3-D velocity structure of P wave in the upper mantle beneath southwestern China and its adjacent areas (10°N [similar to] 36°N, 70°E [similar to] 110°E) down to the depth of 400 km has been studied...3-D velocity structure of P wave in the upper mantle beneath southwestern China and its adjacent areas (10°N [similar to] 36°N, 70°E [similar to] 110°E) down to the depth of 400 km has been studied by using 80 974 P-wave first arrival times recorded at 165 stations from 7 053 events both within the studying areas, selected from the ISC bulletin and the Bulletin of China and NEIC fundamental seismic network. With a resolution of grid spacing of 2°×2°, the velocity heterogeneity on the horizontal profile is obvious though it attenuates with the depth increasing. On the vertical profiles of velocity along the latitude of 16°N and 24°N, the collision and extrusion of India plate to Eurasia plate is displayed, and a remarkable velocity difference between India plate and Eurasia plate is shown. In the vertical profile along the longitude of 90°E, the subducting of India plate northward beneath Eurasia plate (Tibet plateau) is also obvious. On the horizontal profile at the depth of 90 km, a slow velocity stripe from Myitkyina, Myanmar to Donghai, Vietnam seems to be related to Honghe fault belt. An illustration method of describing the resolution more directly and exactly has been proposed and utilized in this paper.展开更多
The distribution of oil and gas resources is intricately connected to the underlying structure of the lithosphere.Therefore,investigating the characteristics of lithospheric thickness and its correlation with oil and ...The distribution of oil and gas resources is intricately connected to the underlying structure of the lithosphere.Therefore,investigating the characteristics of lithospheric thickness and its correlation with oil and gas basins is highly important.This research utilizes recently enhanced geological–geophysical data,including topographic,geoid,rock layer thickness,variable rock layer density,and interface depth data.Employing the principles of lithospheric isostasy and heat conduction,we compute the laterally varying lithospheric thickness in the China seas and adjacent areas.From these results,two pivotal parameters for different types of oil and gas basins were statistically analyzed:the minimum lithospheric thickness and the relative fluctuation in lithospheric thickness.A semiquantitative analysis was used to explore the connection between these parameters and the hydrocarbon abundance within the oil and gas basins.This study unveils distinct variations in lithospheric thickness among basins,with oil and gas rich basins exhibiting a thicker lithosphere in the superimposed basins of central China and a thinner lithosphere in the rift basins of eastern China.Notably,the relative fluctuations in lithospheric thickness in basins demonstrate significant disparities:basins rich in oil and gas often exhibit greater thickness fluctuations.Additionally,in the offshore basins of China,a conspicuous negative linear correlation is observed between the minimum lithospheric thickness and the relative fluctuation in lithospheric thickness.This study posits that deep-seated thermal upwelling results in lithospheric undulations and extensional thinning in oil and gas basins.Concurrently,sustained deep-seated heat influences sedimentary materials in basins,creating favorable conditions for oil and gas generation.The insights derived from this study contribute to a quantitative understanding of the intricate relationships between deep lithospheric structures and oil and gas basins.These findings provide valuable guidance for future oil and gas exploration in the studied areas.展开更多
Owing to the strategic significance of national oil and gas resources,their exploration and production must be prioritized in China.Oil and gas resources are closely related to deep crustal structures,and Moho charact...Owing to the strategic significance of national oil and gas resources,their exploration and production must be prioritized in China.Oil and gas resources are closely related to deep crustal structures,and Moho characteristics influence oil and gas distribution.Therefore,it is important to study the relationship between the variation of the Moho surface depth undulation and hydrocarbon basins for the future prediction of their locations.The Moho depth in the study area can be inverted using the Moho depth control information,the Moho gravity anomaly,and the variable density distribution calculated by the infinite plate.Based on these results,the influences of Moho characteristics on petroleum basins were studied.We found that the Moho surface depth undulation deviation and crustal thickness undulation deviation in the hydrocarbon-rich basins are large,and the horizontal gradient deviation of the Moho surface shows a positive linear relationship with oil and gas resources in the basin.The oil-bearing mechanism of the Moho basin is further discussed herein.The Moho uplift area and the slope zone correspond to the distribution of oil and gas fields.The tensile stress produced by the Moho uplift can form tensile fractures or cause tensile fractures on the surface,further developing into a fault or depression basin that receives deposits.The organic matter can become oil and natural gas under suitable chemical and structural conditions.Under the action of groundwater or other dynamic forces,oil and natural gas are gradually transported to the uplift or the buried hill in the depression zone,and oil and gas fields are formed under the condition of good caprock.The research results can provide new insights into the relationship between deep structures and oil and gas basins as well as assist in the strategic planning of oil and gas exploration activities.展开更多
