Designing a sparse array with reduced transmit/receive modules(TRMs)is vital for some applications where the antenna system’s size,weight,allowed operating space,and cost are limited.Sparse arrays exhibit distinct ar...Designing a sparse array with reduced transmit/receive modules(TRMs)is vital for some applications where the antenna system’s size,weight,allowed operating space,and cost are limited.Sparse arrays exhibit distinct architectures,roughly classified into three categories:Thinned arrays,nonuniformly spaced arrays,and clustered arrays.While numerous advanced synthesis methods have been presented for the three types of sparse arrays in recent years,a comprehensive review of the latest development in sparse array synthesis is lacking.This work aims to fill this gap by thoroughly summarizing these techniques.The study includes synthesis examples to facilitate a comparative analysis of different techniques in terms of both accuracy and efficiency.Thus,this review is intended to assist researchers and engineers in related fields,offering a clear understanding of the development and distinctions among sparse array synthesis techniques.展开更多
This paper examines the direction of arrival(DOA)estimation for polarized signals impinging on a sparse vector sensor array which is based on the maximum interelement spacing constraint(MISC).The vector array effectiv...This paper examines the direction of arrival(DOA)estimation for polarized signals impinging on a sparse vector sensor array which is based on the maximum interelement spacing constraint(MISC).The vector array effectively utilizes the polarization domain information of incident signals,and the quaternion model is adopted for signals polarization characteristic maintenance and computational burden reduction.The features of MISC arrays are crucial to the mutual coupling effects reduction and higher degrees of freedom(DOFs).The quaternion data model based on vector MISC arrays is established,which extends the scalar MISC array into the vector MISC array.Based on the model,a quaternion multiple signal classification(MUSIC)algorithm based on vector MISC arrays is proposed for DOA estimation.The algorithm combines the advantages of the quaternion model and the vector MISC array to enhance the DOA estimation performance.Analytical simulations are performed to certify the capability of the algorithm.展开更多
Microwave transmission in a space network is greatly restricted due to precious radio spectrum resources. To meet the demand for large-bandwidth, global seamless coverage and on-demanding access, the Space All-Optical...Microwave transmission in a space network is greatly restricted due to precious radio spectrum resources. To meet the demand for large-bandwidth, global seamless coverage and on-demanding access, the Space All-Optical Network(SAON) becomes a promising paradigm. In this paper, the related space optical communications and network programs around the world are first briefly introduced. Then the intelligent Space All-Optical Network(i-SAON), which can be deemed as an advanced SAON, is illustrated, with the emphasis on its features of high survivability, sensing and reconfiguration intelligence, and large capacity for all optical load and switching. Moreover, some key technologies for i-SAON are described, including the rapid adjustment and control of the laser beam direction, the deep learning-based multi-path anti-fault routing, the intelligent multi-fault diagnosis and switching selection mechanism, and the artificial intelligence-based spectrum sensing and situational forecasting.展开更多
Space solar power station(SSPS)are important space infrastructure for humans to efficiently utilize solar energy and can effectively reduce the pollution of fossil fuels to the earth’s natural environment.As the ener...Space solar power station(SSPS)are important space infrastructure for humans to efficiently utilize solar energy and can effectively reduce the pollution of fossil fuels to the earth’s natural environment.As the energy conversion system of SSPS,solar array is an important unit for the successful service of SSPS.Today,solar arrays represent the standard technology for providing energy for spacecraft,thanks to their high conversion efficiency and reliability/stability in orbit.With the development of solar arrays,many new materials,new photovoltaic devices and new control systems have emerged.Solar arrays are directly exposed to the space environment,and harsh environmental factors can degrade the performance.To ensure the long-term safe inorbit service of SSPS as well as its ultra-large solar array,these new materials,devices,and control systems must operate certification and evaluation that can be used in space applications.In this review,the development history and research progress of SSPS and the corresponding space solar arrays are summarized and discussed,and the space environmental effects of solar arrays are analyzed at multiple levels(materials,devices,and systems).Finally,in response to the current space environmental effects of the ultra-large solar array used in the SSPS,future development trends and challenges are proposed.展开更多
