This paper shows how the Flat Space Cosmology model correlates the recom-bination epoch CMB temperature of 3000 K with a cosmological redshift of 1100. This proof is given in support of the recent publication that the...This paper shows how the Flat Space Cosmology model correlates the recom-bination epoch CMB temperature of 3000 K with a cosmological redshift of 1100. This proof is given in support of the recent publication that the Tatum and Seshavatharam Hubble temperature formulae can be derived using the Stephan-Boltzmann dispersion law. Thus, as explained herein, the era of high precision Planck scale quantum cosmology has arrived.展开更多
针对机器学习在流量异常检测中存在特征选择依赖经验、易受离群点影响导致鲁棒性差等问题,基于因素空间理论的“背景关系-背景分布-背景基”体系提出一种流量异常检测的基点分类方法。首先,数据预处理阶段使用KNN离群点检测算法去除数...针对机器学习在流量异常检测中存在特征选择依赖经验、易受离群点影响导致鲁棒性差等问题,基于因素空间理论的“背景关系-背景分布-背景基”体系提出一种流量异常检测的基点分类方法。首先,数据预处理阶段使用KNN离群点检测算法去除数据中的离群点,降低异常点对后续背景基提取的影响。其次,使用mRMR算法对数据特征进行排序,选择对分类最具影响力的特征标注为类别区分特征。然后,以内点判别法为理论基础优化背景基提取算法,提取训练数据中不同类别数据的背景基,得到各类别的单位认知包。最后,以单位认知包为核心构造基点分类算法(fundamental point classification algorithm,FPCA)实现异常流量的精准二分类。在NSL-KDD数据集上对所提方法的二分类实验准确率和F1-score分别达到92.48%和92.18%,检测性能优于同类型的其他机器学习方法。在CICIDS2017场景数据集上的测试进一步验证了所提方法在实际应用中的可行性。展开更多
“SPACE”模式,即坚持以学生(Student)为中心,以思政素养(Political and ideological qualities)为初心,以培养复杂工程问题解决能力(Ability of solving complex engineering problem)为重心,以培养创新精神(Creative spirit)为核心,...“SPACE”模式,即坚持以学生(Student)为中心,以思政素养(Political and ideological qualities)为初心,以培养复杂工程问题解决能力(Ability of solving complex engineering problem)为重心,以培养创新精神(Creative spirit)为核心,践行“初心要红,重心要实,核心要强”的培养理念。面对新工科建设对人才培养提出的新要求,湖南警察学院结合自身拥有国家首批一流本科专业建设点和省综合改革试点专业的实际,创新构建了交通管理工程专业人才培养的“SPACE”模式,初步实现卓越(Excellent)交通管理工程警务人才培养的目标,产生了较好的社会反响。展开更多
The purpose of this paper is to show how one can use the FSC model of gravitational entropy to calculate cosmic radiation temperature anisotropy for any past cosmic time t since the Planck scale. Cosmic entropy follow...The purpose of this paper is to show how one can use the FSC model of gravitational entropy to calculate cosmic radiation temperature anisotropy for any past cosmic time t since the Planck scale. Cosmic entropy follows the Bekenstein-Hawking definition, although in the correct-scaling form of, which scales 60.63 logs of 10 from the Planck scale. In the FSC model, cosmic radiation temperature anisotropy At = (t/to). The derived past anisotropy value can be compared to current co-moving anisotropy defined as unity (to/to). Calculated in this way, current gravitational entropy and temperature anisotropy have maximum values, and the earliest universe has the lowest entropy and temperature anisotropy values. This approach comports with the second law of thermodynamics and the theoretical basis of the Sachs-Wolfe effect, gravitational entropy as defined by Roger Penrose, and Erik Verlinde’s “emergent gravity” theory.展开更多
5D Space-Time-Energy World-Universe Model is a unified model of the World built around the concept of Medium, composed of massive particles (protons, electrons, photons, neutrinos, and dark matter particles). The Mode...5D Space-Time-Energy World-Universe Model is a unified model of the World built around the concept of Medium, composed of massive particles (protons, electrons, photons, neutrinos, and dark matter particles). The Model provides a mathematical framework that enables precise calculation of medium-bound physical parameters: Hubble’s parameter, intergalactic plasma parameters, temperature of microwave background radiation and the rest mass of photons. This paper aligns the World-Universe Model (WUM) with the theoretical framework developed by Prof. P. S. Wesson, albeit assigning a new physical meaning to the fifth coordinate. In the World-Universe Model, the fifth dimension is associated with the total energy of the Medium of the World, and the gravitomagnetic parameter of the Medium serves as the dimension-transposing parameter.展开更多
The purpose of this paper is to show how the dark matter predictions of FSC differ with respect to the standard cosmology assertion of a universal dark matter-to-visible matter ratio of approximately 5.3-to-1. FSC pre...The purpose of this paper is to show how the dark matter predictions of FSC differ with respect to the standard cosmology assertion of a universal dark matter-to-visible matter ratio of approximately 5.3-to-1. FSC predicts the correct ratio to be approximately 9-to-1, based primarily on the universal observations of global spatial flatness in the context of general relativity. The FSC Friedmann equations incorporating a Lambda?Λ?cosmological term clearly indicate that a spatially flat universe must have equality of the positive curvature (matter mass-energy) and negative curvature (dark energy) density components. Thus, FSC predicts that observations of the Milky Way and the nearly co-moving galaxies within 100 million light years will prove the 5.3-to-1 ratio to be incorrect. The most recent galactic and perigalactic observations indicate a range of dark matter-to-visible matter ratios varying from essentially zero (NGC 1052-DF2) to approximately 23-to-1 (Milky Way). The latter ratio is simply astonishing and promises an exciting next few years for astrophysicists and cosmologists. Within the next few years, the mining of huge data bases (especially the Gaia catalogue and Hubble data) will resolve whether standard cosmology will need to change its current claims for the cosmic energy density partition to be more in line with FSC, or whether FSC is falsified. A prediction is that standard cosmology must eventually realize the necessity of resolving the tension between their flatness observations and their assertion of dark energy dominance. The author makes the further prediction that FSC will soon become the new paradigm in cosmology.展开更多
文摘This paper shows how the Flat Space Cosmology model correlates the recom-bination epoch CMB temperature of 3000 K with a cosmological redshift of 1100. This proof is given in support of the recent publication that the Tatum and Seshavatharam Hubble temperature formulae can be derived using the Stephan-Boltzmann dispersion law. Thus, as explained herein, the era of high precision Planck scale quantum cosmology has arrived.