Continental China has moved dextral Eastward since Cenozoic time,driven by the collision of the Indian with the Eurasian plate.Evidence for this comes from landscape evolution,the distribution of earthquake epicenters...Continental China has moved dextral Eastward since Cenozoic time,driven by the collision of the Indian with the Eurasian plate.Evidence for this comes from landscape evolution,the distribution of earthquake epicenters,Cenozoic sedimentary and volcanic rocks,and the measurement of GPS velocity vectors,the distribntion of crustal stress,paleomagnetic data,and deep mantle structure,among others.This movement commenced around 40 Ma,coupled with thickened lithosphere and widespread stress release along strikeslip faults that bound the continental Chinese block.Because of continued Northward subduction of the Indian plate,manifestation of the dextral movement has intensified since 25 Ma.Far-reaching effects include extensive strike-slip movement on the Tan-Lu fault in Eastern China,formation of the Dabie ultrahigh pressure metamorphic terrane,extensive thrust faults in East China,delamination and thickening of the lithosphere of South China,a possible tectonic doubling of the Middle-Lower Yangtze Valley metallogenic belt,and the formation of the Japan,Huanghai (East China),and South China Sea.展开更多
El Nio Modoki,similar to but different from canonical El Nio,has been observed since the late1970s.In this paper,using HadISST and NCEP/NCAR wind data,we analyze the relationship between El Nio Modoki and Sea Su...El Nio Modoki,similar to but different from canonical El Nio,has been observed since the late1970s.In this paper,using HadISST and NCEP/NCAR wind data,we analyze the relationship between El Nio Modoki and Sea Surface Temperature(SST)in the offshore area of China and its adjacent waters for different seasons.Our results show a significant negative correlation between El Nio Modoki in summer and SST in autumn in the offshore area of China and its adjacent waters,particularly for regions located in the east of the Kuroshio.It is also found that during El Nio Modoki period,anomalous northerlies prevail over the regions from the northern part of the Philippines to the offshore area of China,indicating that the northerlies are unfavorable for the transport of warm water from the western tropical Pacific to the mid-latitude area.Consequently,El Nio Modoki in summer may play a substantial role in cold SST anomalies in the offshore area of China and its adjacent waters in autumn through the influence of the Kuroshio,with a lagged response of the ocean to the atmospheric wind field.展开更多
Basin-mountain coupling is a key issue for basin formation and evolution. The analysis of basin-mountain coupling process, as well as quantitative or semiquantitative restoration of prototype basin and the evolution o...Basin-mountain coupling is a key issue for basin formation and evolution. The analysis of basin-mountain coupling process, as well as quantitative or semiquantitative restoration of prototype basin and the evolution of continental margin, can be used to interpret the geological process of basin-range conversion and reconstruct early prototype basins, which is a difficult and leadin~ scientific oroblem of basin research.展开更多
The epithermal ore concentrated area is located in Southwestern China. We systematically study the regional geological characteristics such as the basement of Proterozoic, the capping bed, Moho, geothermal feature and...The epithermal ore concentrated area is located in Southwestern China. We systematically study the regional geological characteristics such as the basement of Proterozoic, the capping bed, Moho, geothermal feature and tectonics, and discuss the relationship between distributed characteristics of the epithermal ore deposits and ore control factors in this paper. It is concluded that the conditions, under which the epithermal ore deposits form, are huge thick basement of Proterozoic, long time and wide scope developed capping bed and weak magmatic activity. The basement of Proterozoic that enriches volcanic matters and carbon and the carbonaceous bearing and paleo pool bearing capping bed provides main ore source. The large and deep faults and paleopool accordance with gravity anomaly gradient control the distribution of epithermal ore deposits. The lithologic assembles of microclastic rocks and carbonate rocks in the capping bed provide spaces of ore precipitation and create conditions of ore precipitation. The coincidence of many geological factors above forms the epithermal ore concentrated area.展开更多
