In this article,we propose a new finite element spaceΛh for the expanded mixed finite element method(EMFEM)for second-order elliptic problems to guarantee its computing capability and reduce the computation cost.The ...In this article,we propose a new finite element spaceΛh for the expanded mixed finite element method(EMFEM)for second-order elliptic problems to guarantee its computing capability and reduce the computation cost.The new finite element spaceΛh is designed in such a way that the strong requirement V h⊂Λh in[9]is weakened to{v h∈V h;d i v v h=0}⊂Λh so that it needs fewer degrees of freedom than its classical counterpart.Furthermore,the newΛh coupled with the Raviart-Thomas space satisfies the inf-sup condition,which is crucial to the computation of mixed methods for its close relation to the behavior of the smallest nonzero eigenvalue of the stiff matrix,and thus the existence,uniqueness and optimal approximate capability of the EMFEM solution are proved for rectangular partitions in R d,d=2,3 and for triangular partitions in R 2.Also,the solvability of the EMFEM for triangular partition in R 3 can be directly proved without the inf-sup condition.Numerical experiments are conducted to confirm these theoretical findings.展开更多
The aim of this paper is to provide a local superconvergence analysis for ined finite element methods of Poission equation. We shall prove that if p is smmoth enough in a local regionΩ0Ω1Ω and rectangular mesh is ...The aim of this paper is to provide a local superconvergence analysis for ined finite element methods of Poission equation. We shall prove that if p is smmoth enough in a local regionΩ0Ω1Ω and rectangular mesh is imposed onΩ1, then local superconvergence for are expected. Thus, by post-processing operators P and we have obtained the follwing local superconvergence error estimate:展开更多
In this paper, we present a discontinuous Galerkin (DG) method based on the N@d@lec finite element space for solving a fourth-order curl equation arising from a magnetohy- drodynamics model on a 3-dimensional bounde...In this paper, we present a discontinuous Galerkin (DG) method based on the N@d@lec finite element space for solving a fourth-order curl equation arising from a magnetohy- drodynamics model on a 3-dimensional bounded Lipschitz polyhedron. We show that the method has an optimal error estimate for a model problem involving a fourth-order curl operator. Furthermore, some numerical results in 2 dimensions are presented to verify the theoretical results.展开更多
基金supported by NSF of China grant 11971276H.Chen was supported by NSF of China grants 12171287,10971254 and 11471196+1 种基金H.Wang was supported by the ARO MURI Grant W911NF-15-1-0562by the National Science Foundation under Grant DMS-2012291.
文摘In this article,we propose a new finite element spaceΛh for the expanded mixed finite element method(EMFEM)for second-order elliptic problems to guarantee its computing capability and reduce the computation cost.The new finite element spaceΛh is designed in such a way that the strong requirement V h⊂Λh in[9]is weakened to{v h∈V h;d i v v h=0}⊂Λh so that it needs fewer degrees of freedom than its classical counterpart.Furthermore,the newΛh coupled with the Raviart-Thomas space satisfies the inf-sup condition,which is crucial to the computation of mixed methods for its close relation to the behavior of the smallest nonzero eigenvalue of the stiff matrix,and thus the existence,uniqueness and optimal approximate capability of the EMFEM solution are proved for rectangular partitions in R d,d=2,3 and for triangular partitions in R 2.Also,the solvability of the EMFEM for triangular partition in R 3 can be directly proved without the inf-sup condition.Numerical experiments are conducted to confirm these theoretical findings.
文摘The aim of this paper is to provide a local superconvergence analysis for ined finite element methods of Poission equation. We shall prove that if p is smmoth enough in a local regionΩ0Ω1Ω and rectangular mesh is imposed onΩ1, then local superconvergence for are expected. Thus, by post-processing operators P and we have obtained the follwing local superconvergence error estimate:
文摘In this paper, we present a discontinuous Galerkin (DG) method based on the N@d@lec finite element space for solving a fourth-order curl equation arising from a magnetohy- drodynamics model on a 3-dimensional bounded Lipschitz polyhedron. We show that the method has an optimal error estimate for a model problem involving a fourth-order curl operator. Furthermore, some numerical results in 2 dimensions are presented to verify the theoretical results.