期刊文献+
共找到780篇文章
< 1 2 39 >
每页显示 20 50 100
Assessment of Nitrogen Fixation, Uptake, and Leaching in Maize/Soybean Intercropping System at Varied Soil Depths and under Phosphorus Application in Chinese Agricultural Settings
1
作者 Bertha Magombo Chunjie Li Benjamin Kolie 《Natural Resources》 2024年第7期173-187,共15页
The study of Nitrogen fixation, uptake, and leaching at different soil depths in the co-cultivation of maize and soybean under phosphorus fertilization is important for sustainable agriculture. This study was conducte... The study of Nitrogen fixation, uptake, and leaching at different soil depths in the co-cultivation of maize and soybean under phosphorus fertilization is important for sustainable agriculture. This study was conducted in Quzhou, Hebei Province, China, with MC812 maize and Jidou12 soybean varieties. Soil samples were taken from each plot to create a composite sample. The results show that nitrogen concentration varies at different depths and is higher in all treatments between 40 and 100 cm. Incorporating intercropping of maize and soybeans into farming practices can lead to more sustainable and environmentally friendly agriculture in China. 展开更多
关键词 Nitrogen Maize/soybean FERTILIZATION INTERCROPPING soil FIXATION
下载PDF
Influence of Soil Water Deficit and Phosphorus Application on Phosphorus Uptake and Yield of Soybean (<i>Glycine max</i>L.) at Dejen, North-West Ethiopia 被引量:3
2
作者 Merkebu Getachew 《American Journal of Plant Sciences》 2014年第13期1889-1906,共18页
A green house experiment was conducted at Dejen, Northwest Ethiopia, with the objective of quantifying the critical soil water deficit and P levels that affect yield and yield components of soybean, and determine the ... A green house experiment was conducted at Dejen, Northwest Ethiopia, with the objective of quantifying the critical soil water deficit and P levels that affect yield and yield components of soybean, and determine the critical soil water deficit levels influencing P uptake in soybean. The treatment consisted of factorial combination of four available soil water (ASW) deficit levels (0%, 25%, 50% and 75%) and four levels of phosphorus (0, 10, 20, and 30 kg·ha-1) laid out in RCBD with four replications using soy bean variety Jalale as a planting material. The experiment was conducted under green house condition at Dejen, South Ethiopia during the 2011 academic year. Air dried soil was filled in the pots and seeds were sown on May 13, 2011. Four plants were maintained on each pot after thinning till flowering but after flowering, the total number of plants per pot was reduced to three as one plant which was used for measurement of root biomass. The water deficit treatments were imposed after the plants have been fully established 2 weeks after emergence just before branching stage. The water deficiency was imposed through maintaining the soil moisture content below field capacity at the deficit levels of 25%, 50% and 75%. The 75% of ASW deficit resulted in the longest days (45) to flowering and maturity (99) compared to the 0%, 25% and 50% deficit levels. Also, the 75% of ASW deficit level resulted in shorter plants (55 cm), the lowest leaf area (82.6 cm2), the highest root to shoot ratio (0.0168) and the lowest DM accumulation (161.3 gm-2) compared to the other ASW deficit levels. Likewise, the 75% of ASW deficit level gave the lowest number of pods per plant (4.13), seeds per pod (1.69), 100 seed weight (2.54 g), seed yield (13.4 g·m-1), above ground biomass (174.6 g·plant-1) and harvest index (0.08) compared to the other ASW deficit treatments. The degree of sensitivity to drought increased dramatically (from 0.0423 at 25% to 0.9604 at 75%) with increase in water deficit level. Tissue analysis results indicated that the highest seed P concentration (1.285%) and uptake (432.5 g·plant-1) were obtained at the 0 ASW deficit and 30 kg·P·ha-1 and the lowest were obtained at 75% ASW deficit and all rate of applied P. On the contrary, the highest straw P concentration (1.88%) and uptake (552.7 g·plant-1) were recorded at 75% and 25% of ASW deficit levels and 30 kg·P·ha-1, respectively. However, the total P uptake was influenced only by ASW deficit levels in that the relatively minimum and maximum values were observed at 75% and 0% of ASW deficit levels, respectively. It can be concluded that the critical ASW deficit levels that affect yield and yield components of soybean and uptake of total P lie between 25% and 50% of available water deficit levels. The parameters started to decline significantly from the 50% of ASW deficit onwards. As it is a green house experiment, further study on more number of ASW deficit levels and soil types under different field conditions needs to be done to reach at a conclusive recommendation. 展开更多