East Hunan and its adjacent area is defined as an intraplate orogenic zone with help of new theory of geology and multi-discipline research. The evolutionary stages, deep structrue, geological feature, rotation strain...East Hunan and its adjacent area is defined as an intraplate orogenic zone with help of new theory of geology and multi-discipline research. The evolutionary stages, deep structrue, geological feature, rotation strain and metallogeny of NW-striking transfer fault zone are also discussed. NE-trending strike-slip fault zone, as a whole, entered action during Pacific movement and underwent 3 stages: the strike-slip shear, the pull-apart extension and the’ compressive thrust. The aurthors studied macro-and microscopic features of strike-slip fault and its control of uranium mineralization at Jinguangchung deposit by means of modern structure analysis, micro-submicroscopic investigation and geophysical measurement.展开更多
The effects of selected land management practices (cross-sloping tillage, ridge culture, organic manure, and straw mulch) on soil water conservation in a southwestern mountainous area, China, were studied during Nov...The effects of selected land management practices (cross-sloping tillage, ridge culture, organic manure, and straw mulch) on soil water conservation in a southwestern mountainous area, China, were studied during November 2002 to November 2004. The experimental field is divided into three parts based on soil layer depths, 0-60 cm (part Ⅰ), 0-40 cm (part Ⅱ), and 0- 20 cm (part Ⅲ), and they all had the same slope azimuth (SE), slope (10°), and slope type (linear). The experimental plots were subjected to the following treatments: cross-sloping tillage (CST); cross-sloping tillage with organic manure (CST/ OM); cross-sloping tillage with straw mulch (CST/SM); contour ridge culture (CRC); contour ridge culture with organic manure (CRC/OM); and contour ridge culture with straw mulch (CRC/SM), to identify the effects of management practices on soil water. Water contents were determined for soil samples collected, using a 2.2 cm diameter manual probe. Soil water was monitored once every five days from Nov. 20, 2002 to Nov. 20, 2004. The results indicated that, in the study stages, an integration of rainfall, evaporative losses, and crop transcription controlled the basic tendencies of profile (mean) soil water, while land management practices, to a certain extent, only modified its amount, distribution, and routing. Moreover, these modifications also mainly focused on the first 20 cm depth of topsoil layer. When each management practice was compared with control treatment, season changes of profile (mean) soil water were pronounced, while interannual changes among them were not significant. More comparisons indicated that, in the study stages, contour ridge culture had better effects than cross-sloping tillage. And under the same tillage, the combination of organic manure could achieve more than straw mulch. These management practices should be recommended considering the effectiveness of soil and water management techniques in the southwestern mountainous area, China.展开更多
On the basis of the data of zooplankton biomass and three major taxa—— Copepoda, Chaetognatha andSiphonophora of May-June 1986, July-August and December 1987, the distributional patterns and the indicator species of...On the basis of the data of zooplankton biomass and three major taxa—— Copepoda, Chaetognatha andSiphonophora of May-June 1986, July-August and December 1987, the distributional patterns and the indicator species of zooplankton in the Kuroshio and adjacent waters of the East China Sea are preliminarily studied. The results are as follows:The horizontal distribution of zooplankton biomass and the abundance of copepods, chaetognaths and siphonophores arecurred in the continent area northwest of Taiwan and the south-centre section of the East China Sea continent, which are the mix front of different waters. Zooplankton in the water area inside of Ryukyu Islands presented low abundance and high diversity. There are clear seasonal variations in zooplankton biomass and abundance in the study area. The strength or weakness of different water masses and fronts is the basic reason for the variations of zooplankton biomass and abundance.The species composition of zooplankton in the study area is complex and varies, however, the tropic oceanic species predominates overwhelmingly. The distribution of different ecotype species evidences the distribution of different water masses and the state of mixture. The indicator species of each water mass are listed in the paper so as to provide grounds for the variation of currents in the Kuroshio area.The temperature and salinity of sea water are important factors affecting zooplankton distribution, composition and diversity , however the role of salinity is major. With the replacement of one season by another, the correlative levels of temperature and salinity to various zooplankton taxa are more or less significant.展开更多