Space solar power station adopts large-area solar arrays for efficient photovoltaic conversion,making it one of the best solutions to future energy problems.In-orbit failure of solar arrays can affect the service life...Space solar power station adopts large-area solar arrays for efficient photovoltaic conversion,making it one of the best solutions to future energy problems.In-orbit failure of solar arrays can affect the service life of spacecraft,thereby it is crucial to comprehend the impact of solar cell failure on the electrical performance of solar arrays and propose appropriate circuit design criteria.The root cause of solar array failure is the degeneration of solar cells.In this paper,power loss caused by an open circuit or short circuit failure of solar cells in pure parallel and series–parallel circuits is described,and it reveals that an open circuit of the cell is more harmful in the pure parallel circuit,while a short circuit in the series–parallel circuit is more detrimental,which causes loss of electrical performance in series and parallel units,respectively.All conclusions have been validated through model calculations and corresponding experiments.The electrical loss is also influenced by the control mode.For the Maximum Power Point Tracking control mode favored by space solar power station,which can significantly increase generated power,application suggestions have been proposed based on the results of cell failure analysis.The research will provide a reference for circuit selection and boundary design for solar arrays,reducing the probability of solar array failure and saving the manufacturing and redeployment costs of space solar power station.展开更多
In this paper, an asymmetric array structure of space laser communication receiver is proposed. This structure can greatly reduce alignment requirement, and lighten the signal strength jitter caused by atmospheric tur...In this paper, an asymmetric array structure of space laser communication receiver is proposed. This structure can greatly reduce alignment requirement, and lighten the signal strength jitter caused by atmospheric turbulence. A prototype of the proposed structure is fabricated and a 2.5 Mbit/s on-off keying(OOK) modulated demonstration link over 40 m free space is built. This asymmetric array structure can effectively collect optical signal while rotating in a window angle of ±17°, and the bit error ratio(BER) keeps zero.展开更多
The model of time-frequency mixed processing and the towing experimental results airs discussed in the paper for the fractional beamforming of a dense spacing array. The results show that the theoretical model is in a...The model of time-frequency mixed processing and the towing experimental results airs discussed in the paper for the fractional beamforming of a dense spacing array. The results show that the theoretical model is in agreement with the experimental results and it can.be realized easily in the engineering mode. The Performance Figure of the experimental subarray system is increased about 17 dB in comparison with that of traditional array with halfwavelength spacing between elements under the same conditions, when the flow noise is a dominant component in the background noise received by a sub-array.展开更多
In this paper, a novel algorithm is presented for direction of arrival(DOA) estimation and array self-calibration in the presence of unknown mutual coupling. In order to highlight the relationship between the array ...In this paper, a novel algorithm is presented for direction of arrival(DOA) estimation and array self-calibration in the presence of unknown mutual coupling. In order to highlight the relationship between the array output and mutual coupling coefficients, we present a novel model of the array output with the unknown mutual coupling coefficients. Based on this model, we use the space alternating generalized expectation-maximization(SAGE) algorithm to jointly estimate the DOA parameters and the mutual coupling coefficients. Unlike many existing counterparts, our method requires neither calibration sources nor initial calibration information. At the same time,our proposed method inherits the characteristics of good convergence and high estimation precision of the SAGE algorithm. By numerical experiments we demonstrate that our proposed method outperforms the existing method for DOA estimation and mutual coupling calibration.展开更多
基金supported by the National Natural Science Foundation of China under Grant No.U2341208.
文摘Designing a sparse array with reduced transmit/receive modules(TRMs)is vital for some applications where the antenna system’s size,weight,allowed operating space,and cost are limited.Sparse arrays exhibit distinct architectures,roughly classified into three categories:Thinned arrays,nonuniformly spaced arrays,and clustered arrays.While numerous advanced synthesis methods have been presented for the three types of sparse arrays in recent years,a comprehensive review of the latest development in sparse array synthesis is lacking.This work aims to fill this gap by thoroughly summarizing these techniques.The study includes synthesis examples to facilitate a comparative analysis of different techniques in terms of both accuracy and efficiency.Thus,this review is intended to assist researchers and engineers in related fields,offering a clear understanding of the development and distinctions among sparse array synthesis techniques.
基金supported by the National Natural Science Foundation of China(62031015).
文摘This paper examines the direction of arrival(DOA)estimation for polarized signals impinging on a sparse vector sensor array which is based on the maximum interelement spacing constraint(MISC).The vector array effectively utilizes the polarization domain information of incident signals,and the quaternion model is adopted for signals polarization characteristic maintenance and computational burden reduction.The features of MISC arrays are crucial to the mutual coupling effects reduction and higher degrees of freedom(DOFs).The quaternion data model based on vector MISC arrays is established,which extends the scalar MISC array into the vector MISC array.Based on the model,a quaternion multiple signal classification(MUSIC)algorithm based on vector MISC arrays is proposed for DOA estimation.The algorithm combines the advantages of the quaternion model and the vector MISC array to enhance the DOA estimation performance.Analytical simulations are performed to certify the capability of the algorithm.
