Selective oxidation of saturated C(sp^(3))-H bonds in hydrocarbon to target chemicals under mild conditions remains a signifi-cant but challenging task because of the chemical inertness and high dissociation energy of...Selective oxidation of saturated C(sp^(3))-H bonds in hydrocarbon to target chemicals under mild conditions remains a signifi-cant but challenging task because of the chemical inertness and high dissociation energy of C(sp^(3))-H bonds.Semiconductor photocatalysis can induce the generation of holes and oxidative radicals,off ering an alternative way toward selective oxidation of hydrocarbons under ambient conditions.Herein,we constructed N-doped TiO_(2) nanotubes(N-TNTs)that exhibited remark-able activity and selectivity for toluene oxidation under visible light,delivering the conversion of toluene and selectivity of benzaldehyde of 32% and>99%,respectively.Further mechanistic studies demonstrated that the incorporation of nitrogen induced the generation of N-doping level above the O 2p valance band,directly contributing to the visible-light response of TiO_(2).Furthermore,hydroxyl radicals generated by photogenerated holes at the orbit of O 2p were found to be unselective for the oxidation of toluene,aff ording both benzaldehyde and benzoic acid.The incorporation of nitrogen was able to inhibit the generation of hydroxyl radicals,terminating the formation of benzoic acid.展开更多
Electrochemical reduction of CO_(2) to value-added chemicals holds promise for carbon utilization and renewable electricity storage.However,selective CO_(2) reduction to multi-carbon fuels remains a significant challe...Electrochemical reduction of CO_(2) to value-added chemicals holds promise for carbon utilization and renewable electricity storage.However,selective CO_(2) reduction to multi-carbon fuels remains a significant challenge.Here,we report that B/N-doped sp^(3)/sp^(2) hybridized nanocarbon(BNHC),consisting of ultra-small nanoparticles with a sp^(3) carbon core covered by a sp^(2) carbon shell,is an efficient electrocatalyst for electrochemical reduction of CO_(2) to ethanol at relatively low overpotentials.CO_(2) reduction occurs with a Faradaic efficiency of 58.8%-69.1% for ethanol and acetate production at -0.5∼-0.6 V(vs.RHE),among which 51.6%-56.0% is for ethanol.The high selectivity for ethanol is due to the integrated effect of sp^(3)/sp^(2) carbon and B/N doping.Both sp^(3) carbon and B/N doping contribute to enhanced ethanol production with sp^(2) carbon reducing the overpotential for CO_(2) reduction to ethanol.展开更多
The isoindolinone and biaryl scaffolds are prevalent in natural products and drug molecules,which have showed broad and interesting biological activities.The efficient construction of such hybridized molecules and bio...The isoindolinone and biaryl scaffolds are prevalent in natural products and drug molecules,which have showed broad and interesting biological activities.The efficient construction of such hybridized molecules and biological evaluation are of great interest to medicinal chemistry community.In this communication,we report an efficient BrΦnsted acid-promoted C(sp^3)-H functionalization approach that enables the rapid construction of biologically important isoindolinone/[1,2,4]triazolo[1,5-a]pyrimidine hybrids from 5-methyl-7-(2,4,6-trimethoxyphenyl)-[1,2,4]triazolo[1,5-a]pyrimidine,2-formylbenzoic acid and various anilines.The title compounds were generated in high to excellent yields(up to 96%)regardless of the electronic nature and steric effects of the substituents.In this reaction,an isoindolinone scaffold,one C-C single bond,and two C-N bonds were formed simultaneously with high atom economy.In this work,we have envisioned that the methyl group linked to the electron-deficient Nheterocycles could be used as a new synthetic handle for late-state diversification and may have broad applications in the field of organic and medicinal chemistry.Besides,the title compounds have exhibited promising activity against the SKP2-CKS1 interaction.展开更多
A method of C(sp^3)-H bond functionalization of methyl azaarenes catalyzed by alumina-supported heteropoly acid and addition to isatins was developed. This transformation could be used for the synthesis of biologica...A method of C(sp^3)-H bond functionalization of methyl azaarenes catalyzed by alumina-supported heteropoly acid and addition to isatins was developed. This transformation could be used for the synthesis of biologically important 3-hydroxy-2-oxindole derivatives in good to excellent yields and the catalyst could be reused for six times without significant decrease in activity.展开更多
基金the National Natural Science Foundation of China(Nos.22025206,21991094)supported by the Ministry of ScienceTechnology of the People’s Republic of China(No.2018YFE0118100)+1 种基金the CAS-NSTDA Joint Research Project(No.GJHZ2075)Dalian Science and Technology Innovation Fund(No.2019J11CY009).