Through the investigation on radioactive activities of water, sediment and some marine organismsin the Zhujiang Estuary, adjacent sea area and the distributary mouths of the Zhujiang River, activities of total α. rad...Through the investigation on radioactive activities of water, sediment and some marine organismsin the Zhujiang Estuary, adjacent sea area and the distributary mouths of the Zhujiang River, activities of total α. radioactivity, total β radioactivity, artificial radioactive 90Srand 157Cs, and factors inflencing the distribution and the content of U in seawater are studied.The mainly radioactive pollution substances and their sources in the sea area are studied by γ spectra obtained from sediment in the sea area. The results show that the main radioactivity substances are natural radioactivity U,Th series and 40K. which were produced by the modern industry and transported into the sea through the main current of the Zhujiang River.展开更多
Permian system is one of the best developed systems in Sanjiang area. In Yidun\|Zhongdian and in Zhiso\|Muli, The Lower Permian is clastics\|carbonates\|volcanics with interbeds of siliceous sediments, Whereas the Upp...Permian system is one of the best developed systems in Sanjiang area. In Yidun\|Zhongdian and in Zhiso\|Muli, The Lower Permian is clastics\|carbonates\|volcanics with interbeds of siliceous sediments, Whereas the Upper Permian is composed of lower part of basic volcanics and upper part of clastics\|carbonates with a total thickness of 1000~4000 meters .In Zhongzha (Batang)\|Jingping region, It is mainly carbonates of 217~1320 meters thick, But in Jingping proper, there occur about 5000 meters thick basalts of early late Permian . From Batang to Benzinan along the Jinshajiang river , the lower Permian is clastics\|volcanics\|carbonates formation with interbeds of siliceous sediments and spilite formation; Whereas the Upper Permian is clastics with volcanic interbeds; The total thickness being 3700 to 7100 meters. In Jiangda—Mangco (Mangkang), It is clastic\|carbonate\|volcanic formation of 1100 to 2400 meters . In Tuoba (Qamdo)—Haitong (Mankang)—Ximi (Mujiang ), It is mainly clastics\|carbonates formation , the Upper Permian being coal\|bearing clastics sequence and the total thickness being 700~2500 meters ,In Zhado—Zhasuosuo (Mangkang)—Deqing—Qinggu—Qinghong, It is clastic\|carbonate\|volcanic formation, locally with coal\|bearing clastics of Upper Permian and the total thickness of mainly carbonate formation and clastic formation with coal\|bearing clastic formation of Uppermian, is 800 to 2000 meters. In the whole area , the Permian strata were slightly metamorphosed, locally more intensively metamorphosed up to amphibolite facies. The fossils found belong to fusulinids, coral, brachiopods,ammonite,bivalve, gastropods, bryozoa,foraminifera, trilobite, algae ,porifera (sponge), and continental plant . Besides the Gondwana cold\|water type components of brachiopods found in Baoshan, the fossils belong mainly to Cathaysian biota, especially to South China type. In some places such as Mangkang, Guxue (Dewong), to South China type. In some places such as Mangkang, Guxue (Dewong), and Wachang (Muli), the resedimented Late Carboniferous fusulinid fossils can be found in the clastic limestone of Lower Permian, and the Early Permian or even Middle to Late Carboniferous fusulinid fossils found in Upper Permian classic limestone. All these suggest the resedimentation of biolimestone blocks or fragments related to fault\|volcanism .On the section of Tongba (Muli), the permian is continuous graded upwards into the Triassic, with a transitional zone of fossil.展开更多
Dongsha waters are poorly studied for gas hydrates. Previous multi-channel seismic reflection and Chirp sub- bottom profiles show that numerous submarine mounds stand up to 100 m high above the seafloor over the conti...Dongsha waters are poorly studied for gas hydrates. Previous multi-channel seismic reflection and Chirp sub- bottom profiles show that numerous submarine mounds stand up to 100 m high above the seafloor over the continental slope of the SW Dongsha Island in northern margin of the South China Sea (SCS). These mounds are characterized by hardened seabed, seafloor gas venting and folded structures, which implies the existence of active mud volcanoes. This work aims to confirm this speculation by seafloor sample dredging and to explore the potential of gas hydrates.展开更多
An analysis of the distribution of the Late Paleozoic strata on Northeast China and adjacent region reveals a zonal pattern of the distribution around the core of the Jiamusi-Mongolia Block. The main part of Late Pale...An analysis of the distribution of the Late Paleozoic strata on Northeast China and adjacent region reveals a zonal pattern of the distribution around the core of the Jiamusi-Mongolia Block. The main part of Late Paleozoic marine strata in this area is co展开更多
基金State Natural Science Foundation of China (49734150).