基金supported by CAST Fund for Distinguished Young TalentsCASC Scientific and Technological Innovative Research and Design Projects
文摘Microwave transmission in a space network is greatly restricted due to precious radio spectrum resources. To meet the demand for large-bandwidth, global seamless coverage and on-demanding access, the Space All-Optical Network(SAON) becomes a promising paradigm. In this paper, the related space optical communications and network programs around the world are first briefly introduced. Then the intelligent Space All-Optical Network(i-SAON), which can be deemed as an advanced SAON, is illustrated, with the emphasis on its features of high survivability, sensing and reconfiguration intelligence, and large capacity for all optical load and switching. Moreover, some key technologies for i-SAON are described, including the rapid adjustment and control of the laser beam direction, the deep learning-based multi-path anti-fault routing, the intelligent multi-fault diagnosis and switching selection mechanism, and the artificial intelligence-based spectrum sensing and situational forecasting.
基金acknowledge financial support provided by the National Key Research and Development Program of China(2022YFF0503600).
文摘Space solar power station(SSPS)are important space infrastructure for humans to efficiently utilize solar energy and can effectively reduce the pollution of fossil fuels to the earth’s natural environment.As the energy conversion system of SSPS,solar array is an important unit for the successful service of SSPS.Today,solar arrays represent the standard technology for providing energy for spacecraft,thanks to their high conversion efficiency and reliability/stability in orbit.With the development of solar arrays,many new materials,new photovoltaic devices and new control systems have emerged.Solar arrays are directly exposed to the space environment,and harsh environmental factors can degrade the performance.To ensure the long-term safe inorbit service of SSPS as well as its ultra-large solar array,these new materials,devices,and control systems must operate certification and evaluation that can be used in space applications.In this review,the development history and research progress of SSPS and the corresponding space solar arrays are summarized and discussed,and the space environmental effects of solar arrays are analyzed at multiple levels(materials,devices,and systems).Finally,in response to the current space environmental effects of the ultra-large solar array used in the SSPS,future development trends and challenges are proposed.
文摘Space solar power station adopts large-area solar arrays for efficient photovoltaic conversion,making it one of the best solutions to future energy problems.In-orbit failure of solar arrays can affect the service life of spacecraft,thereby it is crucial to comprehend the impact of solar cell failure on the electrical performance of solar arrays and propose appropriate circuit design criteria.The root cause of solar array failure is the degeneration of solar cells.In this paper,power loss caused by an open circuit or short circuit failure of solar cells in pure parallel and series–parallel circuits is described,and it reveals that an open circuit of the cell is more harmful in the pure parallel circuit,while a short circuit in the series–parallel circuit is more detrimental,which causes loss of electrical performance in series and parallel units,respectively.All conclusions have been validated through model calculations and corresponding experiments.The electrical loss is also influenced by the control mode.For the Maximum Power Point Tracking control mode favored by space solar power station,which can significantly increase generated power,application suggestions have been proposed based on the results of cell failure analysis.The research will provide a reference for circuit selection and boundary design for solar arrays,reducing the probability of solar array failure and saving the manufacturing and redeployment costs of space solar power station.
基金supported by the National Natural Science Foundation of China (Nos.61674142 and 62041502)。
文摘In this paper, an asymmetric array structure of space laser communication receiver is proposed. This structure can greatly reduce alignment requirement, and lighten the signal strength jitter caused by atmospheric turbulence. A prototype of the proposed structure is fabricated and a 2.5 Mbit/s on-off keying(OOK) modulated demonstration link over 40 m free space is built. This asymmetric array structure can effectively collect optical signal while rotating in a window angle of ±17°, and the bit error ratio(BER) keeps zero.
文摘The model of time-frequency mixed processing and the towing experimental results airs discussed in the paper for the fractional beamforming of a dense spacing array. The results show that the theoretical model is in agreement with the experimental results and it can.be realized easily in the engineering mode. The Performance Figure of the experimental subarray system is increased about 17 dB in comparison with that of traditional array with halfwavelength spacing between elements under the same conditions, when the flow noise is a dominant component in the background noise received by a sub-array.
基金supported by the National Natural Science Foundation of China (No. 61302141)
文摘In this paper, a novel algorithm is presented for direction of arrival(DOA) estimation and array self-calibration in the presence of unknown mutual coupling. In order to highlight the relationship between the array output and mutual coupling coefficients, we present a novel model of the array output with the unknown mutual coupling coefficients. Based on this model, we use the space alternating generalized expectation-maximization(SAGE) algorithm to jointly estimate the DOA parameters and the mutual coupling coefficients. Unlike many existing counterparts, our method requires neither calibration sources nor initial calibration information. At the same time,our proposed method inherits the characteristics of good convergence and high estimation precision of the SAGE algorithm. By numerical experiments we demonstrate that our proposed method outperforms the existing method for DOA estimation and mutual coupling calibration.