关键词 Phosphorus UPTAKE soybean soil Water DEFICIT
下载PDF
Assessment on Phosphorus Efficiency Characteristics of Soybean Genotypes in Phosphorus-Deficient Soils 被引量:14
3
作者 PAN Xiang-wen LI Wen-bin +2 位作者 ZHANG Qiu-ying LI Yan-hua LIU Ming-shan 《Agricultural Sciences in China》 CAS CSCD 2008年第8期958-969,共12页
A glasshouse study compared the growth and phosphorus (P) efficiency of 96 genotypes of soybean [Glycine max (L.) Merrill] in a P-deficient soil. The soybean genotypes differed greatly in growth, nodulation and P ... A glasshouse study compared the growth and phosphorus (P) efficiency of 96 genotypes of soybean [Glycine max (L.) Merrill] in a P-deficient soil. The soybean genotypes differed greatly in growth, nodulation and P uptake after growing in the soil for 45 days, with shoot biomass ranging from 0.91 to 1.75 g per plant. The application of P improved biomass production, nodulation and P uptake and decreased root to shoot ratio, root length and surface area and P utilization efficiency. The 96 soybean genotypes were divided into 3 categories in P efficiency using the principal component analysis and cluster analysis, and 4 categories according to F values in combination with growth potentials. The Pefficient genotypes were associated with high biomass production, root to shoot ratio, root length and surface area and P uptake but low shoot to root P concentration ratio under P deficiency. The results indicate that there is a substantial genotypic variation in P efficiency in existing germplasm, and that P efficiency was correlated positively with dry weights of shoots and roots, ratio of root to shoot dry weight, root length and surface area, root P content and total P uptake. The shoot dry weight under P deficiency and relative shoot dry weight (deficient P/adequate P supply) are effective and simple indicators for screening P-efficient genotypes at the seedling stage. 展开更多
关键词 ASSESSMENT phosphorus efficiency characteristics phosphorus-deficient soil soybean genotypes
下载PDF
Effects of maize-soybean relay intercropping on crop nutrient uptake and soil bacterial community 被引量:20
4
作者 FU Zhi-dan ZHOU Li +7 位作者 CHEN Ping DU Qing PANG Ting SONG Chun WANG Xiao-chun LIU Wei-guo YANG Wen-yu YONG Tai-wen 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2019年第9期2006-2018,共13页
Maize-soybean relay intercropping is an effective approach to improve the crop yield and nutrient use efficiency,which is widely practiced by farmers in southwest of China.To elucidate the characteristics of different... Maize-soybean relay intercropping is an effective approach to improve the crop yield and nutrient use efficiency,which is widely practiced by farmers in southwest of China.To elucidate the characteristics of different planting patterns on crop nutrient uptake,soil chemical properties,and soil bacteria community in maize-soybean relay intercropping systems,we conducted a field experiment in 2015–2016 with single factor treatments,including monoculture maize(MM),monoculture soybean(MS),maize-soybean relay intercropping(IMS),and fallow(CK).The results showed that the N uptake of maize grain increased in IMS compared with MM.Compared with MS,the yield and uptake of N,P,and K of soybean grain were increased by 25.5,24.4,9.6,and 22.4%in IMS,respectively,while the N and K uptakes in soybean straw were decreased in IMS.The soil total nitrogen,available phosphorus,and soil organic matter contents were significantly higher in IMS than those of the corresponding monocultures and CK.Moreover,the soil protease,soil urease,and soil nitrate reductase activities in IMS were higher than those of the corresponding monocultures and CK.The phyla Proteobacteria,Acidobacteria,Chloroflexi,and Actinobacteria dominated in all treatments.Shannon’s index in IMS was higher than that of the corresponding monocultures and CK.The phylum Proteobacteria proportion was positively correlated with maize soil organic matter and soybean soil total nitrogen content,respectively.These results indicated that the belowground interactions increased the crop nutrient(N and P)uptake and soil bacterial community diversity,both of which contributed to improved soil nutrient management for legume-cereal relay intercropping systems. 展开更多
关键词 maize-soybean RELAY INTERCROPPING nutrient uptake soil properties soil bacterial community microbial diversity
