager(SXI)will shine a spotlight on magnetopause dynamics during magnetic reconnection.We simulate an event with a southward interplanetary magne...The Solar wind Magnetosphere Ionosphere Link Explorer(SMILE)Soft X-ray Imager(SXI)will shine a spotlight on magnetopause dynamics during magnetic reconnection.We simulate an event with a southward interplanetary magnetic field turning and produce SXI count maps with a 5-minute integration time.By making assumptions about the magnetopause shape,we find the magnetopause standoff distance from the count maps and compare it with the one obtained directly from the magnetohydrodynamic(MHD)simulation.The root mean square deviations between the reconstructed and MHD standoff distances do not exceed 0.2 RE(Earth radius)and the maximal difference equals 0.24 RE during the 25-minute interval around the southward turning.展开更多
Based on the historical records,the flood disasters in Xu-Huai River Basin caused by southward flow of Yellow River were studied,while its effects on Xu-Huai regional economic,transportation and eco-environment were a...Based on the historical records,the flood disasters in Xu-Huai River Basin caused by southward flow of Yellow River were studied,while its effects on Xu-Huai regional economic,transportation and eco-environment were also highlighted,and finally historical natural disasters were presented in this study.展开更多
A time series dataset spanning 39 years(1981-2018) on red tide events in Zhejiang coastal waters was used to study the characteristics of inter-annual spatial and temporal variations. A distinct inter-annual pattern c...A time series dataset spanning 39 years(1981-2018) on red tide events in Zhejiang coastal waters was used to study the characteristics of inter-annual spatial and temporal variations. A distinct inter-annual pattern characterized by low frequency, explosive growth and fluctuating decline stages was found over the studied time scale. Most red tide events occurred in parallel to the bathymetric contour, and 95.4% were located to the west of the 50 m isobath. Additionally, the high-incidence area of red tides is expanding southward. In this paper, local sea surface temperature(SST), mariculture area and secondary industry growth rate are introduced and identified as the main factors influencing the nutrient and hydrometeorological conditions. A multivariate nonlinear regression equation based on these factors was constructed, and the goodness of fit coefficient was 0.907. The causes of the annual variation and high-frequency area in the southward expansion were quantitatively analyzed based on the proposed regression model. Finally, the results indicated that 68.7% of the annual occurrence variation of red tide was due to the SST and mariculture area, which are the main impact factors;however,secondary industry growth could compensate for the nutrient deficiency caused by the sharp mariculture area reduction and decreased SST. The background nutrient level, which is elevated by coastal economic development, especially secondary industry, is the main determinant of the southward expansion. Although the trend of the southward expansion of high-frequency areas has not changed, the red tide frequency in coastal cities has decreased by half and remained at a stable level after 2010 due to substantial economic restructuring and environmental protection.展开更多
A large-scale surface flow with a southward component is proposed for the central South Pacific Ocean based on an interpretation of existing closely spaced and accurately measured temperatures and salinities along two...A large-scale surface flow with a southward component is proposed for the central South Pacific Ocean based on an interpretation of existing closely spaced and accurately measured temperatures and salinities along two latitudes in two different southern hemisphere winters: 28o S (Scorpio) and five degrees south of that (WOCE). Such a southward flow is not predicted from theory nor is it shown on current charts and globes. The observed longitudinal maximum in surface temperature along 28o S is centered around 130o W and has an amplitude of at least 5o C and an east/west range of about 60o of longitude. This striking feature is most easily explained by horizontal transport from latitudes closer to the equator. Since temperature atlases show that equatorial surface temperatures are always highest in the west, the origin of the warm water probably is toward the western side of the ocean as well. Thus the surface flow surrounding the longitudinal temperature maximum should be directed to the southeast. Where the surface temperatures are maximum the mixed layer depths are relatively large in a convex downward lens with maximum depths of 100 m;a correlation that is consistent with warm water moving south and being cooled from above. Salinities are maximum near the temperature maximum, also suggesting that the source of the surface flow is at low latitudes, where evaporation is usually expected to exceed precipitation. It is conjectured that the large-scale southeastward flow of the South Pacific is the analogue of the northeastward wide warm current off California documented over 30 years ago.展开更多
