期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
From Droplets and Particles to Hierarchical Spatial Organization: Nanotechnology Challenges for Microfluidics 被引量:1
1
作者 J. Michael Kohler P. Mike Gvnther Anette Funfak Jialan Cao Andrea Knauer Shuning Li Steffen Schneider G. Alexander Gross 《Journal of Physical Science and Application》 2011年第3期125-134,共10页
The compartimentation of fluids in the microliter, nanoliter and picoliter range leads recently to many applications of microfluidics in material development, diagnostics and biological screenings. Droplet-based micro... The compartimentation of fluids in the microliter, nanoliter and picoliter range leads recently to many applications of microfluidics in material development, diagnostics and biological screenings. Droplet-based microfluidics allows the improvement of nanoparticle homogeneity and the tuning of particle properties. It supports combinatorial synthesis of inorganic as well as organic substances and can be applied for the cultivation and screening of bacteria, eucaryotic cells and fish embryos. The well-ordered handling and the addressing of microfluid segments improves the information transfer between chemical, biological and electronic systems. Despite this remarkable technical progress, there is a particular importance of microfluidics for future nanotechnological solutions. The hierarchical spatial organization of liquids, particles and gels in microfluidics represents a fundamental biomimetic principle which overcomes the limits of planar technology and opens the gate for realizing complex structured threedimensional nanoarchitectures. Recent applications of microstructured fluids in chemistry and biology and concepts for future developments will be discussed. 展开更多
关键词 NANOTECHNOLOGY MICROFLUIDICS nanoparticles segmented flow concentration spaces SCREENING nested phases hierarchical organization droplet-based systems.
下载PDF
Winter sea ice albedo variations in the Bohai Sea of China 被引量:2
2
作者 ZHENG Jiajia KE Changqing SHAO Zhude 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2017年第1期56-63,共8页
Sea ice conditions in the Bohai Sea of China are sensitive to large-scale climatic variations. On the basis of CLARA-A1-SAL data, the albedo variations are examined in space and time in the winter(December, January a... Sea ice conditions in the Bohai Sea of China are sensitive to large-scale climatic variations. On the basis of CLARA-A1-SAL data, the albedo variations are examined in space and time in the winter(December, January and February) from 1992 to 2008 in the Bohai Sea sea ice region. Time series data of the sea ice concentration(SIC), the sea ice extent(SIE) and the sea surface temperature(SST) are used to analyze their relationship with the albedo. The sea ice albedo changed in volatility appears along with time, the trend is not obvious and increases very slightly during the study period at a rate of 0.388% per decade over the Bohai Sea sea ice region.The interannual variation is between 9.93% and 14.50%, and the average albedo is 11.79%. The sea ice albedo in years with heavy sea ice coverage, 1999, 2000 and 2005, is significantly higher than that in other years; in years with light sea ice coverage, 1994, 1998, 2001 and 2006, has low values. For the monthly albedo, the increasing trend(at a rate of 0.988% per decade) in December is distinctly higher than that in January and February. The mean albedo in January(12.90%) is also distinctly higher than that in the other two months. The albedo is significantly positively correlated with the SIC and is significantly negatively correlated with the SST(significance level 90%). 展开更多
关键词 Bohai Sea sea ice region albedo variations in space and time trend sea ice concentration sea ice extent sea surface temperature
下载PDF
From E=mc^(2) to E=mc^(2)/22—A Short Account of the Most Famous Equation in Physics and Its Hidden Quantum Entanglement Origin
3
作者 Mohamed S.El Naschie 《Journal of Quantum Information Science》 2014年第4期284-291,共8页
Einstein’s energy mass formula is shown to consist of two basically quantum components E(O) = mc2/22 and E(D) = mc2(21/22). We give various arguments and derivations to expose the quantum entanglement physics residin... Einstein’s energy mass formula is shown to consist of two basically quantum components E(O) = mc2/22 and E(D) = mc2(21/22). We give various arguments and derivations to expose the quantum entanglement physics residing inside a deceptively simple expression E = mc2. The true surprising aspect of the present work is however the realization that all the involved “physics” in deriving the new quantum dissection of Einstein’s famous formula of special relativity is actually a pure mathematical necessity anchored in the phenomena of volume concentration of convex manifold in high dimensional quasi Banach spaces. Only an endophysical experiment encompassing the entire universe such as COBE, WMAP, Planck and supernova analysis could have discovered dark energy and our present dissection of Einstein’s marvelous formula. 展开更多
关键词 Special Relativity Varying Speed of Light Hardy’s Quantum Entanglement Dark Energy Measure concentration in Banach space ‘tHooft Fractal spacetime Witten Fractal M-Theory E-Infinity Theory Transfinite Cellular Automata Golden Mean Computer Endophysics Finkelstein-Rossler-Primas Theory of Interface
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部