下载PDF
Rhizosphere soil bacterial community composition in soybean genotypes and feedback to soil P availability 被引量:3
5
作者 ZHOU Tao WANG Li +5 位作者 DU Yong-li LIU Ting LI Shu-xian GAO Yang LIU Wei-guo YANG Wen-yu 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2019年第10期2230-2241,共12页
Soil with low phosphorus (P) availability and organic matter contents exists in large area of southwest of China, but some soybean genotypes still show well adaptations to this low yield farmland. However, to date, th... Soil with low phosphorus (P) availability and organic matter contents exists in large area of southwest of China, but some soybean genotypes still show well adaptations to this low yield farmland. However, to date, the underlying mechanisms of how soybean regulates soil P availability still remains unclear, like microbe-induced changes. The objective of the present study was to compare the differences of rhizosphere bacterial community composition between E311 and E109 in P-sufficiency (10.2 mg kg^-1) and P-insufficiency (5.5 mg kg^-1), respectively, which then feedback to soil P availability. In P-sufficiency, significant differences of the bacterial community composition were observed, with fast-growth bacterial phylum Proteobacteria, genus Dechloromonas, Pseudomonas, Massilia, and Propionibacterium that showed greater relative abundances in E311 compared to E109, while in P-insufficiency were not. A similar result was obtained that E311 and E109 were clustered together in P-insufficiency rather than in P-sufficiency by using principal component analysis and hierarchical clustering analysis. The quadratic relationships between bacterial diversity and soil P availability in rhizosphere were analyzed, confirming that bacterial diversity enhanced the soil P availability. Moreover, the high abundance of Pseudomonas and Massilia in the rhizosphere of E311 might increased the P availability. In the present study, the soybean E311 showed capability of shaping rhizosphere bacterial diversity, and subsequently, increasing soil P availability. This study provided a strategy for rhizosphere management through soybean genotype selection and breeding to increase P use efficiency, or upgrade middle or low yield farmland. 展开更多
关键词 soybean low P RHIZOSPHERE BACTERIAL community soil P AVAILABILITY
下载PDF
Effect of Applied Phosphorus on the Yield and Nutrient Uptake by Soybean Cultivars on Acidic Hill Soil 被引量:4
6
作者 U. C. Sharma M. Datta Vikas Sharma 《Open Journal of Soil Science》 2011年第2期45-48,共4页
In a three years experiment, conducted on acidic soil, four varieties of soybean [Glycine max (L) Merril] were tested to see their performance under different regimes of applied Phosphorus. The highest number of pods ... In a three years experiment, conducted on acidic soil, four varieties of soybean [Glycine max (L) Merril] were tested to see their performance under different regimes of applied Phosphorus. The highest number of pods was given by the cultivar Bragg, followed by Punjab-1, Durga and JS-89-21. A similar trend was observed in the number of filled pods. On an average, the cultivar, Punjab-1, gave the maximum harvest index, followed closely by Bragg. Both the cultivars, Durga and JS-89-21, had lower harvest index. The application of P fertilizer significantly increased the harvest index up to 60 kg·P·ha–1. The Highest yield of grains was given by the variety ‘Bragg’ (1630 kg·ha–1), followed by Punjab-1, JS-89-21 and Durga, which gave the yields of 1510, 1470 and 880 kg·ha–1, respectively. Highest N, P and K removal was found by the cultivar Bragg, followed by Punjab-1, JS-89-21 and Durga cultivars. The uptake of nutrients was significantly related to the total biomass produced by a cultivar (r = 0.8125), showing a yield predictability of 66.0%. The increase in uptake of N, P and K, respectively, with the application of 60 kg·P·ha–1 over no P was;245.3, 159.4 and 158.3% in case of Bragg, 101.5%, 73.8% and 44.6% in case of Durga, 182.2%, 70.6% and 63.8% in case of JS-89-21 and 164.7%, 80.0% and 97.4% in case of Punjab-1. A significant increase in soil available P was found in the plots where it was applied @ 60 kg·ha–1 continuously for three years. 展开更多
关键词 APPLIED PHOSPHORUS soybean Cultivars YIELD Nutrient Uptake ACIDIC HILL soil
下载PDF
Potential Association between Soil and Leaf Chemical Properties, and Soybean Seed Composition
7
作者 Luciano M. Jaureguy Pengyin Chen +3 位作者 Kristofor Brye Derrick Oosterhuis Andy Mauromoustakos John R. Clark 《Agricultural Sciences》 2014年第6期560-570,共11页