文摘针对机器学习在流量异常检测中存在特征选择依赖经验、易受离群点影响导致鲁棒性差等问题,基于因素空间理论的“背景关系-背景分布-背景基”体系提出一种流量异常检测的基点分类方法。首先,数据预处理阶段使用KNN离群点检测算法去除数据中的离群点,降低异常点对后续背景基提取的影响。其次,使用mRMR算法对数据特征进行排序,选择对分类最具影响力的特征标注为类别区分特征。然后,以内点判别法为理论基础优化背景基提取算法,提取训练数据中不同类别数据的背景基,得到各类别的单位认知包。最后,以单位认知包为核心构造基点分类算法(fundamental point classification algorithm,FPCA)实现异常流量的精准二分类。在NSL-KDD数据集上对所提方法的二分类实验准确率和F1-score分别达到92.48%和92.18%,检测性能优于同类型的其他机器学习方法。在CICIDS2017场景数据集上的测试进一步验证了所提方法在实际应用中的可行性。
文摘“SPACE”模式,即坚持以学生(Student)为中心,以思政素养(Political and ideological qualities)为初心,以培养复杂工程问题解决能力(Ability of solving complex engineering problem)为重心,以培养创新精神(Creative spirit)为核心,践行“初心要红,重心要实,核心要强”的培养理念。面对新工科建设对人才培养提出的新要求,湖南警察学院结合自身拥有国家首批一流本科专业建设点和省综合改革试点专业的实际,创新构建了交通管理工程专业人才培养的“SPACE”模式,初步实现卓越(Excellent)交通管理工程警务人才培养的目标,产生了较好的社会反响。
文摘The purpose of this paper is to show how one can use the FSC model of gravitational entropy to calculate cosmic radiation temperature anisotropy for any past cosmic time t since the Planck scale. Cosmic entropy follows the Bekenstein-Hawking definition, although in the correct-scaling form of, which scales 60.63 logs of 10 from the Planck scale. In the FSC model, cosmic radiation temperature anisotropy At = (t/to). The derived past anisotropy value can be compared to current co-moving anisotropy defined as unity (to/to). Calculated in this way, current gravitational entropy and temperature anisotropy have maximum values, and the earliest universe has the lowest entropy and temperature anisotropy values. This approach comports with the second law of thermodynamics and the theoretical basis of the Sachs-Wolfe effect, gravitational entropy as defined by Roger Penrose, and Erik Verlinde’s “emergent gravity” theory.
文摘5D Space-Time-Energy World-Universe Model is a unified model of the World built around the concept of Medium, composed of massive particles (protons, electrons, photons, neutrinos, and dark matter particles). The Model provides a mathematical framework that enables precise calculation of medium-bound physical parameters: Hubble’s parameter, intergalactic plasma parameters, temperature of microwave background radiation and the rest mass of photons. This paper aligns the World-Universe Model (WUM) with the theoretical framework developed by Prof. P. S. Wesson, albeit assigning a new physical meaning to the fifth coordinate. In the World-Universe Model, the fifth dimension is associated with the total energy of the Medium of the World, and the gravitomagnetic parameter of the Medium serves as the dimension-transposing parameter.
文摘The purpose of this paper is to show how the dark matter predictions of FSC differ with respect to the standard cosmology assertion of a universal dark matter-to-visible matter ratio of approximately 5.3-to-1. FSC predicts the correct ratio to be approximately 9-to-1, based primarily on the universal observations of global spatial flatness in the context of general relativity. The FSC Friedmann equations incorporating a Lambda?Λ?cosmological term clearly indicate that a spatially flat universe must have equality of the positive curvature (matter mass-energy) and negative curvature (dark energy) density components. Thus, FSC predicts that observations of the Milky Way and the nearly co-moving galaxies within 100 million light years will prove the 5.3-to-1 ratio to be incorrect. The most recent galactic and perigalactic observations indicate a range of dark matter-to-visible matter ratios varying from essentially zero (NGC 1052-DF2) to approximately 23-to-1 (Milky Way). The latter ratio is simply astonishing and promises an exciting next few years for astrophysicists and cosmologists. Within the next few years, the mining of huge data bases (especially the Gaia catalogue and Hubble data) will resolve whether standard cosmology will need to change its current claims for the cosmic energy density partition to be more in line with FSC, or whether FSC is falsified. A prediction is that standard cosmology must eventually realize the necessity of resolving the tension between their flatness observations and their assertion of dark energy dominance. The author makes the further prediction that FSC will soon become the new paradigm in cosmology.