文摘3-D velocity structure of P wave in the upper mantle beneath southwestern China and its adjacent areas (10°N [similar to] 36°N, 70°E [similar to] 110°E) down to the depth of 400 km has been studied by using 80 974 P-wave first arrival times recorded at 165 stations from 7 053 events both within the studying areas, selected from the ISC bulletin and the Bulletin of China and NEIC fundamental seismic network. With a resolution of grid spacing of 2°×2°, the velocity heterogeneity on the horizontal profile is obvious though it attenuates with the depth increasing. On the vertical profiles of velocity along the latitude of 16°N and 24°N, the collision and extrusion of India plate to Eurasia plate is displayed, and a remarkable velocity difference between India plate and Eurasia plate is shown. In the vertical profile along the longitude of 90°E, the subducting of India plate northward beneath Eurasia plate (Tibet plateau) is also obvious. On the horizontal profile at the depth of 90 km, a slow velocity stripe from Myitkyina, Myanmar to Donghai, Vietnam seems to be related to Honghe fault belt. An illustration method of describing the resolution more directly and exactly has been proposed and utilized in this paper.
基金supported by the National Key Research and Development Plan project“Research on Comprehensive Processing and Interpretation Methods of Aeronautical Geophysical Data and Soft ware Development”under contract No.2017YFC0602202。
文摘The distribution of oil and gas resources is intricately connected to the underlying structure of the lithosphere.Therefore,investigating the characteristics of lithospheric thickness and its correlation with oil and gas basins is highly important.This research utilizes recently enhanced geological–geophysical data,including topographic,geoid,rock layer thickness,variable rock layer density,and interface depth data.Employing the principles of lithospheric isostasy and heat conduction,we compute the laterally varying lithospheric thickness in the China seas and adjacent areas.From these results,two pivotal parameters for different types of oil and gas basins were statistically analyzed:the minimum lithospheric thickness and the relative fluctuation in lithospheric thickness.A semiquantitative analysis was used to explore the connection between these parameters and the hydrocarbon abundance within the oil and gas basins.This study unveils distinct variations in lithospheric thickness among basins,with oil and gas rich basins exhibiting a thicker lithosphere in the superimposed basins of central China and a thinner lithosphere in the rift basins of eastern China.Notably,the relative fluctuations in lithospheric thickness in basins demonstrate significant disparities:basins rich in oil and gas often exhibit greater thickness fluctuations.Additionally,in the offshore basins of China,a conspicuous negative linear correlation is observed between the minimum lithospheric thickness and the relative fluctuation in lithospheric thickness.This study posits that deep-seated thermal upwelling results in lithospheric undulations and extensional thinning in oil and gas basins.Concurrently,sustained deep-seated heat influences sedimentary materials in basins,creating favorable conditions for oil and gas generation.The insights derived from this study contribute to a quantitative understanding of the intricate relationships between deep lithospheric structures and oil and gas basins.These findings provide valuable guidance for future oil and gas exploration in the studied areas.