Maximizing the expression of seed quality traits by understanding how they are affected by environmental variables may help develop high quality nutritious soybeans. Eight specialty soybean breeding lines were grown a... Maximizing the expression of seed quality traits by understanding how they are affected by environmental variables may help develop high quality nutritious soybeans. Eight specialty soybean breeding lines were grown at two Arkansas locations differing by soil texture, with three replications in 2011. Before the reproductive period, soil and leaf samples were collected from each plot. Soil samples were analyzed for particle size distribution, electrical conductivity, pH, and a set of extractable nutrients from the top 12.5 cm, while leaf samples were analyzed for the same set of nutrients as the soil samples. At maturity, seed samples were analyzed for the same set of nutrients as were leaf and soil samples, plus protein, oil, fatty acids, and sugars. All leaf elements were within the adequate levels for soybean production at both locations. Overall, seed composition of breeding lines did not differ among locations and no significant changes in breeding line ranking among locations were observed. Attempting to modify seed composition by nutrient fertilization may not be profitable, as no direct relationships were observed between leaf or soil chemical properties, and seed composition. These findings may provide a starting point for future studies on fertilization and management practices that improve soybean seed quality. 展开更多
关键词 soybean SEED COMPOSITION soil Properties
下载PDF
Interaction of Carbon Dioxide Enrichment and Soil Moisture on Photosynthesis, Transpiration, and Water Use Efficiency of Soybean
8
作者 Madegowda Madhu Jerry L. Hatfield 《Agricultural Sciences》 2014年第5期410-429,共20页
Soybean (Glycine max (L.) Merrill) is one of the most important oil and protein sources in the world. Interactive effect of elevated carbon dioxide (CO2) and soil water availability potentially impact future food secu... Soybean (Glycine max (L.) Merrill) is one of the most important oil and protein sources in the world. Interactive effect of elevated carbon dioxide (CO2) and soil water availability potentially impact future food security of the world under climate change. A rhizotron growth chamber experiment was conducted to study soil moisture interactions with elevated CO2 on gaseous exchange parameters of soybean under two CO2 concentrations (380 and 800 μmol·mol-1) with three soil moisture levels. Elevated CO2 decreased photosynthetic rate (11.1% and 10.8%), stomatal conductance (40.5% and 36.0%), intercellular CO2 concentration (16.68% and 12.28%), relative intercellular CO2 concentration (17.4% and 11.2%), and transpiration rate (43.6% and 39%) at 42 and 47 DAP. This down-regulation of photosynthesis was probably caused by low leaf nitrogen content and decrease in uptake of nutrients due to decrease in stomatal conductance and transpiration rate. Water use efficiency (WUE) increased under elevated CO2 because increase in total dry weight of plant was greater than that of water use under high CO2 conditions. Plants under normal and high soil moisture levels had significantly higher photosynthetic rate (7% to 16%) favored by optimum soil moisture content and high specific water content of soybean plants. Total dry matter production was significantly high when plants grown under elevated CO2 with normal (74.3% to 137.3%) soil moisture level. Photosynthetic rate was significantly and positively correlated with leaf conductance and intercellular CO2 concentration but WUE was significantly negatively correlated with leaf conductance, intercellular CO2 concentration and transpiration rate. However, the effect of high CO2 on plants depends on availability of nutrients and soil moisture for positive feedback from CO2 enrichment. 展开更多
关键词 ELEVATED Carbon Dioxide Evaporation Interactions PHOTOSYNTHETIC Rate soil Moisture soybean Water Use Efficiency
下载PDF
Soil mineral nitrogen and yield-scaled soil N2O emissions lowered by reducing nitrogen application and intercropping with soybean for sweet maize production in southern China 被引量:4
9
作者 TANG Yi-ling YU Ling-ling +4 位作者 GUAN Ao-mei ZHOU Xian-yu WANG Zhi-guo GOU Yong-gang WANG Jian-wu 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2017年第11期2586-2596,共11页