Based on the climatological daily mean NCEP/NCAR reanalysis data, NOAA outgoing longwave radiation (OLR) data, and pentad NOAA CMAP precipitation from 1979 to 2006, the variation of the western Pacific subtropical h...Based on the climatological daily mean NCEP/NCAR reanalysis data, NOAA outgoing longwave radiation (OLR) data, and pentad NOAA CMAP precipitation from 1979 to 2006, the variation of the western Pacific subtropical high (WPSH) ridge during late spring and early summer (LSES) and its relationship with the onset of the Asian summer monsoon is discussed from a climatological perspective. It is found that a remarkable southward retreat process (SRP) of the WPSH during LSES appears at both lower and higher levels of the troposphere, with a lifespan of approximate two weeks. Afterwards, the first northward jump of the WPSH occurs. The end date of the WPSH SRP in the upper troposphere is about 10 days earlier than the beginning of the WPSH SRP in the lower troposphere, showing a meaningful leading signal for predicting the WPSH SRP in the lower troposphere and the subsequent northward jump of the WPSH. The WPSH SRP at lower levels happens simultaneously with a notable eastward shift of the WPSH. After the WPSH SRP at lower levels comes to the southernmost position around the end of May, the WPSH ridge axis inclines northward rather than southward with altitude due to the change of the meridional gradient of air temperature. The Asian summer monsoon onset and associated variations in strong convection and rainfall in Asia are closely related to the variations of W'PSH SRP during LSES. In the mid-late period of the higher-level WPSH SRP, around the end of April, the summer monsoon onset takes place in the Andaman Sea and the Bay of Bengal. Following the start of the lower-level WPSH SRP, the South China Sea (SCS) summer monsoon breaks out (May 14-15). By the end of the lower-level WPSH SRP, in the beginning of June, the Indian summer monsoon kicks off. Upon the end of the lower-level WPSH return stage, the East Asian summer monsoon begins. The commencement of each component of the Asian summer monsoon system corresponds nicely to a particular stage of the WPSH SRP in the lower or higher troposphere. This offers valuable information for monsoon onset prediction in different sectors of Asia. In addition, it is found that there is a typical wet-dry-wet sandwich precipitation pattern, with two rainfall belts in the regions south and north to the WPSH main body, and a dry belt under it. The variation of this rainfall pattern is related to the shift of the WPSH ridge.展开更多
基金support from the UK Space Agency under Grant Number ST/T002964/1partly supported by the International Space Science Institute(ISSI)in Bern,through ISSI International Team Project Number 523(“Imaging the Invisible:Unveiling the Global Structure of Earth’s Dynamic Magnetosphere”)。
文摘The Solar wind Magnetosphere Ionosphere Link Explorer(SMILE)Soft X-ray Imager(SXI)will shine a spotlight on magnetopause dynamics during magnetic reconnection.We simulate an event with a southward interplanetary magnetic field turning and produce SXI count maps with a 5-minute integration time.By making assumptions about the magnetopause shape,we find the magnetopause standoff distance from the count maps and compare it with the one obtained directly from the magnetohydrodynamic(MHD)simulation.The root mean square deviations between the reconstructed and MHD standoff distances do not exceed 0.2 RE(Earth radius)and the maximal difference equals 0.24 RE during the 25-minute interval around the southward turning.
基金Supported by Social Science Fund in Jiangsu Province " Study on evolution of Yellow River s flooding into the Huihe River and natural systems in Northern Jiangsu" (09LSA001)~~
文摘Based on the historical records,the flood disasters in Xu-Huai River Basin caused by southward flow of Yellow River were studied,while its effects on Xu-Huai regional economic,transportation and eco-environment were also highlighted,and finally historical natural disasters were presented in this study.