基金The Scientific and Technological Project of CNOOC Research Institute Co.,Ltd.,under contract No.CCL2021RCPS0167KQNthe Fundamental Research Fund for the Central Universities,CHD,under contract No.300102261717。
文摘Owing to the strategic significance of national oil and gas resources,their exploration and production must be prioritized in China.Oil and gas resources are closely related to deep crustal structures,and Moho characteristics influence oil and gas distribution.Therefore,it is important to study the relationship between the variation of the Moho surface depth undulation and hydrocarbon basins for the future prediction of their locations.The Moho depth in the study area can be inverted using the Moho depth control information,the Moho gravity anomaly,and the variable density distribution calculated by the infinite plate.Based on these results,the influences of Moho characteristics on petroleum basins were studied.We found that the Moho surface depth undulation deviation and crustal thickness undulation deviation in the hydrocarbon-rich basins are large,and the horizontal gradient deviation of the Moho surface shows a positive linear relationship with oil and gas resources in the basin.The oil-bearing mechanism of the Moho basin is further discussed herein.The Moho uplift area and the slope zone correspond to the distribution of oil and gas fields.The tensile stress produced by the Moho uplift can form tensile fractures or cause tensile fractures on the surface,further developing into a fault or depression basin that receives deposits.The organic matter can become oil and natural gas under suitable chemical and structural conditions.Under the action of groundwater or other dynamic forces,oil and natural gas are gradually transported to the uplift or the buried hill in the depression zone,and oil and gas fields are formed under the condition of good caprock.The research results can provide new insights into the relationship between deep structures and oil and gas basins as well as assist in the strategic planning of oil and gas exploration activities.
文摘Continental China has moved dextral Eastward since Cenozoic time,driven by the collision of the Indian with the Eurasian plate.Evidence for this comes from landscape evolution,the distribution of earthquake epicenters,Cenozoic sedimentary and volcanic rocks,and the measurement of GPS velocity vectors,the distribntion of crustal stress,paleomagnetic data,and deep mantle structure,among others.This movement commenced around 40 Ma,coupled with thickened lithosphere and widespread stress release along strikeslip faults that bound the continental Chinese block.Because of continued Northward subduction of the Indian plate,manifestation of the dextral movement has intensified since 25 Ma.Far-reaching effects include extensive strike-slip movement on the Tan-Lu fault in Eastern China,formation of the Dabie ultrahigh pressure metamorphic terrane,extensive thrust faults in East China,delamination and thickening of the lithosphere of South China,a possible tectonic doubling of the Middle-Lower Yangtze Valley metallogenic belt,and the formation of the Japan,Huanghai (East China),and South China Sea.
基金Special Scientific Research Project for Public Welfare(201006021,201005019)Youth Foundation of Chinese State Oceanic Administration(2013257)+2 种基金Scientific Research Foundation of Third Institute of Oceanography,SOA(TIO2013002TIO2013003)National Special Project:Chinese Offshore Investigation and Assessment(908-02-01-02)
文摘El Nio Modoki,similar to but different from canonical El Nio,has been observed since the late1970s.In this paper,using HadISST and NCEP/NCAR wind data,we analyze the relationship between El Nio Modoki and Sea Surface Temperature(SST)in the offshore area of China and its adjacent waters for different seasons.Our results show a significant negative correlation between El Nio Modoki in summer and SST in autumn in the offshore area of China and its adjacent waters,particularly for regions located in the east of the Kuroshio.It is also found that during El Nio Modoki period,anomalous northerlies prevail over the regions from the northern part of the Philippines to the offshore area of China,indicating that the northerlies are unfavorable for the transport of warm water from the western tropical Pacific to the mid-latitude area.Consequently,El Nio Modoki in summer may play a substantial role in cold SST anomalies in the offshore area of China and its adjacent waters in autumn through the influence of the Kuroshio,with a lagged response of the ocean to the atmospheric wind field.
基金supported by the National Science Foundation of China(grant No.41476053)the China Geological Project(grants No.GZH201400214 and DD20160153)
文摘Basin-mountain coupling is a key issue for basin formation and evolution. The analysis of basin-mountain coupling process, as well as quantitative or semiquantitative restoration of prototype basin and the evolution of continental margin, can be used to interpret the geological process of basin-range conversion and reconstruct early prototype basins, which is a difficult and leadin~ scientific oroblem of basin research.
文摘The epithermal ore concentrated area is located in Southwestern China. We systematically study the regional geological characteristics such as the basement of Proterozoic, the capping bed, Moho, geothermal feature and tectonics, and discuss the relationship between distributed characteristics of the epithermal ore deposits and ore control factors in this paper. It is concluded that the conditions, under which the epithermal ore deposits form, are huge thick basement of Proterozoic, long time and wide scope developed capping bed and weak magmatic activity. The basement of Proterozoic that enriches volcanic matters and carbon and the carbonaceous bearing and paleo pool bearing capping bed provides main ore source. The large and deep faults and paleopool accordance with gravity anomaly gradient control the distribution of epithermal ore deposits. The lithologic assembles of microclastic rocks and carbonate rocks in the capping bed provide spaces of ore precipitation and create conditions of ore precipitation. The coincidence of many geological factors above forms the epithermal ore concentrated area.