The increasing demand for fresh sweet maize (Zea mays L. saccharata) in southern China has prioritized the need to find solutions to the environmental pollution caused by its continuous production and high inputs of... The increasing demand for fresh sweet maize (Zea mays L. saccharata) in southern China has prioritized the need to find solutions to the environmental pollution caused by its continuous production and high inputs of chemical nitrogen fertilizers. A promising method for improving crop production and environmental conditions is to intercrop sweet maize with legumes. Here, a three-year field experiment was conducted to assess the influence of four different cropping systems (sole sweet maize (SS), sole soybean (SB), two rows sweet maize-three rows soybean (S2B3) intercropping, and two rows sweet maize-four rows soybean (S2B4) intercropping), together with two rates of N fertilizer application (300 and 360 kg N ha-1) on grain yield, residual soil mineral N, and soil N2O emissions in southern China. Results showed that in most case, inter- cropping achieved yield advantages (total land equivalent ratio (TLER=0.87-1.25) was above one). Moreover, intercropping resulted in 39.8% less soil mineral N than SS at the time of crop harvest, averaged over six seasons (spring and autumn in each of the three years of the field experiment). Generally, intercropping and reduced-N application (300 kg N ha-1) produced lower cumulative soil N20 and yield-scaled soil N20 emissions than SS and conventionaI-N application (360 kg N ha-l), respectively. $2B4 intercropping with reduced-N rate (300 kg N ha-~) showed the lowest cumulative soil N20 (mean value=0.61 kg ha-1) and yield-scaled soil N20 (mean value=0.04 kg t-1) emissions. Overall, intercropping with reduced-N rate maintained sweet maize production, while also reducing environmental impacts. The system of S2B4 intercropping with reduced-N rate may be the most sustainable and environmentally friendly cropping system. 展开更多
关键词 sweet maize-soybean intercrop cropping system N fertilizer rate grain yield soil mineral N soil NzO emissions
下载PDF
Effect of Biochar Type and Bradyrhizobium japonicum Seed Inoculation on Soybean Growth, Nodulation and Yield in a Tropical Ferric Acrisol
10
作者 Gbadebo Monday Elebiyo Robert Thomas Bachmann 《Agricultural Sciences》 2024年第6期635-675,共41页
In tropical environments, most soybean growth studies have utilized rice husk biochar (RHB) in soil, even though it is low in nitrogen, potassium, and phosphorous. This may not give short-term agronomic performance re... In tropical environments, most soybean growth studies have utilized rice husk biochar (RHB) in soil, even though it is low in nitrogen, potassium, and phosphorous. This may not give short-term agronomic performance relative to enriched biochar. Moreover, the impact of inoculating soybean seeds with atmospheric nitrogen-fixing bacterium Bradyrhizobium japonicum on nodulation and grain yield has produced inconclusive findings in the literature. This research therefore aims to assess the effect of poultry manure (PM), poultry manure biochar (PMB) and RHB alone and in combinations on grain yield, dry shoot and root biomass of soybeans in the semi-deciduous agro-ecological zone. In addition, the effect of B. japonicum inoculated and non-inoculated soybean seeds on nodulation and grain yield was also investigated. The treatments followed a split plot design studying inoculation and non-inoculation, soil amendments (eight), and control subplot factors, respectively. The results show that the amendment of a ferric acrisol with 4 Mg∙ha−1 PM, 10 Mg∙ha−1 RHB + 2 Mg∙ha−1 PM, and 5 Mg∙ha−1 RHB + 4 Mg∙ha−1 PMB with B. japonicum inoculated seed produced significantly greater grain yield (p = 0.05). PM treatment had a significant (p B. japonicum-inoculated soybean seeds significantly (p = 0.014) increased soybean nodulation. This study suggests that RHB combined with PM or PMB provides a beneficial source of N, P, and K, resulting in improved soybean yield and nodulation in a tropical ferric acrisol. 展开更多
关键词 BIOCHAR Poultry Manure soil Fertility soil Microorganism soybean Production
下载PDF
Selection Effects of Soil Fertility on the Progenies of Soybean Crosses
11
作者 Zou Jijun, Yang Qingkai, Wang Jiming(Northeast Agricultural University, Harbin 150030, PRC) 《Journal of Northeast Agricultural University(English Edition)》 CAS 1996年第2期88-93,共6页