基金The National Basic Research Program of China under contract No. 2016YFC1401900the Open Research Funds of Key Laboratory of Marine Ecological Monitoring and Restoration Technologies under contract No. MATHAB201703。
文摘A time series dataset spanning 39 years(1981-2018) on red tide events in Zhejiang coastal waters was used to study the characteristics of inter-annual spatial and temporal variations. A distinct inter-annual pattern characterized by low frequency, explosive growth and fluctuating decline stages was found over the studied time scale. Most red tide events occurred in parallel to the bathymetric contour, and 95.4% were located to the west of the 50 m isobath. Additionally, the high-incidence area of red tides is expanding southward. In this paper, local sea surface temperature(SST), mariculture area and secondary industry growth rate are introduced and identified as the main factors influencing the nutrient and hydrometeorological conditions. A multivariate nonlinear regression equation based on these factors was constructed, and the goodness of fit coefficient was 0.907. The causes of the annual variation and high-frequency area in the southward expansion were quantitatively analyzed based on the proposed regression model. Finally, the results indicated that 68.7% of the annual occurrence variation of red tide was due to the SST and mariculture area, which are the main impact factors;however,secondary industry growth could compensate for the nutrient deficiency caused by the sharp mariculture area reduction and decreased SST. The background nutrient level, which is elevated by coastal economic development, especially secondary industry, is the main determinant of the southward expansion. Although the trend of the southward expansion of high-frequency areas has not changed, the red tide frequency in coastal cities has decreased by half and remained at a stable level after 2010 due to substantial economic restructuring and environmental protection.
文摘A large-scale surface flow with a southward component is proposed for the central South Pacific Ocean based on an interpretation of existing closely spaced and accurately measured temperatures and salinities along two latitudes in two different southern hemisphere winters: 28o S (Scorpio) and five degrees south of that (WOCE). Such a southward flow is not predicted from theory nor is it shown on current charts and globes. The observed longitudinal maximum in surface temperature along 28o S is centered around 130o W and has an amplitude of at least 5o C and an east/west range of about 60o of longitude. This striking feature is most easily explained by horizontal transport from latitudes closer to the equator. Since temperature atlases show that equatorial surface temperatures are always highest in the west, the origin of the warm water probably is toward the western side of the ocean as well. Thus the surface flow surrounding the longitudinal temperature maximum should be directed to the southeast. Where the surface temperatures are maximum the mixed layer depths are relatively large in a convex downward lens with maximum depths of 100 m;a correlation that is consistent with warm water moving south and being cooled from above. Salinities are maximum near the temperature maximum, also suggesting that the source of the surface flow is at low latitudes, where evaporation is usually expected to exceed precipitation. It is conjectured that the large-scale southeastward flow of the South Pacific is the analogue of the northeastward wide warm current off California documented over 30 years ago.
基金the Ministry of Science and Technology of China under Grant No.2006CB403600the National Natural Science Foundation of China under Grant Nos.40821092 and 40523001.
文摘Based on the climatological daily mean NCEP/NCAR reanalysis data, NOAA outgoing longwave radiation (OLR) data, and pentad NOAA CMAP precipitation from 1979 to 2006, the variation of the western Pacific subtropical high (WPSH) ridge during late spring and early summer (LSES) and its relationship with the onset of the Asian summer monsoon is discussed from a climatological perspective. It is found that a remarkable southward retreat process (SRP) of the WPSH during LSES appears at both lower and higher levels of the troposphere, with a lifespan of approximate two weeks. Afterwards, the first northward jump of the WPSH occurs. The end date of the WPSH SRP in the upper troposphere is about 10 days earlier than the beginning of the WPSH SRP in the lower troposphere, showing a meaningful leading signal for predicting the WPSH SRP in the lower troposphere and the subsequent northward jump of the WPSH. The WPSH SRP at lower levels happens simultaneously with a notable eastward shift of the WPSH. After the WPSH SRP at lower levels comes to the southernmost position around the end of May, the WPSH ridge axis inclines northward rather than southward with altitude due to the change of the meridional gradient of air temperature. The Asian summer monsoon onset and associated variations in strong convection and rainfall in Asia are closely related to the variations of W'PSH SRP during LSES. In the mid-late period of the higher-level WPSH SRP, around the end of April, the summer monsoon onset takes place in the Andaman Sea and the Bay of Bengal. Following the start of the lower-level WPSH SRP, the South China Sea (SCS) summer monsoon breaks out (May 14-15). By the end of the lower-level WPSH SRP, in the beginning of June, the Indian summer monsoon kicks off. Upon the end of the lower-level WPSH return stage, the East Asian summer monsoon begins. The commencement of each component of the Asian summer monsoon system corresponds nicely to a particular stage of the WPSH SRP in the lower or higher troposphere. This offers valuable information for monsoon onset prediction in different sectors of Asia. In addition, it is found that there is a typical wet-dry-wet sandwich precipitation pattern, with two rainfall belts in the regions south and north to the WPSH main body, and a dry belt under it. The variation of this rainfall pattern is related to the shift of the WPSH ridge.