文摘East Hunan and its adjacent area is defined as an intraplate orogenic zone with help of new theory of geology and multi-discipline research. The evolutionary stages, deep structrue, geological feature, rotation strain and metallogeny of NW-striking transfer fault zone are also discussed. NE-trending strike-slip fault zone, as a whole, entered action during Pacific movement and underwent 3 stages: the strike-slip shear, the pull-apart extension and the’ compressive thrust. The aurthors studied macro-and microscopic features of strike-slip fault and its control of uranium mineralization at Jinguangchung deposit by means of modern structure analysis, micro-submicroscopic investigation and geophysical measurement.
文摘The effects of selected land management practices (cross-sloping tillage, ridge culture, organic manure, and straw mulch) on soil water conservation in a southwestern mountainous area, China, were studied during November 2002 to November 2004. The experimental field is divided into three parts based on soil layer depths, 0-60 cm (part Ⅰ), 0-40 cm (part Ⅱ), and 0- 20 cm (part Ⅲ), and they all had the same slope azimuth (SE), slope (10°), and slope type (linear). The experimental plots were subjected to the following treatments: cross-sloping tillage (CST); cross-sloping tillage with organic manure (CST/ OM); cross-sloping tillage with straw mulch (CST/SM); contour ridge culture (CRC); contour ridge culture with organic manure (CRC/OM); and contour ridge culture with straw mulch (CRC/SM), to identify the effects of management practices on soil water. Water contents were determined for soil samples collected, using a 2.2 cm diameter manual probe. Soil water was monitored once every five days from Nov. 20, 2002 to Nov. 20, 2004. The results indicated that, in the study stages, an integration of rainfall, evaporative losses, and crop transcription controlled the basic tendencies of profile (mean) soil water, while land management practices, to a certain extent, only modified its amount, distribution, and routing. Moreover, these modifications also mainly focused on the first 20 cm depth of topsoil layer. When each management practice was compared with control treatment, season changes of profile (mean) soil water were pronounced, while interannual changes among them were not significant. More comparisons indicated that, in the study stages, contour ridge culture had better effects than cross-sloping tillage. And under the same tillage, the combination of organic manure could achieve more than straw mulch. These management practices should be recommended considering the effectiveness of soil and water management techniques in the southwestern mountainous area, China.
文摘On the basis of the data of zooplankton biomass and three major taxa—— Copepoda, Chaetognatha andSiphonophora of May-June 1986, July-August and December 1987, the distributional patterns and the indicator species of zooplankton in the Kuroshio and adjacent waters of the East China Sea are preliminarily studied. The results are as follows:The horizontal distribution of zooplankton biomass and the abundance of copepods, chaetognaths and siphonophores arecurred in the continent area northwest of Taiwan and the south-centre section of the East China Sea continent, which are the mix front of different waters. Zooplankton in the water area inside of Ryukyu Islands presented low abundance and high diversity. There are clear seasonal variations in zooplankton biomass and abundance in the study area. The strength or weakness of different water masses and fronts is the basic reason for the variations of zooplankton biomass and abundance.The species composition of zooplankton in the study area is complex and varies, however, the tropic oceanic species predominates overwhelmingly. The distribution of different ecotype species evidences the distribution of different water masses and the state of mixture. The indicator species of each water mass are listed in the paper so as to provide grounds for the variation of currents in the Kuroshio area.The temperature and salinity of sea water are important factors affecting zooplankton distribution, composition and diversity , however the role of salinity is major. With the replacement of one season by another, the correlative levels of temperature and salinity to various zooplankton taxa are more or less significant.
文摘Through the investigation on radioactive activities of water, sediment and some marine organismsin the Zhujiang Estuary, adjacent sea area and the distributary mouths of the Zhujiang River, activities of total α. radioactivity, total β radioactivity, artificial radioactive 90Srand 157Cs, and factors inflencing the distribution and the content of U in seawater are studied.The mainly radioactive pollution substances and their sources in the sea area are studied by γ spectra obtained from sediment in the sea area. The results show that the main radioactivity substances are natural radioactivity U,Th series and 40K. which were produced by the modern industry and transported into the sea through the main current of the Zhujiang River.