The F2, F3, families and F4 lines of six soybean crosses, were selected successively under high-and low - fertility sites with the relection objective of high yield and the method of pedigree was used. Two best F4 - d... The F2, F3, families and F4 lines of six soybean crosses, were selected successively under high-and low - fertility sites with the relection objective of high yield and the method of pedigree was used. Two best F4 - derived lines were chosen from each of the six crosses under both high-and low-fertility for use in this study. In 1995, the total 24 lines were tested in high, medium and low fertility sites with the same experimental design (CRB) to study the selcctoin effects of high and low - fertility. The results suggested that high- and low-fertility had different selection effects. High fertility was more effective for selecting lines, which had higher yield under high-fertility and lower yield under low-fertility; low-fertility was better for selecting lines, which had higher yield under low-fertility and lower yield under low-fertility, and high fertility was somewhat better than low fertility for selecting lines, which had higher yield under both high and low-fertility. It revealed that the lines selected from high-fertility had superior yield potential. The lines selected from high-fertility had shorter plant height, more nodes on main stem, fewer branches, higher seed-stem ratio. The reverse was true for the lines selected from low-fertility . The lodging-resistance of the lines selected from highfertility was greater than that of the lines from low-fertility. The soil fertility level of breeding nursery should be chosen according to the breeding objective. 展开更多
关键词 progenics or soybean crosses soil fertility selection effects
全文增补中
Relay-intercropping soybean with maize maintains soil fertility and increases nitrogen recovery efficiency by reducing nitrogen input 被引量:11
12
作者 Qing Du Li Zhou +11 位作者 Ping Chen Xiaoming Liu Chun Song Feng Yang Xiaochun Wang Weiguo Liu Xin Sun Junbo Du Jiang Liu Kai Shu Wenyu Yang Taiwen Yong 《The Crop Journal》 SCIE CAS CSCD 2020年第1期140-152,共13页
Optimized nitrogen(N)management can increase N-use efficiency in intercropping systems.Legume-nonlegume intercropping systems can reduce N input by exploiting biological N fixation by legumes.Measurement of N utilizat... Optimized nitrogen(N)management can increase N-use efficiency in intercropping systems.Legume-nonlegume intercropping systems can reduce N input by exploiting biological N fixation by legumes.Measurement of N utilization can help in dissecting the mechanisms underlying N uptake and utilization in legume-nonlegume intercropping systems.An experiment was performed with three planting patterns:monoculture maize(MM),monoculture soybean(SS),and maize-soybean relay intercropping(IMS),and three N application levels:zero N(NN),reduced N(RN),and conventional N(CN)to investigate crop N uptake and utilization characteristics.N recovery efficiency and 15N recovery rate of crops were higher under RN than under CN,and those under RN were higher under intercropping than under the corresponding monocultures.Compared with MM,IMS showed a lower soil N-dependent rate(SNDR)in 2012.However,the SNDR of MM rapidly declined from 86.8%in 2012 to 49.4%in 2014,whereas that of IMS declined slowly from 75.4%in 2012 to 69.4%in 2014.The interspecific N competition rate(NCRms)was higher under RN than under CN,and increased yearly.Soybean nodule dry weight and nitrogenase activities were respectively 34.2%and 12.5%higher under intercropping than in monoculture at the beginning seed stage.The amount(Ndfa)and ratio(%Ndfa)of soybean N2 fixation were significantly greater under IS than under SS.In conclusion,N fertilizer was more efficiently used under RN than under CN;in particular,the relay intercropping system promoted N fertilizer utilization in comparison with the corresponding monocultures.An intercropping system helps to maintain soil fertility because interspecific N competition promotes biological N fixation by soybean by reducing N input.Thus,a maize-soybean relay intercropping system with reduced N application is sustainable and environmentally friendly. 展开更多
关键词 Maize-soybean relay intercropping Reduced nitrogen Biological nitrogen fixation Nitrogen recovery efficiency soil nitrogen dependent rate
下载PDF
Foliar Dicamba Application Has No Lasting Effects on Microbial Activities in the Soybean Rhizosphere
13
作者 Heather L. Tyler 《American Journal of Plant Sciences》 2020年第11期1706-1713,共8页