文摘Selective oxidation of saturated C(sp^(3))-H bonds in hydrocarbon to target chemicals under mild conditions remains a signifi-cant but challenging task because of the chemical inertness and high dissociation energy of C(sp^(3))-H bonds.Semiconductor photocatalysis can induce the generation of holes and oxidative radicals,off ering an alternative way toward selective oxidation of hydrocarbons under ambient conditions.Herein,we constructed N-doped TiO_(2) nanotubes(N-TNTs)that exhibited remark-able activity and selectivity for toluene oxidation under visible light,delivering the conversion of toluene and selectivity of benzaldehyde of 32% and>99%,respectively.Further mechanistic studies demonstrated that the incorporation of nitrogen induced the generation of N-doping level above the O 2p valance band,directly contributing to the visible-light response of TiO_(2).Furthermore,hydroxyl radicals generated by photogenerated holes at the orbit of O 2p were found to be unselective for the oxidation of toluene,aff ording both benzaldehyde and benzoic acid.The incorporation of nitrogen was able to inhibit the generation of hydroxyl radicals,terminating the formation of benzoic acid.
基金supported by National Natural Science Foundation of China(Nos.22076019 and 21707016)The Youth Talent Support Program of Liaoning Province(No.XLYC2007069)U.S.Department of Energy(DOE),Office of Basic Energy Sciences under Award(No.DE-SCO015739).
文摘Electrochemical reduction of CO_(2) to value-added chemicals holds promise for carbon utilization and renewable electricity storage.However,selective CO_(2) reduction to multi-carbon fuels remains a significant challenge.Here,we report that B/N-doped sp^(3)/sp^(2) hybridized nanocarbon(BNHC),consisting of ultra-small nanoparticles with a sp^(3) carbon core covered by a sp^(2) carbon shell,is an efficient electrocatalyst for electrochemical reduction of CO_(2) to ethanol at relatively low overpotentials.CO_(2) reduction occurs with a Faradaic efficiency of 58.8%-69.1% for ethanol and acetate production at -0.5∼-0.6 V(vs.RHE),among which 51.6%-56.0% is for ethanol.The high selectivity for ethanol is due to the integrated effect of sp^(3)/sp^(2) carbon and B/N doping.Both sp^(3) carbon and B/N doping contribute to enhanced ethanol production with sp^(2) carbon reducing the overpotential for CO_(2) reduction to ethanol.
基金supported by the National Natural Science Foundation of China(Nos.81773562 and 81703326)China Postdoctoral Science Foundation(Nos.2018M630840 and 2019T120641)Scientific Program of Henan Province(No.182102310123)。
文摘The isoindolinone and biaryl scaffolds are prevalent in natural products and drug molecules,which have showed broad and interesting biological activities.The efficient construction of such hybridized molecules and biological evaluation are of great interest to medicinal chemistry community.In this communication,we report an efficient BrΦnsted acid-promoted C(sp^3)-H functionalization approach that enables the rapid construction of biologically important isoindolinone/[1,2,4]triazolo[1,5-a]pyrimidine hybrids from 5-methyl-7-(2,4,6-trimethoxyphenyl)-[1,2,4]triazolo[1,5-a]pyrimidine,2-formylbenzoic acid and various anilines.The title compounds were generated in high to excellent yields(up to 96%)regardless of the electronic nature and steric effects of the substituents.In this reaction,an isoindolinone scaffold,one C-C single bond,and two C-N bonds were formed simultaneously with high atom economy.In this work,we have envisioned that the methyl group linked to the electron-deficient Nheterocycles could be used as a new synthetic handle for late-state diversification and may have broad applications in the field of organic and medicinal chemistry.Besides,the title compounds have exhibited promising activity against the SKP2-CKS1 interaction.
基金Financial support from the National Natural Science Foundation of China(No.21402103)the research fund of Qingdao Agricultural University's High-level Person(No.631303)the Scientific Research Foundation of Shandong Province Outstanding Young Scientist Award(No.BS2013YY024) were gratefully acknowledged
文摘A method of C(sp^3)-H bond functionalization of methyl azaarenes catalyzed by alumina-supported heteropoly acid and addition to isatins was developed. This transformation could be used for the synthesis of biologically important 3-hydroxy-2-oxindole derivatives in good to excellent yields and the catalyst could be reused for six times without significant decrease in activity.
基金Project supported by the National Natural Science Foundation of China (No. 21572047)the Plan for Scientific Innovation Talents of Henan Province (No. 184200510012)~~