文摘Permian system is one of the best developed systems in Sanjiang area. In Yidun\|Zhongdian and in Zhiso\|Muli, The Lower Permian is clastics\|carbonates\|volcanics with interbeds of siliceous sediments, Whereas the Upper Permian is composed of lower part of basic volcanics and upper part of clastics\|carbonates with a total thickness of 1000~4000 meters .In Zhongzha (Batang)\|Jingping region, It is mainly carbonates of 217~1320 meters thick, But in Jingping proper, there occur about 5000 meters thick basalts of early late Permian . From Batang to Benzinan along the Jinshajiang river , the lower Permian is clastics\|volcanics\|carbonates formation with interbeds of siliceous sediments and spilite formation; Whereas the Upper Permian is clastics with volcanic interbeds; The total thickness being 3700 to 7100 meters. In Jiangda—Mangco (Mangkang), It is clastic\|carbonate\|volcanic formation of 1100 to 2400 meters . In Tuoba (Qamdo)—Haitong (Mankang)—Ximi (Mujiang ), It is mainly clastics\|carbonates formation , the Upper Permian being coal\|bearing clastics sequence and the total thickness being 700~2500 meters ,In Zhado—Zhasuosuo (Mangkang)—Deqing—Qinggu—Qinghong, It is clastic\|carbonate\|volcanic formation, locally with coal\|bearing clastics of Upper Permian and the total thickness of mainly carbonate formation and clastic formation with coal\|bearing clastic formation of Uppermian, is 800 to 2000 meters. In the whole area , the Permian strata were slightly metamorphosed, locally more intensively metamorphosed up to amphibolite facies. The fossils found belong to fusulinids, coral, brachiopods,ammonite,bivalve, gastropods, bryozoa,foraminifera, trilobite, algae ,porifera (sponge), and continental plant . Besides the Gondwana cold\|water type components of brachiopods found in Baoshan, the fossils belong mainly to Cathaysian biota, especially to South China type. In some places such as Mangkang, Guxue (Dewong), to South China type. In some places such as Mangkang, Guxue (Dewong), and Wachang (Muli), the resedimented Late Carboniferous fusulinid fossils can be found in the clastic limestone of Lower Permian, and the Early Permian or even Middle to Late Carboniferous fusulinid fossils found in Upper Permian classic limestone. All these suggest the resedimentation of biolimestone blocks or fragments related to fault\|volcanism .On the section of Tongba (Muli), the permian is continuous graded upwards into the Triassic, with a transitional zone of fossil.
基金financially supported by the National Natural Science Foundation of China(grants No.41376062,91328205,41206039)Project of the Tectonic Evolution of China Sea and its adjacent areas(grant No.GZH201100205)+1 种基金Public Science and Technology Research Funds Projects of Ocean(grant No.201405032)sponsored by NSFC and Special Fund for strategic pilot technology,CAS
文摘Dongsha waters are poorly studied for gas hydrates. Previous multi-channel seismic reflection and Chirp sub- bottom profiles show that numerous submarine mounds stand up to 100 m high above the seafloor over the continental slope of the SW Dongsha Island in northern margin of the South China Sea (SCS). These mounds are characterized by hardened seabed, seafloor gas venting and folded structures, which implies the existence of active mud volcanoes. This work aims to confirm this speculation by seafloor sample dredging and to explore the potential of gas hydrates.
基金Supported by Science and Technology Project of Sinopec (Grant No. G0800-06-ZS-324) 1) Mineral Resources Authority of Mongolia. Geological Map of Mongolia (1:1000000), Ulaanbaatar. 1998 2) Kociurzhinskim B V, Poliakovym V M, Efriemovoii V N. Geological Map of Chita (1:1000000), Russia. 20003) Krasnyi L I, Peng Y B. Geological Map of Amur Region and Adjacent Areas (Scale 1:2500000), Harbin, China. 1996
文摘An analysis of the distribution of the Late Paleozoic strata on Northeast China and adjacent region reveals a zonal pattern of the distribution around the core of the Jiamusi-Mongolia Block. The main part of Late Paleozoic marine strata in this area is co