The proliferation of glyphosate-resistant weeds has resulted in significant losses in the productivity of crops such as corn, soybean, and cotton. As a result, new crop varieties with resistance genes from other herbi... The proliferation of glyphosate-resistant weeds has resulted in significant losses in the productivity of crops such as corn, soybean, and cotton. As a result, new crop varieties with resistance genes from other herbicides, such as 2,4-D and dicamba, have been developed as part of alternative weed control cropping systems. However, little is known about how the application of these herbicides impacts the microorganisms that carry out nutrient cycling in the soil of these cropping systems, particularly in the rhizosphere, the soil compartment immediately adjacent to the root system which is pivotal to plant nutrient uptake. The purpose of the current study was to assess the effects of dicamba on soil enzyme activities linked to C, N, and P cycling in the rhizosphere of </span><span style="font-family:Verdana;">resistant soybean plants. While dicamba had no significant effects on the ac</span><span style="font-family:Verdana;">tivities of enzymes linked to C or P cycling in the rhizosphere, N-acetylglucosaminidase activity was temporarily inhibited, but recovered by three days after application. These results suggest there are no long-lasting negative effects of dicamba in the rhizosphere of treated plants when applied at field rates. 展开更多
关键词 DICAMBA RHIZOSPHERE soybean soil Microbial Activities
下载PDF
富钼专用保水剂对东北典型土壤保墒性能及大豆幼苗生长的影响 被引量:1
14
作者 张玉斌 景泉 +3 位作者 崔金虎 陈贵娟 赵雪来 侯利园 《中国水土保持科学》 CSCD 北大核心 2024年第1期63-69,共7页
在东北集约化种植体系中,苗期水肥供应强度直接影响作物生长状况,并最终导致产量变异。富钼大豆专用保水剂是基于高分子材料合成与钼肥技术的耦合。针对东北2种典型土壤类型开展温室盆栽试验,通过二因子五水平的试验设计,研究土壤类型... 在东北集约化种植体系中,苗期水肥供应强度直接影响作物生长状况,并最终导致产量变异。富钼大豆专用保水剂是基于高分子材料合成与钼肥技术的耦合。针对东北2种典型土壤类型开展温室盆栽试验,通过二因子五水平的试验设计,研究土壤类型、保水剂类型及施用量对大豆苗期土壤水分利用效率及幼苗生长的影响。结果表明:1)施用不同剂量普通保水剂(H 2020)和富钼专用保水剂(GH 2021)均可在不同程度上提高土壤保水性能,并促进苗期大豆生长及地上部植株干质量;2)土壤含水率和大豆幼苗株高均随用量的增大而增加,且用量为0.5%的GH 2021显著促进大豆幼苗的生长,在黑土和风沙土条件下增幅分别可达68.0%和44.9%;3)0.5%剂量的GH 2021使风沙土土壤含水率提高343.1%,相较于施用H 2020保水性能提升33.6%;4)与H 2020相比,施用量为0.5%的GH 2021使风沙土条件下苗期大豆株高和地上部干质量分别提高16.3%和34.0%。综上,富钼专用保水剂在东北大豆种植区最佳应用范围为:2种土壤条件下,保水剂理论田间推荐用量为0.5%,其对风沙土的保墒性能优于黑土。该保水剂可用于提升干旱区土壤保水性能,改善苗期大豆生长环境和营养状况,最大限度激发东北大豆的增产潜力。 展开更多
关键词 富钼专用保水剂 黑土 风沙土 大豆 土壤含水率 苗期大豆生长
下载PDF
融合无人机光谱信息与纹理特征的大豆土壤含水率估测模型研究
15
作者 李志军 陈国夫 +4 位作者 支佳伟 向友珍 李冬梅 张富仓 陈俊英 《农业机械学报》 EI CAS CSCD 北大核心 2024年第9期347-357,共11页
及时获取大田作物根区土壤含水率(Soil moisture content,SMC)对于实现精准灌溉至关重要。本研究采用无人机多光谱技术,通过连续2年(2021—2022年)田间试验,采集了大豆开花期不同土壤深度的SMC数据以及相应的无人机多光谱图像,建立了与... 及时获取大田作物根区土壤含水率(Soil moisture content,SMC)对于实现精准灌溉至关重要。本研究采用无人机多光谱技术,通过连续2年(2021—2022年)田间试验,采集了大豆开花期不同土壤深度的SMC数据以及相应的无人机多光谱图像,建立了与作物参数具有较强相关性的植被指数及冠层纹理特征。通过分析植被指数和纹理特征与各深度土层SMC的相关性,分别筛选出与各深度土层SMC相关系数达显著相关(P<0.05)的参数作为模型的输入变量(组合1:植被指数;组合2:纹理特征;组合3:植被指数结合纹理特征),分别利用支持向量机(Support vector machine,SVM)、梯度提升模型(Extreme gradient boosting,XGBoost)和梯度提升决策树(Gradient boosting decision tree,GDBT)对各深度土层SMC进行建模。结果表明,与20~40 cm和40~60 cm土层深度相比,植被指数和纹理特征在0~20 cm土层深度中与SMC表现出更高的相关性。XGBoost模型为SMC估算的最佳建模方法,特别是对于0~20 cm土层深度。该深度估计模型验证集决定系数为0.881,均方根误差为0.7%,平均相对误差为3.758%。本研究结果为大豆根区SMC无人机多光谱监测提供了基础,为水分胁迫条件下作物生长的快速评估提供了参考。 展开更多
关键词 大豆 土壤含水率 无人机 多光谱 植被指数 纹理特征
下载PDF
Effects of Crop Stubble on Physicochemical Properties of Continuous Cropping Soil and Cucumber Yield and Quality 被引量:1
16
作者 Yuyan Wang Zhongwei Wang +2 位作者 Guichun Yang Li Wang Yi Zheng 《Natural Resources》 2012年第3期88-94,共7页
By a pot experiment, two kinds of crop stubble (wheat, soybean) were added into continuous cropping soil of cucumber according to different quantity (0.5%, 1% and 2%), the effects of different kinds of stubble and qua... By a pot experiment, two kinds of crop stubble (wheat, soybean) were added into continuous cropping soil of cucumber according to different quantity (0.5%, 1% and 2%), the effects of different kinds of stubble and quantity on the continuous cropping soil and growth of cucumber were investigated. The results showed that two kinds of crop stubble significantly decreased soil bulk density, and increased total porosity of soil. Each of all treatments significantly decreased the accumulation of salinity in soil within the entire growth period of cucumber. 2% wheat stubble treatment had the biggest drop in soil EC in the later period of cucumber growth. Soybean stubble treatment had the lesser effect on soil EC. Wheat and soybean stubble promoted the growth of cucumber, increased the yield of cucumber, and improved the quality of cucumber. 2% of wheat stubble treatment had a biggest increase in cucumber yield, which increased the yield by 34.23% compared with the control. 展开更多
关键词 Wheat soybean STUBBLE Continuous CROPPING CUCUMBER Sick soil Yield and Quality PHYSICOCHEMICAL Properties
下载PDF
CROPGRO-Soybean Model Calibration and Assessment of Soybean Yield Responses to Climate Change
17
作者 Joseph E. Quansah Pauline Welikhe +3 位作者 Gamal El Afandi Souleymane Fall Desmond Mortley Ramble Ankumah 《American Journal of Climate Change》 2020年第3期297-316,共20页
<div style="text-align:justify;"> <span style="font-family:Verdana;"></span>Process-based crop simulation models are useful for simulating the impacts of climate change on crop yi... <div style="text-align:justify;"> <span style="font-family:Verdana;"></span>Process-based crop simulation models are useful for simulating the impacts of climate change on crop yields. Currently, estimation of spatially calibrated soil parameters for crop models can be challenging, as it requires the availability of long-term and detailed input data from several sentinel sites. The use of aggregated regional data for model calibrations has been proposed but not been employed in regional climate change studies. The study: 1) employed the use of county-level data to estimate spatial soil parameters for the calibration of CROPGRO-Soybean model and 2) used the calibrated model, assimilated with future climate data, in assessing the impacts of climate change on soybean yields. The CROPGRO-Soybean model was calibrated using major agricultural soil types, crop yield and current climate data at county level, for selected counties in Alabama for the period 1981-2010. The calibrated model simulations were acceptable with performance indicators showing Root Mean Square Error percent of between 27 - 43 and Index of Agreement ranging from 0.51 to 0.76. Projected soybean yield decreased by an average of 29% and 23% in 2045, and 19% and 43% in 2075, under Representative Concentration Pathways 4.5 and 8.5, respectively. Results showed that late-maturing soybean cultivars were most resilient to heat, while late-maturing cultivators needed optimized irrigation to maintain appropriate soil moisture to sustain soybean yields. The CROPGRO-Soybean phenological and yield simulations suggested that the negative effects of increasing temperatures could be counterbalanced by increasing rainfall, optimized irrigation, and cultivating late-maturing soybean cultivars. </div> 展开更多
关键词 Climate Change CROPGRO-soybean Model Crop Yield soil Parameters
下载PDF
南方土壤中导致大豆皱叶的因子分析
18
作者 陈文杰 陈渊 +3 位作者 韦清源 汤复跃 郭小红 梁江 《大豆科学》 CAS CSCD 北大核心 2024年第2期167-175,共9页
为找出南方大豆皱叶症发生的诱因,本研究从南方土壤中非生物因素和生物因素两个角度进行探索研究。利用混池法和ICP-OES技术研究正常叶混池和皱叶混池的差异元素,利用构建的皱叶残留异质系中皱叶家系材料GY_C和正常叶家系材料GY_N,采用... 为找出南方大豆皱叶症发生的诱因,本研究从南方土壤中非生物因素和生物因素两个角度进行探索研究。利用混池法和ICP-OES技术研究正常叶混池和皱叶混池的差异元素,利用构建的皱叶残留异质系中皱叶家系材料GY_C和正常叶家系材料GY_N,采用单因素随机区组试验设计,研究皱叶土壤的不同土层、营养液、灰烬、叶浆,进行土壤浸泡液、土壤消毒、氮肥等处理后大豆皱叶材料皱叶症的变化。结果表明:皱叶环境土壤的表层、中层和底层土均可导致GY_C叶片皱缩,中层土中的GY_C叶片皱缩程度略高于表层和底层土。氮磷钾配比失衡的营养液处理GY_C叶片未发生皱缩。ICP-OES分析皱叶混池E 1和正常叶混池E 0的31种元素后,未发现E 1/E 0比值为1.7倍以上的元素,且E 1中锰元素含量低于E 0。皱叶灰烬及土壤浸泡液处理基质后GY_C叶片未发生皱缩。移栽试验表明,南方土壤和基质比例超过3∶1时GY_C长出的新叶依然皱缩,而复种的盆栽中南方土壤和基质比例低于1∶8时GY_C叶片也会发生皱缩,且随着复种次数增加,皱叶程度有所增加。解剖观察皱叶材料的根、茎、叶柄未发现明显的虫害痕迹。-80,60,80,100和120℃处理的南方土壤中GY_C叶片不发生皱缩。综上所述,南方土壤中的微生物因素可能是导致大豆皱叶的关键因子。 展开更多
关键词 大豆 皱叶 因子 土壤 南方 ICP-OES
下载PDF
有机肥通过改善红壤团聚体结构促进鲜食大豆高产
19
作者 张景云 柳开楼 +5 位作者 王志美 王发洪 何小林 朱莉英 徐小林 黄庆海 《大豆科学》 CAS CSCD 北大核心 2024年第3期310-316,共7页
为探究化肥配施有机肥条件下土壤团聚体与鲜食大豆产量的量化关系,本研究于2022和2023年在典型红壤坡耕地上设置不施肥(CK)、化肥(CF)、化肥配施有机肥(COF)等处理的田间小区试验,分析了不同处理的鲜食大豆产量性质、土壤团聚体组分及... 为探究化肥配施有机肥条件下土壤团聚体与鲜食大豆产量的量化关系,本研究于2022和2023年在典型红壤坡耕地上设置不施肥(CK)、化肥(CF)、化肥配施有机肥(COF)等处理的田间小区试验,分析了不同处理的鲜食大豆产量性质、土壤团聚体组分及平均重量直径。结果表明:在所有处理中,COF处理的荚果数显著增加,2022年分别比CK和CF处理增加了55.1%和36.5%,2023年的增幅分别为53.98%和40.54%。COF处理的鲜食大豆带荚和不带荚籽粒鲜重也分别比CF处理提高了41.70%~40.65%和40.03%~41.78%。在所有处理中,COF处理的团聚体组分中>2.00 mm和0.25~2.00 mm的比例显著较高,而<0.053 mm的比例则显著较低。与CF相比,2022和2023年COF处理下>2 mm的比例分别增加了101.95%和53.06%,但0.25~2 mm、0.053~0.25 mm和<0.053 mm的比例则与CF处理无显著差异。进一步计算发现,2022和2023年COF处理的团聚体平均重量直径也比CF处理增加了25.95%和18.80%。结合线性拟合方程表明,当>2 mm团聚体组分的比例增加1%,2022和2023年的带荚鲜重分别提高0.16和0.19 t·hm^(-2),不带荚鲜重分别提高0.54和0.67 t·hm^(-2);同时,团聚体平均重量直径增加0.1 mm,带荚和不带荚的鲜重分别提高1.79~1.99 t·hm^(-2)和0.83~0.91 t·hm^(-2)。因此,化肥配施有机肥是提升红壤坡耕地鲜食大豆产量的主要措施,且通过改善团聚体结构可以显著促进鲜食大豆增产。 展开更多
关键词 鲜食大豆 红壤 团聚体 有机肥
下载PDF
有机液体肥对新垦土地毛豆生长及土壤肥力的影响
20
作者 闫良 葛长军 +1 位作者 李进兰 代俊芬 《湖南农业科学》 2024年第7期43-45,51,共4页
为探讨有机液体肥在新垦耕地上对土壤肥力提升和作物增产性、抗逆性等其他效果,于去除30~40 cm表层土壤的耕地上开展施用有机液体肥对毛豆种植和土壤肥力提升试验。结果表明:(1)施用有机液体肥可增加毛豆叶片中叶绿素含量,提升光合作用... 为探讨有机液体肥在新垦耕地上对土壤肥力提升和作物增产性、抗逆性等其他效果,于去除30~40 cm表层土壤的耕地上开展施用有机液体肥对毛豆种植和土壤肥力提升试验。结果表明:(1)施用有机液体肥可增加毛豆叶片中叶绿素含量,提升光合作用,进而增加植株株高和单株有效荚数,且施用有机液体肥可显著增加新垦土地上毛豆鲜荚产量,实现理论产量10 182 kg/hm2,比对照增产21.2%;另外施用有机液体肥在增加毛豆单株粒重的同时,其完整粒率、百粒鲜重等商品性状也有显著提升。(2)施用有机液体肥可有效增加土壤中有机质含量,对改良和恢复土壤肥力有较好的促进作用。同时与原始土样对比,新垦耕地上施用有机液体肥可在一定程度上满足毛豆对土壤中速效磷和速效钾的需求,还可维系土壤中速效磷和速效钾含量在一定水平,对保护和维持土壤肥力有着积极的作用。 展开更多
关键词 新垦土地 有机液体肥 毛豆 土壤改良 应用效果
下载PDF
上一页 1 2 39 下一页 到第
使用帮助 返回顶部